scispace - formally typeset
Search or ask a question
JournalISSN: 0260-437X

Journal of Applied Toxicology 

Wiley
About: Journal of Applied Toxicology is an academic journal published by Wiley. The journal publishes majorly in the area(s): Toxicity & Medicine. It has an ISSN identifier of 0260-437X. Over the lifetime, 4014 publications have been published receiving 103970 citations. The journal is also known as: Applied toxicology & JAT. Journal of applied toxicology.


Papers
More filters
Journal ArticleDOI
TL;DR: An initiative between the European Federation of Pharmaceutical Industries Associations and the European Centre for the Validation of Alternative Methods to provide the researcher in the safety evaluation laboratory with an up‐to‐date, easy‐to-use set of data sheets to aid in the study design process.
Abstract: This article is the result of an initiative between the European Federation of Pharmaceutical Industries Associations (EFPIA) and the European Centre for the Validation of Alternative Methods (ECVAM). Its objectives are to provide the researcher in the safety evaluation laboratory with an up-to-date, easy-to-use set of data sheets to aid in the study design process whilst at the same time affording maximum welfare considerations to the experimental animals. Although this article is targeted at researchers in the European Pharmaceutical Industry, it is considered that the principles underpinning the data sets and refinement proposals are equally applicable to all those who use these techniques on animals in their research, whether in research institutes, universities or other sectors of industry. The implications of this article may lead to discussion with regulators, such as those responsible for pharmacopoeial testing. There are numerous publications dealing with the administration of test substances and the removal of blood samples, and many laboratories also have their own "in-house" guidelines that have been developed by custom and practice over many years. Within European Union Directive 86/609EEC1 we have an obligation to refine experiments to cause the minimum amount of stress. We hope that this article will provide background data useful to those responsible for protocol design and review. This guide is based on peer-reviewed publications whenever possible, but where this is not possible we have used "in-house" data and the experience of those on the working party (as well as helpful comments submitted by the industry) for a final opinion. The guide also addresses the continuing need to refine the techniques associated with the administration of substances and the withdrawal of blood, and suggests ways of doing so. Data-sharing between laboratories should be encouraged to avoid duplication of animal work, as well as sharing practical skills concerning animal welfare and scientific problems caused by "overdosing" in some way or another. The recommendations in this guide refer to the "normal" animal, and special consideration is needed, for instance, during pregnancy and lactation. Interpretation of studies may be confounded when large volumes are administered or excessive sampling employed, particularly if anaesthetics are used.

1,238 citations

Journal ArticleDOI
TL;DR: In this paper, the role of antioxidant defence systems against arsenic toxicity is discussed, and the role role of vitamin C (ascorbic acid), vitamin E (α-tocopherol), curcumin, glutathione and antioxidant enzymes such as superoxide dismutase, catalase, and peroxidase in their protective roles against arsenic-induced oxidative stress is also discussed.
Abstract: Arsenic (As) is a toxic metalloid element that is present in air, water and soil. Inorganic arsenic tends to be more toxic than organic arsenic. Examples of methylated organic arsenicals include monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. Reactive oxygen species (ROS)-mediated oxidative damage is a common denominator in arsenic pathogenesis. In addition, arsenic induces morphological changes in the integrity of mitochondria. Cascade mechanisms of free radical formation derived from the superoxide radical, combined with glutathione-depleting agents, increase the sensitivity of cells to arsenic toxicity. When both humans and animals are exposed to arsenic, they experience an increased formation of ROS/RNS, including peroxyl radicals (ROO•), the superoxide radical, singlet oxygen, hydroxyl radical (OH•) via the Fenton reaction, hydrogen peroxide, the dimethylarsenic radical, the dimethylarsenic peroxyl radical and/or oxidant-induced DNA damage. Arsenic induces the formation of oxidized lipids which in turn generate several bioactive molecules (ROS, peroxides and isoprostanes), of which aldehydes [malondialdehyde (MDA) and 4-hydroxy-nonenal (HNE)] are the major end products. This review discusses aspects of chronic and acute exposures of arsenic in the etiology of cancer, cardiovascular disease (hypertension and atherosclerosis), neurological disorders, gastrointestinal disturbances, liver disease and renal disease, reproductive health effects, dermal changes and other health disorders. The role of antioxidant defence systems against arsenic toxicity is also discussed. Consideration is given to the role of vitamin C (ascorbic acid), vitamin E (α-tocopherol), curcumin, glutathione and antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase in their protective roles against arsenic-induced oxidative stress.

1,040 citations

Journal ArticleDOI
TL;DR: The comparative analysis demonstrated that particle composition probably played a primary role in the cytotoxic effects of different nanoparticles, however, the potential genotoxicity might be mostly attributed to particle shape.
Abstract: Although the biological effects of some nanomaterials have already been assessed, information on toxicity and possible mechanisms of various particle types are insufficient. Moreover, the role of particle properties in the toxic reaction remains to be fully understood. In this paper, we aimed to explore the interrelationship between particle size, shape, chemical composition and toxicological effects of four typical nanomaterials with comparable properties: carbon black (CB), single wall carbon nanotube, silicon dioxide (SiO(2)) and zinc dioxide (ZnO) nanoparticles. We investigated the cytotoxicity, genotoxicity and oxidative effects of particles on primary mouse embryo fibroblast cells. As observed in the methyl thiazolyl tetrazolium (MTT) and water-soluble tetrazolium (WST) assays, ZnO induced much greater cytotoxicity than non-metal nanoparticles. This was significantly in accordance with intracellular oxidative stress levels measured by glutathione depletion, malondialdehyde production, superoxide dismutase inhibition as well as reactive oxygen species generation. The results indicated that oxidative stress may be a key route in inducing the cytotoxicity of nanoparticles. Compared with ZnO nanoparticles, carbon nanotubes were moderately cytotoxic but induced more DNA damage determined by the comet assay. CB and SiO(2) seemed to be less effective. The comparative analysis demonstrated that particle composition probably played a primary role in the cytotoxic effects of different nanoparticles. However, the potential genotoxicity might be mostly attributed to particle shape.

963 citations

Journal ArticleDOI
TL;DR: Concern has been raised over TCS's potential for endocrine disruption, as the antimicrobial has been shown to disrupt thyroid hormone homeostasis and possibly the reproductive axis, and there is strong evidence that aquatic species such as algae, invertebrates and certain types of fish are much more sensitive to TCS than mammals.
Abstract: Triclosan [5-chloro-2-(2,4-dichlorophenoxy)phenol; TCS] is a broad spectrum antibacterial agent used in personal care, veterinary, industrial and household products. TCS is commonly detected in aquatic ecosystems, as it is only partially removed during the wastewater treatment process. Sorption, biodegradation and photolytic degradation mitigate the availability of TCS to aquatic biota; however the by-products such as methyltriclosan and other chlorinated phenols may be more resistant to degradation and have higher toxicity than the parent compound. The continuous exposure of aquatic organisms to TCS, coupled with its bioaccumulation potential, have led to detectable levels of the antimicrobial in a number of aquatic species. TCS has been also detected in breast milk, urine and plasma, with levels of TCS in the blood correlating with consumer use patterns of the antimicrobial. Mammalian systemic toxicity studies indicate that TCS is neither acutely toxic, mutagenic, carcinogenic, nor a developmental toxicant. Recently, however, concern has been raised over TCS's potential for endocrine disruption, as the antimicrobial has been shown to disrupt thyroid hormone homeostasis and possibly the reproductive axis. Moreover, there is strong evidence that aquatic species such as algae, invertebrates and certain types of fish are much more sensitive to TCS than mammals. TCS is highly toxic to algae and exerts reproductive and developmental effects in some fish. The potential for endocrine disruption and antibiotic cross-resistance highlights the importance of the judicious use of TCS, whereby the use of TCS should be limited to applications where it has been shown to be effective.

733 citations

Journal ArticleDOI
TL;DR: Initial studies reported here show that parabens can be extracted from human breast tissue and detected by thin‐layer chromatography and this should open the way technically for more detailed information to be obtained on body burdens of paraben and in particular whether body burdens are different in cancer from those in normal tissues.
Abstract: Parabens are used as preservatives in many thousands of cosmetic, food and pharmaceutical products to which the human population is exposed. Although recent reports of the oestrogenic properties of parabens have challenged current concepts of their toxicity in these consumer products, the question remains as to whether any of the parabens can accumulate intact in the body from the long-term, low-dose levels to which humans are exposed. Initial studies reported here show that parabens can be extracted from human breast tissue and detected by thin-layer chromatography. More detailed studies enabled identification and measurement of mean concentrations of individual parabens in samples of 20 human breast tumours by high-pressure liquid chromatography followed by tandem mass spectrometry. The mean concentration of parabens in these 20 human breast tumours was found to be 20.6 +/- 4.2 ng x g(-1) tissue. Comparison of individual parabens showed that methylparaben was present at the highest level (with a mean value of 12.8 +/- 2.2 ng x g(-1) tissue) and represents 62% of the total paraben recovered in the extractions. These studies demonstrate that parabens can be found intact in the human breast and this should open the way technically for more detailed information to be obtained on body burdens of parabens and in particular whether body burdens are different in cancer from those in normal tissues.

714 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202385
2022151
2021217
2020130
2019139
2018140