scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Applied Physics in 2021"


Journal ArticleDOI
TL;DR: The use of Raman spectroscopy for carbon nanotube applications is presented in this article as a tutorial review, which discusses how to use the Raman spectral features for practical purposes of controlling and characterizing nanotubes properties relevant for applied materials and devices.
Abstract: The use of Raman spectroscopy for carbon nanotube applications is presented here as a tutorial review. After introducing the relevant basic aspects of Raman spectroscopy of graphene-related materials, we will discuss how to use the Raman spectral features for practical purposes of controlling and characterizing nanotube properties relevant for applied materials and devices. Advanced techniques with potential to enhance the relevance of Raman spectroscopy application in the carbon nanotube field are also presented.

158 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe the physics, technology, and reliability of GaN-based power devices, starting from a discussion of the main properties of the material, the characteristics of lateral and vertical GaN transistors are discussed in detail to provide guidance in this complex and interesting field.
Abstract: Over the last decade, gallium nitride (GaN) has emerged as an excellent material for the fabrication of power devices. Among the semiconductors for which power devices are already available in the market, GaN has the widest energy gap, the largest critical field, and the highest saturation velocity, thus representing an excellent material for the fabrication of high-speed/high-voltage components. The presence of spontaneous and piezoelectric polarization allows us to create a two-dimensional electron gas, with high mobility and large channel density, in the absence of any doping, thanks to the use of AlGaN/GaN heterostructures. This contributes to minimize resistive losses; at the same time, for GaN transistors, switching losses are very low, thanks to the small parasitic capacitances and switching charges. Device scaling and monolithic integration enable a high-frequency operation, with consequent advantages in terms of miniaturization. For high power/high-voltage operation, vertical device architectures are being proposed and investigated, and three-dimensional structures—fin-shaped, trench-structured, nanowire-based—are demonstrating great potential. Contrary to Si, GaN is a relatively young material: trapping and degradation processes must be understood and described in detail, with the aim of optimizing device stability and reliability. This Tutorial describes the physics, technology, and reliability of GaN-based power devices: in the first part of the article, starting from a discussion of the main properties of the material, the characteristics of lateral and vertical GaN transistors are discussed in detail to provide guidance in this complex and interesting field. The second part of the paper focuses on trapping and reliability aspects: the physical origin of traps in GaN and the main degradation mechanisms are discussed in detail. The wide set of referenced papers and the insight into the most relevant aspects gives the reader a comprehensive overview on the present and next-generation GaN electronics.

141 citations


Journal ArticleDOI
TL;DR: Ferroelectrics are a class of materials that possess a variety of interactions between electrical, mechanical, and thermal properties that have enabled a wealth of functionalities as mentioned in this paper. But the complexity of well-known ferroelectric materials, e.g., the perovskite class, causes severe issues that limit its applications in integrated systems.
Abstract: Ferroelectrics are a class of materials that possess a variety of interactions between electrical, mechanical, and thermal properties that have enabled a wealth of functionalities. To realize integrated systems, the integration of these functionalities into semiconductor processes is necessary. To this end, the complexity of well-known ferroelectric materials, e.g., the perovskite class, causes severe issues that limit its applications in integrated systems. The discovery of ferroelectricity in hafnium oxide-based materials brought a renewed interest into this field during the last decade. Very recently, ferroelectricity was also verified in aluminum scandium nitride extending the potential of seeing a wealth of ferroelectric functions in integrated electronics in the future. This paper discusses the prospects of both material systems in various applications.

140 citations


Journal ArticleDOI
TL;DR: In this article, the fundamental physics of space-charge interactions that are important in various media: vacuum gap, air gap, liquids, and solids including quantum materials including quantum material.
Abstract: This Perspective reviews the fundamental physics of space–charge interactions that are important in various media: vacuum gap, air gap, liquids, and solids including quantum materials. It outlines the critical and recent developments since a previous review paper on diode physics [Zhang et al. Appl. Phys. Rev. 4, 011304 (2017)] with particular emphasis on various theoretical aspects of the space–charge limited current (SCLC) model: physics at the nano-scale, time-dependent, and transient behaviors; higher-dimensional models; and transitions between electron emission mechanisms and material properties. While many studies focus on steady-state SCLC, the increasing importance of fast-rise time electric pulses, high frequency microwave and terahertz sources, and ultrafast lasers has motivated theoretical investigations in time-dependent SCLC. We particularly focus on recent studies in discrete particle effects, temporal phenomena, time-dependent photoemission to SCLC, and AC beam loading. Due to the reduction in the physical size and complicated geometries, we report recent studies in multi-dimensional SCLC, including finite particle effects, protrusive SCLC, novel techniques for exotic geometries, and fractional models. Due to the importance of using SCLC models in determining the mobility of organic materials, this paper shows the transition of the SCLC model between classical bulk solids and recent two-dimensional (2D) Dirac materials. Next, we describe some selected applications of SCLC in nanodiodes, including nanoscale vacuum-channel transistors, microplasma transistors, thermionic energy converters, and multipactor. Finally, we conclude by highlighting future directions in theoretical modeling and applications of SCLC.

103 citations


Journal ArticleDOI
TL;DR: In this paper, the authors review the progress and applications of PnCs across their spectrum, and offer some perspectives in view of the growing demand for vibrational isolation, fast signal processing, and miniaturization of devices.
Abstract: Phononic crystals (PnCs) control the transport of sound and heat similar to the control of electric currents by semiconductors and metals or light by photonic crystals. Basic and applied research on PnCs spans the entire phononic spectrum, from seismic waves and audible sound to gigahertz phononics for telecommunications and thermal transport in the terahertz range. Here, we review the progress and applications of PnCs across their spectrum, and we offer some perspectives in view of the growing demand for vibrational isolation, fast signal processing, and miniaturization of devices. Current research on macroscopic low-frequency PnCs offers complete solutions from design and optimization to construction and characterization, e.g., sound insulators, seismic shields, and ultrasonic imaging devices. Hypersonic PnCs made of novel low-dimensional nanomaterials can be used to develop smaller microelectromechanical systems and faster wireless networks. The operational frequency, compactness, and efficiency of wireless communications can also increase using principles of optomechanics. In the terahertz range, PnCs can be used for efficient heat removal from electronic devices and for novel thermoelectrics. Finally, the introduction of topology in condensed matter physics has provided revolutionary designs of macroscopic sub-gigahertz PnCs, which can now be transferred to the gigahertz range with advanced nanofabrication techniques and momentum-resolved spectroscopy of acoustic phonons.

86 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide a glimpse of future GaN device technologies and advanced modeling approaches that can push the boundaries of these applications in terms of performance and reliability, which is a key missing piece to realize the full GaN platform with integrated digital, power, and RF electronics technologies.
Abstract: GaN technology is not only gaining traction in power and RF electronics but is also rapidly expanding into other application areas including digital and quantum computing electronics. This paper provides a glimpse of future GaN device technologies and advanced modeling approaches that can push the boundaries of these applications in terms of performance and reliability. While GaN power devices have recently been commercialized in the 15–900 V classes, new GaN devices are greatly desirable to explore both higher-voltage and ultra-low-voltage power applications. Moving into the RF domain, ultra-high frequency GaN devices are being used to implement digitized power amplifier circuits, and further advances using the hardware–software co-design approach can be expected. On the horizon is the GaN CMOS technology, a key missing piece to realize the full-GaN platform with integrated digital, power, and RF electronics technologies. Although currently a challenge, high-performance p-type GaN technology will be crucial to realize high-performance GaN CMOS circuits. Due to its excellent transport characteristics and ability to generate free carriers via polarization doping, GaN is expected to be an important technology for ultra-low temperature and quantum computing electronics. Finally, given the increasing cost of hardware prototyping of new devices and circuits, the use of high-fidelity device models and data-driven modeling approaches for technology-circuit co-design are projected to be the trends of the future. In this regard, physically inspired, mathematically robust, less computationally taxing, and predictive modeling approaches are indispensable. With all these and future efforts, we envision GaN to become the next Si for electronics.

83 citations


Journal ArticleDOI
TL;DR: In this paper, a brief overview of state-of-the-art quantum network experiments employing color centers in diamond and discuss future research directions, focusing on the control and coherence of qubits that distribute and store entangled states, and on efficient spin-photon interfaces.
Abstract: With the ability to transfer and process quantum information, large-scale quantum networks will enable a suite of fundamentally new applications, from quantum communications to distributed sensing, metrology, and computing. This Perspective reviews requirements for quantum network nodes and color centers in diamond as suitable node candidates. We give a brief overview of state-of-the-art quantum network experiments employing color centers in diamond and discuss future research directions, focusing, in particular, on the control and coherence of qubits that distribute and store entangled states, and on efficient spin–photon interfaces. We discuss a route toward large-scale integrated devices combining color centers in diamond with other photonic materials and give an outlook toward realistic future quantum network protocol implementations and applications.

74 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss the perspectives of multi-junction solar cells from the viewpoint of efficiency and low-cost potential based on scientific and technological arguments and possible market applications.
Abstract: In order to realize a clean energy society by using renewable energies, high-performance solar cells are a very attractive proposition. The development of high-performance solar cells offers a promising pathway toward achieving high power per unit cost for many applications. As state-of-the-art of single-junction solar cells are approaching the Shockley–Queisser limit of 32%–33%, an important strategy to raise the efficiency of solar cells further is stacking solar cell materials with different bandgaps to absorb different colors of the solar spectrum. The III–V semiconductor materials provide a relatively convenient system for fabricating multi-junction solar cells providing semiconductor materials that effectively span the solar spectrum as demonstrated by world record efficiencies (39.2% under one-sun and 47.1% under concentration) for six-junction solar cells. This success has inspired attempts to achieve the same with other materials like perovskites for which lower manufacturing costs may be achieved. Recently, Si multi-junction solar cells such as III–V/Si, II–VI/Si, chalcopyrite/Si, and perovskite/Si have become popular and are getting closer to economic competitiveness. Here, we discuss the perspectives of multi-junction solar cells from the viewpoint of efficiency and low-cost potential based on scientific and technological arguments and possible market applications. In addition, this article provides a brief overview of recent developments with respect to III–V multi-junction solar cells, III–V/Si, II–VI/Si, perovskite/Si tandem solar cells, and some new ideas including so-called 3rd generation concepts.

65 citations


Journal ArticleDOI
TL;DR: In this paper, the state of the art in integrated electro-optic modulators, covering a broad range of contemporary materials and integrated platforms, is reviewed, and an assessment of the different material platforms is conducted on the basis of common performance metrics: extinction ratio, insertion loss, electrooptic bandwidth, driving voltage, and footprint.
Abstract: Electro-optic modulators are an indispensable part of photonic communication systems, largely dictating the achievable transmission rate. Recent advances in materials and fabrication/processing techniques have brought new elements and a renewed dynamic to research on optical modulation. Motivated by the new opportunities, this Perspective reviews the state of the art in integrated electro-optic modulators, covering a broad range of contemporary materials and integrated platforms. To provide a better overview of the status of current modulators, an assessment of the different material platforms is conducted on the basis of common performance metrics: extinction ratio, insertion loss, electro-optic bandwidth, driving voltage, and footprint. The main physical phenomena exploited for electro-optic modulation are first introduced, aiming to provide a self-contained reference to researchers in physics and engineering. Additionally, we take care to highlight topics that can be overlooked and require attention, such as the accurate calculation of carrier density distribution and energy consumption, the correct modeling of thin and two-dimensional materials, and the nature of contact electrodes. Finally, a future outlook for the different electro-optic materials is provided, anticipating the research and performance trends in the years to come.

65 citations


Journal ArticleDOI
TL;DR: In this paper, the physical basis underlying the operation of dielectric elastomer actuators is described, starting with a simple linear analysis, followed by nonlinear Newtonian and energy approaches necessary to describe large strain characteristics of actuators.
Abstract: Dielectric elastomer actuators (DEAs) are soft, electrically powered actuators that have no discrete moving parts, yet can exhibit large strains (10%–50%) and moderate stress (∼100 kPa). This Tutorial describes the physical basis underlying the operation of DEA's, starting with a simple linear analysis, followed by nonlinear Newtonian and energy approaches necessary to describe large strain characteristics of actuators. These lead to theoretical limits on actuation strains and useful non-dimensional parameters, such as the normalized electric breakdown field. The analyses guide the selection of elastomer materials and compliant electrodes for DEAs. As DEAs operate at high electric fields, this Tutorial describes some of the factors affecting the Weibull distribution of dielectric breakdown, geometrical effects, distinguishing between permanent and “soft” breakdown, as well as “self-clearing” and its relation to proof testing to increase device reliability. New evidence for molecular alignment under an electric field is also presented. In the discussion of compliant electrodes, the rationale for carbon nanotube (CNT) electrodes is presented based on their compliance and ability to maintain their percolative conductivity even when stretched. A procedure for making complaint CNT electrodes is included for those who wish to fabricate their own. Percolative electrodes inevitably give rise to only partial surface coverage and the consequences on actuator performance are introduced. Developments in actuator geometry, including recent 3D printing, are described. The physical basis of versatile and reconfigurable shape-changing actuators, together with their analysis, is presented and illustrated with examples. Finally, prospects for achieving even higher performance DEAs will be discussed.

65 citations


Journal ArticleDOI
TL;DR: In this paper, the axion electrodynamics in three-dimensional topological materials is discussed. And the basic properties of axion insulators whose realizations require magnetic orderings are described.
Abstract: One of the intriguing properties characteristic to three-dimensional topological materials is the topological magnetoelectric phenomena arising from a topological term called the θ term. Such magnetoelectric phenomena are often termed the axion electrodynamics since the θ term has exactly the same form as the action describing the coupling between a hypothetical elementary particle, axion, and a photon. The axion was proposed about 40 years ago to solve the so-called strong CP problem in quantum chromodynamics and is now considered a candidate for dark matter. In this Tutorial, we overview theoretical and experimental studies on the axion electrodynamics in three-dimensional topological materials. Starting from the topological magnetoelectric effect in three-dimensional time-reversal invariant topological insulators, we describe the basic properties of static and dynamical axion insulators whose realizations require magnetic orderings. We also discuss the electromagnetic responses of Weyl semimetals with a focus on the chiral anomaly. We extend the concept of the axion electrodynamics in condensed matter to topological superconductors, whose responses to external fields can be described by a gravitational topological term analogous to the θ term.

Journal ArticleDOI
TL;DR: In this paper, the role of multipole lattice effects in resonant properties of underlying nanostructures and nanophotonic elements in detail is reviewed, and different effects related to the same and cross-multipole interactions in the arrays are considered.
Abstract: In this Perspective, we outline the recent progress, primary achievements, and further directions in the development of high refractive index nanostructures and metasurfaces. In particular, we review the role of multipole lattice effects in resonant properties of underlying nanostructures and nanophotonic elements in detail. Planar optical designs with efficient light control at the nanoscale can be engineered based on photonic lattices that operate in the translational regime between two and three dimensions. Such transdimensional lattices include 3D-engineered nanoantennas supporting multipole Mie resonances and arranged in the 2D arrays to harness collective effects in the nanostructure. Lattice effects in the periodic nanoparticle arrays have recently attracted a lot of attention as they enable not only spectrally narrow resonant features but also resonance position tuning over a broad range. The recent results indicate that different nanoparticle multipoles not only produce resonant spectral features but are also involved in the cross-multipole coupling, and these effects need to be accounted for in photonic designs. Multipole lattice phenomena provide an effective way to control nanoparticle resonances, facilitate excitation of additional multipoles through a cross-multipole coupling, and enable light localization in planar photonic elements. We review different effects related to the same- and cross-multipole interactions in the arrays. Both infinite and finite arrays, as well as lattices of complex-shape nanoparticles, which allow out-of-plane multipole excitations, are considered.

Journal ArticleDOI
TL;DR: In this article, the authors present details of photoluminescence (PL) spectroscopy experiments and discuss possible sources of mistakes, as well as a brief analysis of near-band-edge emission.
Abstract: Photoluminescence (PL) spectroscopy is a powerful tool in studying semiconductor properties and identifying point defects. Gallium nitride (GaN) is a remarkable semiconductor material for its use in a new generation of bright white LEDs, blue lasers, and high-power electronics. In this Tutorial, we present details of PL experiments and discuss possible sources of mistakes. A brief analysis of near-band-edge emission includes basic characterization of GaN, essential findings about excitons in this material, and the explanation of less known details. We review modern approaches of quantitative analysis of PL from point defects in GaN. The updated classification of defects in undoped GaN and their latest identifications are presented. Typical mistakes in the interpretation of PL spectra from GaN are discussed, and myths about PL are refuted.

Journal ArticleDOI
TL;DR: In this article, a reverse-biased homoepitaxial GaN p-n junction diode was experimentally investigated at 223-373 K by novel photomultiplication measurements utilizing above-and below-bandgap illumination.
Abstract: Avalanche multiplication characteristics in a reverse-biased homoepitaxial GaN p–n junction diode are experimentally investigated at 223–373 K by novel photomultiplication measurements utilizing above- and below-bandgap illumination. The device has a non-punch-through one-side abrupt p–-n+ junction structure, in which the depletion layer mainly extends to the p-type region. For above-bandgap illumination, the light is absorbed at the surface p+-layer, and the generated electrons diffuse and reach the depletion layer, resulting in an electron-injected photocurrent. On the other hand, for below-bandgap illumination, the light penetrates a GaN layer and is absorbed owing to the Franz–Keldysh effect in the high electric field region (near the p–n junction interface), resulting in a hole-induced photocurrent. The theoretical (non-multiplicated) photocurrents are calculated elaborately, and the electron- and hole-initiated multiplication factors are extracted as ratios of the experimental data to the calculated values. Through the mathematical analyses of the multiplication factors, the temperature dependences of the impact ionization coefficients of electrons and holes in GaN are extracted and formulated by the Okuto–Crowell model. The ideal breakdown voltage and the critical electric field for GaN p–n junctions of varying doping concentration are simulated using the obtained impact ionization coefficients, and their temperature dependence and conduction-type dependence were discussed. The simulated breakdown characteristics show good agreement with data reported previously, suggesting the high accuracy of the impact ionization coefficients obtained in this study.

Journal ArticleDOI
TL;DR: In this article, the authors discuss skyrmionics in the context of the present-day solid-state memory landscape and show how their size, stability, and mobility can be controlled by material engineering, as well as how they can be nucleated and detected.
Abstract: Solitonic magnetic excitations such as domain walls and, specifically, skyrmionics enable the possibility of compact, high density, ultrafast, all-electronic, low-energy devices, which is the basis for the emerging area of skyrmionics. The topological winding of skyrmion spins affects their overall lifetime, energetics, and dynamical behavior. In this Perspective, we discuss skyrmionics in the context of the present-day solid-state memory landscape and show how their size, stability, and mobility can be controlled by material engineering, as well as how they can be nucleated and detected. Ferrimagnets near their compensation points are promising candidates for this application, leading to a detailed exploration of amorphous CoGd as well as the study of emergent materials such as Mn4N and inverse Heusler alloys. Along with material properties, geometrical parameters such as film thickness, defect density, and notches can be used to tune skyrmion properties, such as their size and stability. Topology, however, can be a double-edged sword, especially for isolated metastable skyrmions, as it brings stability at the cost of additional damping and deflective Magnus forces compared to domain walls. Skyrmion deformation in response to forces also makes them intrinsically slower than domain walls. We explore potential analog applications of skyrmions, including temporal memory at low density—one skyrmion per racetrack—that capitalizes on their near ballistic current–velocity relation to map temporal data to spatial data and decorrelators for stochastic computing at a higher density that capitalizes on their interactions. We summarize the main challenges of achieving a skyrmionics technology, including maintaining positional stability with very high accuracy and electrical readout, especially for small ferrimagnetic skyrmions, deterministic nucleation, and annihilation and overall integration with digital circuits with the associated circuit overhead.

Journal ArticleDOI
TL;DR: This Tutorial focuses on the physical principles of nonlinear ultrasonic guided waves leading to the so-called internal resonance conditions that provide a means for selecting primary waves that generate cumulative secondary waves that transform how the service lives of structural systems are managed.
Abstract: Research into the use of nonlinear ultrasonic guided waves for nondestructive evaluation is expanding at a high rate because of the great potential benefit that they possess for early detection of material degradation. However, development of inspection and testing strategies is complicated because (i) the underlying physical principles are complex, (ii) there is a broad spectrum of possible solutions but only a limited number that have been shown to be effective, and (iii) the nonlinearity is weak and thus its measurement is challenging. This Tutorial aims to provide a foundation for researchers and technology-transitioners alike, to advance the application of nonlinear ultrasonic guided waves and ultimately transform how the service lives of structural systems are managed. The Tutorial focuses on the physical principles of nonlinear ultrasonic guided waves leading to the so-called internal resonance conditions that provide a means for selecting primary waves that generate cumulative secondary waves. To detect material degradation, we are primarily interested in nonlinearity stemming from the material itself, which is represented as hyperelastic. For the special case of plates, internal resonance points have been identified and case studies are presented to illustrate some of the applications. The Tutorial has one new result not published in a research paper; finite element simulation of energy transfer from shear-horizontal primary waves to symmetric Lamb waves at the second harmonic.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate ferroelectricity in Mg-substituted ZnO thin films with the wurtzite structure, which are grown by dual-cathode reactive magnetron sputtering on (111)-Pt and (0001)-Al2O3 substrates at temperatures ranging from 26 to 200
Abstract: We demonstrate ferroelectricity in Mg-substituted ZnO thin films with the wurtzite structure. Zn1−xMgxO films are grown by dual-cathode reactive magnetron sputtering on (111)-Pt // (0001)-Al2O3 substrates at temperatures ranging from 26 to 200 °C for compositions spanning from x = 0 to x = 0.37. X-ray diffraction indicates a decrease in the c-lattice parameter and an increase in the a-lattice parameter with increasing Mg content, resulting in a nearly constant c/a axial ratio of 1.595 over this composition range. Transmission electron microscopy studies show abrupt interfaces between Zn1−xMgxO films and the Pt electrode. When prepared at pO2 = 0.025, film surfaces are populated by abnormally oriented grains as measured by atomic force microscopy for Mg concentrations >29%. Raising pO2 to 0.25 eliminates the misoriented grains. Optical measurements show increasing bandgap values with increasing Mg content. When prepared on a 200 °C substrate, films display ferroelectric switching with remanent polarizations exceeding 100 μC cm−2 and coercive fields below 3 MV cm−1 when the Mg content is between ∼30% and ∼37%. Substrate temperature can be lowered to ambient conditions, and when doing so, capacitor stacks show only minor sacrifices to crystal orientation and nearly identical remanent polarization values; however, coercive fields drop below 2 MV/cm. Using ambient temperature deposition, we demonstrate ferroelectric capacitor stacks integrated directly with polymer substrate surfaces.

Journal ArticleDOI
TL;DR: In this article, the authors give a pedagogical introduction to Majorana bound states (MBSs) arising in semiconducting nanostructures, where the Majorana wave functions can be obtained explicitly by standard methods.
Abstract: In this Tutorial, we give a pedagogical introduction to Majorana bound states (MBSs) arising in semiconducting nanostructures. We start by briefly reviewing the well-known Kitaev chain toy model in order to introduce some of the basic properties of MBSs before proceeding to describe more experimentally relevant platforms. Here, our focus lies on simple “minimal” models where the Majorana wave functions can be obtained explicitly by standard methods. In the first part, we review the paradigmatic model of a Rashba nanowire with strong spin–orbit interaction (SOI) placed in a magnetic field and proximitized by a conventional s-wave superconductor. We identify the topological phase transition separating the trivial phase from the topological phase and demonstrate how the explicit Majorana wave functions can be obtained in the limit of strong SOI. In the second part, we discuss MBSs engineered from proximitized edge states of two-dimensional (2D) topological insulators. We introduce the Jackiw–Rebbi mechanism leading to the emergence of bound states at mass domain walls and show how this mechanism can be exploited to construct MBSs. Due to their recent interest, we also include a discussion of Majorana corner states in 2D second-order topological superconductors. This Tutorial is mainly aimed at graduate students—both theorists and experimentalists—seeking to familiarize themselves with some of the basic concepts in the field.

Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive theoretical perspective on the current understanding of the underlying physical mechanism of the negative capacitance (NC) effect in the ferroelectric material, and discuss different assumptions, conditions, and distinct features of the quasi-static NC effect in single-domain and multi-domain scenarios.
Abstract: In a heterogeneous system, ferroelectric materials can exhibit negative capacitance (NC) behavior given that the overall capacitance of the system remains positive. Such NC effects may lead to differential amplification in local potential and can provide an enhanced charge and capacitance response for the whole system compared to their constituents. Such intriguing implications of NC phenomena have prompted the design and exploration of many ferroelectric-based electronic devices to not only achieve an improved performance but potentially also overcome some fundamental limits of standard transistors. However, the microscopic physical origin as well as the true nature of the NC effect, and direct experimental evidence remain elusive and debatable. To that end, in this article, we provide a comprehensive theoretical perspective on the current understanding of the underlying physical mechanism of the NC effect in the ferroelectric material. Based upon the fundamental physics of ferroelectric material, we discuss different assumptions, conditions, and distinct features of the quasi-static NC effect in the single-domain and multi-domain scenarios. While the quasi-static and hysteresis-free NC effect was initially propounded in the context of a single-domain scenario, we highlight that similar effects can be observed in multi-domain FEs with soft domain-wall (DW) displacement. Furthermore, to obtain the soft-DW, the gradient energy coefficient of the FE material is required to be higher as well as the ferroelectric thickness is required to be lower than some critical values. If those requirements are not met, then the DW becomes hard and their displacement would lead to hysteretic NC effects, which are adiabatically irreversible. In addition to the quasi-static NC, we discuss different mechanisms that can potentially lead to the transient NC effects. Furthermore, we discuss different existing experimental results by correlating their distinct features with different types of NC attributes and provide guidelines for new experiments that can potentially provide new insights on unveiling the real origin of NC phenomena.

Journal ArticleDOI
TL;DR: In this article, the basic concepts that define the behavior of dopants, unintentional impurities, and point defects in gallium nitride are discussed. And the physics of defects and impurities in GaN is relevant for understanding other widebandgap semiconductor materials, such as the II-IV-nitrides, boron nitride, and the transition metal nitrides.
Abstract: Attaining control over the electrical conductivity of gallium nitride through impurity doping is one of the foremost achievements in semiconductor science. Yet, unwanted contaminants and point defects continue to limit device performance, and experimental techniques alone are insufficient for elucidating the behavior of these unintentionally incorporated species. Methodological advancements have made first-principles calculations more powerful than ever and capable of quantitative predictions, though care must still be taken in comparing results from theory and experiment. In this Tutorial, we explain the basic concepts that define the behavior of dopants, unintentional impurities, and point defects in GaN. We also describe how to interpret experimental results in the context of theoretical calculations and also discuss how the properties of defects and impurities vary in III-nitride alloys. Finally, we examine how the physics of defects and impurities in GaN is relevant for understanding other wide-bandgap semiconductor materials, such as the II–IV-nitrides, boron nitride, and the transition metal nitrides.

Journal ArticleDOI
TL;DR: In this article, the authors address two fundamental questions that should be answered to enable researchers to make transformational advances in PDSE: How far from equilibrium can plasma-induced solution processes be driven? and What are the fundamental differences between PDSE and other more traditional electrochemical processes?
Abstract: Plasmas interacting with liquids enable the generation of a highly reactive interfacial liquid layer due to a variety of processes driven by plasma-produced electrons, ions, photons, and radicals. These processes show promise to enable selective, efficient, and green chemical transformations and new material synthesis approaches. While many differences are to be expected between conventional electrolysis and plasma–liquid interactions, plasma–liquid interactions can be viewed, to a first approximation, as replacing a metal electrode in an electrolytic cell with a gas phase plasma. For this reason, we refer to this method as plasma-driven solution electrochemistry (PDSE). In this Perspective, we address two fundamental questions that should be answered to enable researchers to make transformational advances in PDSE: How far from equilibrium can plasma-induced solution processes be driven? and What are the fundamental differences between PDSE and other more traditional electrochemical processes? Different aspects of both questions are discussed in five sub-questions for which we review the current state-of-the art and we provide a motivation and research vision.

Journal ArticleDOI
TL;DR: In this article, the structural design methods, acoustic/elastic wave attenuation and regulation principles, and engineering applications of thin-walled AMs for low-frequency sound insulation, sound absorption, and vibration reduction were explored.
Abstract: Many advanced physical properties can be realized by using well-designed acoustic metamaterial (AM) structures, which have significant application value in engineering. In particular, thin-walled membrane, plate, and shell-type structures with deep subwavelength thicknesses that can meet light weight requirements have attracted the attention of many researchers and engineers from various specialized fields. This Tutorial systematically introduced the structural design methods, acoustic/elastic wave attenuation and regulation principles, and engineering applications of thin-walled AMs for low-frequency sound insulation, sound absorption, and vibration reduction. In particular, the design methods and sound insulation/absorption properties of thin-walled AMs for realizing narrow-band and broadband sound attenuation were explored. Furthermore, the local resonance bandgap characteristics, quantitative extraction method for the bending wave bandgap, vibration suppression properties, and the design method for local resonance vibration dampers for elastic wave regulation by thin-walled elastic metamaterials were summarized successively. Moreover, other thin-walled AM applications, such as the wavefront steering performance of thin-walled acoustic/elastic metasurfaces, and the active thin-walled AMs, were introduced as well.

Journal ArticleDOI
TL;DR: In this paper, a broadband metamaterial absorber with a fractional bandwidth of 126.88% was presented, and the characteristic mode theory was used to guide the design of the absorber.
Abstract: In this paper, a broadband metamaterial absorber with a fractional bandwidth of 126.88% was presented. The characteristic mode theory was used to guide the design of the absorber. According to the analysis of characteristic mode and characteristic current, the resistance value of resistive films can be determined. The different modal information obtained through parameter changes can also better guide the design of the absorber. To study its operation mechanism, the equivalent impedance and surface current distribution of the proposed absorber have been analyzed. The final simulation and measurement results show that the proposed absorber has a wide absorbing bandwidth which is from 3.21 to 14.35 GHz, and the absorptivity is greater than 90%, covering the S, C, X, and Ku bands. In addition, for TE and TM polarization, it can achieve an absorptivity of more than 85% at 45° oblique incident and has good angular stability. Hence, the absorber has great potential applications in the field of electromagnetic stealth technology and Radar Cross Section reduction.

Journal ArticleDOI
TL;DR: In this article, the authors present a pedagogical presentation of the models of electronic states, their effects on device performance, and the presently accepted approaches to minimize their effects such as surface passivation and insulated gate technologies.
Abstract: Gallium nitride (GaN) is one of the front-runner materials among the so-called wide bandgap semiconductors that can provide devices having high breakdown voltages and are capable of performing efficiently even at high temperatures. The wide bandgap, however, naturally leads to a high density of surface states on bare GaN-based devices or interface states along insulator/semiconductor interfaces distributed over a wide energy range. These electronic states can lead to instabilities and other problems when not appropriately managed. In this Tutorial, we intend to provide a pedagogical presentation of the models of electronic states, their effects on device performance, and the presently accepted approaches to minimize their effects such as surface passivation and insulated gate technologies. We also re-evaluate standard characterization methods and discuss their possible pitfalls and current limitations in probing electronic states located deep within the bandgap. We then introduce our own photo-assisted capacitance–voltage (C–V) technique, which is capable of identifying and examining near mid-gap interface states. Finally, we attempt to propose some directions to which some audience can venture for future development.

Journal ArticleDOI
TL;DR: In this article, the authors summarized the state of research on the ultrafast properties of Dirac and Weyl semimetals, emphasizing important open questions and highlighting the challenges confronting each of these experimental opportunities and suggest what research is needed for ultrafast pulses to achieve their potential of controlling and illuminating the physics of 3D Dirac/Weyl semi-metals.
Abstract: Ultrafast experiments using sub-picosecond pulses of light are poised to play an important role in the study and use of topological materials and, particularly, of the three-dimensional Dirac and Weyl semimetals. Many of these materials’ characteristic properties—their linear band dispersion, Berry curvature, near-vanishing density of states at the Fermi energy, and sensitivity to crystalline and time-reversal symmetries—are closely related to their sub- and few-picosecond response to light. Ultrafast measurements offer the opportunity to explore excitonic instabilities and transient photocurrents, the latter depending on the Berry curvature and possibly quantized by fundamental constants. Optical pulses may, through Floquet effects, controllably and reversibly move, split, merge, or gap the materials’ Dirac and Weyl nodes; coherent phonons launched by an ultrafast pulse offer alternate mechanisms for similar control of the nodal structure. This Perspective will briefly summarize the state of research on the ultrafast properties of Dirac and Weyl semimetals, emphasizing important open questions. It will describe the challenges confronting each of these experimental opportunities and suggest what research is needed for ultrafast pulses to achieve their potential of controlling and illuminating the physics of Dirac and Weyl semimetals.

Journal ArticleDOI
TL;DR: In this paper, the structural and optoelectronic properties of a novel ZnI2/CdS van der Waals (vdW) heterostructure are studied under the effect of biaxial strain based on the density functional theory.
Abstract: The structural and optoelectronic properties of a novel ZnI2/CdS van der Waals (vdW) heterostructure are studied under the effect of biaxial strain based on the density functional theory. Our results show that the ZnI2/CdS vdW heterostructure is dynamically and thermally stable depending on the molecular dynamics simulation and phonon dispersion curve. The results also indicate that the ZnI2/CdS heterostructure exhibits type-II band alignment with an indirect energy gap of 0.886 and 1.336 eV according to the Perdew–Burke–Ernzerhof and Heyd–Scuseria–Ernzerhof methods, respectively. Besides, the biaxial strain has a significant impact on the electronic properties. The energy bandgap of the ZnI2/CdS heterostructure decreases gradually as the compressive strain increases, reaching a minimum value of 1.162 eV at −6%. Also, a transformation from indirect bandgap to direct bandgap appears at strains of 4% and 6%. Broadly, it has been found that the optical properties of the ZnI2/CdS vdW heterostructure improve under the influence of strain, and the absorption coefficient can reach 105 cm−1 with the emergence of a shift phenomenon that expands the absorption capacity. Therefore, the application of strain will drastically improve the optical and electronic properties of the ZnI2/CdS vdW heterostructure, providing a roadmap for enhancing optical efficiency in photocatalytic and photovoltaic devices.

Journal ArticleDOI
TL;DR: In this paper, the strengths and shortcomings of wide field nitrogen-vacancy (NV) microscopy are analyzed in order to identify the most promising applications and guide future development, and current limitations in spatial resolution, measurement accuracy, magnetic sensitivity, operating conditions, and ease of use are discussed.
Abstract: A dense layer of nitrogen-vacancy (NV) centers near the surface of a diamond can be interrogated in a widefield optical microscope to produce spatially resolved maps of local quantities such as magnetic field, electric field, and lattice strain, providing potentially valuable information about a sample or device placed in proximity. Since the first experimental realization of such a widefield NV microscope in 2010, the technology has seen rapid development and demonstration of applications in various areas across condensed matter physics, geoscience, and biology. This Perspective analyzes the strengths and shortcomings of widefield NV microscopy in order to identify the most promising applications and guide future development. We begin with a brief review of quantum sensing with ensembles of NV centers and the experimental implementation of widefield NV microscopy. We then compare this technology to alternative microscopy techniques commonly employed to probe magnetic materials and charge flow distributions. Current limitations in spatial resolution, measurement accuracy, magnetic sensitivity, operating conditions, and ease of use are discussed. Finally, we identify the technological advances that solve the aforementioned limitations and argue that their implementation would result in a practical, accessible, high-throughput widefield NV microscope.

Journal ArticleDOI
TL;DR: In this paper, the Schottky barrier radiation detectors on 250μm thick n-type 4H-SiC epitaxial layers, the highest reported thickness to date, were fabricated from a diced 100mm diameter 4HSiC wafer with a mean micropipe density of 0.11μm.
Abstract: Advances in the growth processes of 4H-SiC epitaxial layers have led to the continued expansion of epilayer thickness, allowing for the detection of more penetrative radioactive particles. We report the fabrication and characterization of high-resolution Schottky barrier radiation detectors on 250 μm thick n-type 4H-SiC epitaxial layers, the highest reported thickness to date. Several 8 × 8 mm2 detectors were fabricated from a diced 100 mm diameter 4H-SiC epitaxial wafer grown on a conductive 4H-SiC substrate with a mean micropipe density of 0.11 cm−2. From the Mott–Schottky plots, the effective doping concentration was found to be in the range (0.95–1.85) × 1014 cm−3, implying that full depletion could be achieved at ∼5.7 kV (0.5 MV/cm at the interface). The current-voltage characteristics demonstrated consistently low leakage current densities of 1–3 nA/cm2 at a reverse bias of −800 V. This resulted in the pulse-height spectra generated using a 241Am alpha source (5486 keV) manifesting an energy resolution of less than 0.5% full width at half maximum (FWHM) for all the detectors at −200 V. The charge collection efficiencies (CCEs) were measured to be 98–99% with no discernable correlation to the energy resolution. A drift-diffusion model fit to the variation of CCE as a function of bias voltage, revealed a minority carrier diffusion length of ∼10 μm. Deep level transient spectroscopy measurements on the best resolution detector revealed that the excellent performance was the result of having ultralow concentrations of the order of 1011 cm−3 lifetime limiting defects—Z1/2 and EH6/7.

Journal ArticleDOI
TL;DR: In this paper, the structural, electronic, and optical properties of MSN monolayer (MSN-1L) and bilayer(MSN-2L) were investigated under the applied electric field (E-field) and strain using density functional theory calculations.
Abstract: Recently, a two-dimensional (2D) MoSi 2N 4 (MSN) structure has been successfully synthesized [Hong et al., Science 369(6504), 670–674 (2020)]. Motivated by this result, we investigate the structural, electronic, and optical properties of MSN monolayer (MSN-1L) and bilayer (MSN-2L) under the applied electric field (E-field) and strain using density functional theory calculations. We find that the MSN-2L is a semiconductor with an indirect bandgap of 1.60 (1.80) eV using Perdew–Burke–Ernzerhof (HSE06). The bandgap of MSN-2L decreases as the E-field increases from 0.1 to 0.6 V/A and for larger E-field up to 1.0 V/A the bilayer becomes metallic. As the vertical strain increases, the bandgap decreases; more interestingly, a semiconductor to a metal phase transition is observed at a strain of 12 %. Furthermore, the optical response of the MSN-2L is in the ultraviolet (UV) region of the electromagnetic spectrum. The absorption edge exhibits a blue shift by applying an E-field or a vertical compressive strain. The obtained interesting properties suggest MSN-2L as a promising material in electro-mechanical and UV opto-mechanical devices.

Journal ArticleDOI
TL;DR: In this article, the authors examine and compare coherent and dissipative interactions in cavity magnonic systems and highlight the requirements for different coupling mechanisms, and conclude with recent applications of spin-photon hybridization, for example, the development of quantum transducers, memory architectures, isolators and enhanced sensing.
Abstract: Strong interactions between magnetic materials and electrodynamic cavities mix together spin and photon properties, producing unique hybridized behavior. The study of such coupled spin-photon systems, known as cavity magnonics, is motivated by the flexibility and controllability of these hybridized states for spintronic and quantum information technologies. In this Tutorial, we examine and compare both coherent and dissipative interactions in cavity magnonics. We begin with a familiar case study, the coupled harmonic oscillator, which provides insight into the unique characteristics of coherent and dissipative coupling. We then examine several canonical cavity-magnonic systems, highlighting the requirements for different coupling mechanisms, and conclude with recent applications of spin-photon hybridization, for example, the development of quantum transducers, memory architectures, isolators, and enhanced sensing.