scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Artificial Intelligence Research in 2002"


Journal ArticleDOI
TL;DR: In this article, a method of over-sampling the minority class involves creating synthetic minority class examples, which is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
Abstract: An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of oversampling the minority (abnormal)cla ss and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space)tha n only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space)t han varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC)and the ROC convex hull strategy.

17,313 citations


Journal ArticleDOI
TL;DR: In this article, the authors propose a perspective on knowledge compilation which calls for analyzing different compilation approaches according to two key dimensions: the succinctness of the target compilation language, and the class of queries and transformations that the language supports in polytime.
Abstract: We propose a perspective on knowledge compilation which calls for analyzing different compilation approaches according to two key dimensions: the succinctness of the target compilation language, and the class of queries and transformations that the language supports in polytime. We then provide a knowledge compilation map, which analyzes a large number of existing target compilation languages according to their succinctness and their polytime transformations and queries. We argue that such analysis is necessary for placing new compilation approaches within the context of existing ones. We also go beyond classical, flat target compilation languages based on CNF and DNF, and consider a richer, nested class based on directed acyclic graphs (such as OBDDs), which we show to include a relatively large number of target compilation languages.

617 citations


Journal ArticleDOI
TL;DR: A unified framework for multiagent teamwork, the COMmunicative Multiagent Team Decision Problem (COM-MTDP), which combines and extends existing multiagent theories, and provides a basis for the development of novel team coordination algorithms.
Abstract: Despite the significant progress in multiagent teamwork, existing research does not address the optimality of its prescriptions nor the complexity of the teamwork problem. Without a characterization of the optimality-complexity tradeoffs, it is impossible to determine whether the assumptions and approximations made by a particular theory gain enough efficiency to justify the losses in overall performance. To provide a tool for use by multiagent researchers in evaluating this tradeoff, we present a unified framework, the COMmunicative Multiagent Team Decision Problem (COM-MTDP). The COM-MTDP model combines and extends existing multiagent theories, such as decentralized partially observable Markov decision processes and economic team theory. In addition to their generality of representation, COM-MTDPs also support the analysis of both the optimality of team performance and the computational complexity of the agents' decision problem. In analyzing complexity, we present a breakdown of the computational complexity of constructing optimal teams under various classes of problem domains, along the dimensions of observability and communication cost. In analyzing optimality, we exploit the COM-MTDP's ability to encode existing teamwork theories and models to encode two instantiations of joint intentions theory taken from the literature. Furthermore, the COM-MTDP model provides a basis for the development of novel team coordination algorithms. We derive a domain-independent criterion for optimal communication and provide a comparative analysis of the two joint intentions instantiations with respect to this optimal policy. We have implemented a reusable, domain-independent software package based on COM-MTDPs to analyze teamwork coordination strategies, and we demonstrate its use by encoding and evaluating the two joint intentions strategies within an example domain.

428 citations


Journal ArticleDOI
TL;DR: The design, construction and empirical evaluation of NJFun, an experimental spoken dialogue system that provides users with access to information about fun things to do in New Jersey, are reported on.
Abstract: Designing the dialogue policy of a spoken dialogue system involves many nontrivial choices. This paper presents a reinforcement learning approach for automatically optimizing a dialogue policy, which addresses the technical challenges in applying reinforcement learning to a working dialogue system with human users. We report on the design, construction and empirical evaluation of NJFun, an experimental spoken dialogue system that provides users with access to information about fun things to do in New Jersey. Our results show that by optimizing its performance via reinforcement learning, NJFun measurably improves system performance.

402 citations


Journal ArticleDOI
TL;DR: This article propose a methodology for studying the properties of ordering information in the news genre and describe experiments done on a corpus of multiple acceptable orderings they developed for the task, based on these experiments, they implemented a strategy for ordering information that combines constraints from chronological order of events and topical relatedness.
Abstract: The problem of organizing information for multidocument summarization so that the generated summary is coherent has received relatively little attention. While sentence ordering for single document summarization can be determined from the ordering of sentences in the input article, this is not the case for multidocument summarization where summary sentences may be drawn from different input articles. In this paper, we propose a methodology for studying the properties of ordering information in the news genre and describe experiments done on a corpus of multiple acceptable orderings we developed for the task. Based on these experiments, we implemented a strategy for ordering information that combines constraints from chronological order of events and topical relatedness. Evaluation of our augmented algorithm shows a significant improvement of the ordering over two baseline strategies.

355 citations


Journal ArticleDOI
TL;DR: This paper introduces the Abstract Hidden Markov Model (AHMM), a novel type of stochastic processes, provide its dynamic Bayesian network (DBN) structure and analyse the properties of this network, and proposes a novel plan recognition framework based on the AHMM as the plan execution model.
Abstract: In this paper, we present a method for recognising an agent's behaviour in dynamic, noisy, uncertain domains, and across multiple levels of abstraction. We term this problem on-line plan recognition under uncertainty and view it generally as probabilistic inference on the stochastic process representing the execution of the agent's plan. Our contributions in this paper are twofold. In terms of probabilistic inference, we introduce the Abstract Hidden Markov Model (AHMM), a novel type of stochastic processes, provide its dynamic Bayesian network (DBN) structure and analyse the properties of this network. We then describe an application of the Rao-Blackwellised Particle Filter to the AHMM which allows us to construct an efficient, hybrid inference method for this model. In terms of plan recognition, we propose a novel plan recognition framework based on the AHMM as the plan execution model. The Rao-Blackwellised hybrid inference for AHMM can take advantage of the independence properties inherent in a model of plan execution, leading to an algorithm for online probabilistic plan recognition that scales well with the number of levels in the plan hierarchy. This illustrates that while stochastic models for plan execution can be complex, they exhibit special structures which, if exploited, can lead to efficient plan recognition algorithms. We demonstrate the usefulness of the AHMM framework via a behaviour recognition system in a complex spatial environment using distributed video surveillance data.

296 citations


Journal ArticleDOI
TL;DR: A novel approach to adjustable autonomy is presented, based on the notion of a transfer-of-control strategy, which guides and informs the operationalization of the strategies using Markov Decision Processes, which select an optimal strategy, given an uncertain environment and costs to the individuals and teams.
Abstract: Adjustable autonomy refers to entities dynamically varying their own autonomy, transferring decision-making control to other entities (typically agents transferring control to human users) in key situations. Determining whether and when such transfers-of-control should occur is arguably the fundamental research problem in adjustable autonomy. Previous work has investigated various approaches to addressing this problem but has often focused on individual agent-human interactions. Unfortunately, domains requiring collaboration between teams of agents and humans reveal two key shortcomings of these previous approaches. First, these approaches use rigid one-shot transfers of control that can result in unacceptable coordination failures in multiagent settings. Second, they ignore costs (e.g., in terms of time delays or effects on actions) to an agent's team due to such transfers-of-control. To remedy these problems, this article presents a novel approach to adjustable autonomy, based on the notion of a transfer-of-control strategy. A transfer-of-control strategy consists of a conditional sequence of two types of actions: (i) actions to transfer decision-making control (e.g., from an agent to a user or vice versa) and (ii) actions to change an agent's pre-specified coordination constraints with team members, aimed at minimizing miscoordination costs. The goal is for high-quality individual decisions to be made with minimal disruption to the coordination of the team. We present a mathematical model of transfer-of-control strategies. The model guides and informs the operationalization of the strategies using Markov Decision Processes, which select an optimal strategy, given an uncertain environment and costs to the individuals and teams. The approach has been carefully evaluated, including via its use in a real-world, deployed multi-agent system that assists a research group in its daily activities.

213 citations


Journal ArticleDOI
TL;DR: The main step of the subgroup discovery process, the induction of subgroup descriptions, is performed by a heuristic beam search algorithm, using a novel parametrized definition of rule quality which is analyzed in detail.
Abstract: This paper presents an approach to expert-guided subgroup discovery. The main step of the subgroup discovery process, the induction of subgroup descriptions, is performed by a heuristic beam search algorithm, using a novel parametrized definition of rule quality which is analyzed in detail. The other important steps of the proposed subgroup discovery process are the detection of statistically significant properties of selected subgroups and subgroup visualization: statistically significant properties are used to enrich the descriptions of induced subgroups, while the visualization shows subgroup properties in the form of distributions of the numbers of examples in the subgroups. The approach is illustrated by the results obtained for a medical problem of early detection of patient risk groups.

202 citations


Journal ArticleDOI
TL;DR: In this article, a new classifier combination technique based on the Dempster-Shafer theory of evidence is presented, which adapts to training data so that the overall mean square error is minimized.
Abstract: This paper presents a new classifier combination technique based on the Dempster-Shafer theory of evidence. The Dempster-Shafer theory of evidence is a powerful method for combining measures of evidence from different classifiers. However, since each of the available methods that estimates the evidence of classifiers has its own limitations, we propose here a new implementation which adapts to training data so that the overall mean square error is minimized. The proposed technique is shown to outperform most available classifier combination methods when tested on three different classification problems.

175 citations


Journal ArticleDOI
TL;DR: This paper presents a non-intrusive approach to monitoring by overhearing, where the monitored team's state is inferred from team-members' routine communications, exchanged as part of their coordinated task execution, and observed (overheard) by the monitoring system.
Abstract: Recent years are seeing an increasing need for on-line monitoring of teams of cooperating agents, e.g., for visualization, or performance tracking. However, in monitoring deployed teams, we often cannot rely on the agents to always communicate their state to the monitoring system. This paper presents a non-intrusive approach to monitoring by overhearing, where the monitored team's state is inferred (via plan-recognition) from team-members' routine communications, exchanged as part of their coordinated task execution, and observed (overheard) by the monitoring system. Key challenges in this approach include the demanding run-time requirements of monitoring, the scarceness of observations (increasing monitoring uncertainty), and the need to scale-up monitoring to address potentially large teams. To address these, we present a set of complementary novel techniques, exploiting knowledge of the social structures and procedures in the monitored team: (i) an efficient probabilistic plan-recognition algorithm, well-suited for processing communications as observations; (ii) an approach to exploiting knowledge of the team's social behavior to predict future observations during execution (reducing monitoring uncertainty); and (iii) monitoring algorithms that trade expressivity for scalability, representing only certain useful monitoring hypotheses, but allowing for any number of agents and their different activities to be represented in a single coherent entity. We present an empirical evaluation of these techniques, in combination and apart, in monitoring a deployed team of agents, running on machines physically distributed across the country, and engaged in complex, dynamic task execution. We also compare the performance of these techniques to human expert and novice monitors, and show that the techniques presented are capable of monitoring at human-expert levels, despite the difficulty of the task.

166 citations


Journal ArticleDOI
TL;DR: RLS methods are used to solve reinforcement learning problems, where two new reinforcement learning algorithms using linear value function approximators are proposed and analyzed and it is shown that the data efficiency of learning control can also be improved by using RLS methods in the learning-prediction process of the critic.
Abstract: The recursive least-squares (RLS) algorithm is one of the most well-known algorithms used in adaptive filtering, system identification and adaptive control. Its popularity is mainly due to its fast convergence speed, which is considered to be optimal in practice. In this paper, RLS methods are used to solve reinforcement learning problems, where two new reinforcement learning algorithms using linear value function approximators are proposed and analyzed. The two algorithms are called RLS-TD(λ) and Fast-AHC (Fast Adaptive Heuristic Critic), respectively. RLS-TD(λ) can be viewed as the extension of RLS-TD(0) from λ =0 to general 0≤ λ ≤1, so it is a multi-step temporal-difference (TD) learning algorithm using RLS methods. The convergence with probability one and the limit of convergence of RLS-TD(λ) are proved for ergodic Markov chains. Compared to the existing LS-TD(λ) algorithm, RLS-TD(λ) has advantages in computation and is more suitable for online learning. The effectiveness of RLS-TD(λ) is analyzed and verified by learning prediction experiments of Markov chains with a wide range of parameter settings. The Fast-AHC algorithm is derived by applying the proposed RLS-TD(λ) algorithm in the critic network of the adaptive heuristic critic method. Unlike conventional AHC algorithm, Fast-AHC makes use of RLS methods to improve the learning-prediction efficiency in the critic. Learning control experiments of the cart-pole balancing and the acrobot swing-up problems are conducted to compare the data efficiency of Fast-AHC with conventional AHC. From the experimental results, it is shown that the data efficiency of learning control can also be improved by using RLS methods in the learning-prediction process of the critic. The performance of Fast-AHC is also compared with that of the AHC method using LS-TD(λ). Furthermore, it is demonstrated in the experiments that different initial values of the variance matrix in RLS-TD(λ) are required to get better performance not only in learning prediction but also in learning control. The experimental results are analyzed based on the existing theoretical work on the transient phase of forgetting factor RLS methods.

Journal ArticleDOI
TL;DR: A family of extensions of Sowa's model, based on rules and constraints, keeping graph homomorphism as the basic operation is presented, including their operational semantics and relationships with FOL.
Abstract: Simple conceptual graphs are considered as the kernel of most knowledge representation formalisms built upon Sowa's model. Reasoning in this model can be expressed by a graph homomorphism called projection, whose semantics is usually given in terms of positive, conjunctive, existential FOL. We present here a family of extensions of this model, based on rules and constraints, keeping graph homomorphism as the basic operation. We focus on the formal definitions of the different models obtained, including their operational semantics and relationships with FOL, and we analyze the decidability and complexity of the associated problems (consistency and deduction). As soon as rules are involved in reasonings, these problems are not decidable, but we exhibit a condition under which they fall in the polynomial hierarchy. These results extend and complete the ones already published by the authors. Moreover we systematically study the complexity of some particular cases obtained by restricting the form of constraints and/or rules.

Journal ArticleDOI
TL;DR: A complexity analysis shows that considerable efficiency improvements can be achieved through the use of this query pack execution mechanism, and this claim is supported by empirical results obtained by incorporating support for queryPack execution in two existing learning systems.
Abstract: Inductive logic programming, or relational learning, is a powerful paradigm for machine learning or data mining. However, in order for ILP to become practically useful, the efficiency of ILP systems must improve substantially. To this end, the notion of a query pack is introduced: it structures sets of similar queries. Furthermore, a mechanism is described for executing such query packs. A complexity analysis shows that considerable efficiency improvements can be achieved through the use of this query pack execution mechanism. This claim is supported by empirical results obtained by incorporating support for query pack execution in two existing learning systems.

Journal ArticleDOI
TL;DR: In this article, the sensitivity of probabilistic queries to changes in network parameters and prove some tight bounds on the impact that such parameters can have on queries are analyzed. But, their results do not consider the impact of parameter changes on the performance of queries.
Abstract: Common wisdom has it that small distinctions in the probabilities (parameters) quantifying a belief network do not matter much for the results of probabilistic queries. Yet, one can develop realistic scenarios under which small variations in network parameters can lead to significant changes in computed queries. A pending theoretical question is then to analytically characterize parameter changes that do or do not matter. In this paper, we study the sensitivity of probabilistic queries to changes in network parameters and prove some tight bounds on the impact that such parameters can have on queries. Our analytic results pinpoint some interesting situations under which parameter changes do or do not matter. These results are important for knowledge engineers as they help them identify influential network parameters. They also help explain some of the previous experimental results and observations with regards to network robustness against parameter changes.

Journal ArticleDOI
TL;DR: A system that accelerates reinforcement learning by using transfer from related tasks that achieves much of its power by transferring parts of previously learned solutions rather than a single complete solution.
Abstract: This paper discusses a system that accelerates reinforcement learning by using transfer from related tasks. Without such transfer, even if two tasks are very similar at some abstract level, an extensive re-learning effort is required. The system achieves much of its power by transferring parts of previously learned solutions rather than a single complete solution. The system exploits strong features in the multi-dimensional function produced by reinforcement learning in solving a particular task. These features are stable and easy to recognize early in the learning process. They generate a partitioning of the state space and thus the function. The partition is represented as a graph. This is used to index and compose functions stored in a case base to form a close approximation to the solution of the new task. Experiments demonstrate that function composition often produces more than an order of magnitude increase in learning rate compared to a basic reinforcement learning algorithm.

Journal ArticleDOI
TL;DR: This work considers the problem of designing the the utility functions of the utility-maximizing agents in a multi-agent system so that they work synergistically to maximize a global utility and derives an algorithm whose ideal version should have better performance than that of having all agents use the ISPA, even in the infinitesimal limit.
Abstract: We consider the problem of designing the the utility functions of the utility-maximizing agents in a multi-agent system (MAS) so that they work synergistically to maximize a global utility. The particular problem domain we explore is the control of network routing by placing agents on all the routers in the network. Conventional approaches to this task have the agents all use the Ideal Shortest Path routing Algorithm (ISPA). We demonstrate that in many cases, due to the side-effects of one agent's actions on another agent's performance, having agents use ISPA's is suboptimal as far as global aggregate cost is concerned, even when they are only used to route infinitesimally small amounts of traffic. The utility functions of the individual agents are not "aligned" with the global utility, intuitively speaking. As a particular example of this we present an instance of Braess' paradox in which adding new links to a network whose agents all use the ISPA results in a decrease in overall throughput. We also demonstrate that load-balancing, in which the agents' decisions are collectively made to optimize the global cost incurred by all traffic currently being routed, is suboptimal as far as global cost averaged across time is concerned. This is also due to "side-effects", in this case of current routing decision on future traffic. The mathematics of Collective Intelligence (COIN) is concerned precisely with the issue of avoiding such deleterious side-effects in multi-agent systems, both over time and space. We present key concepts from that mathematics and use them to derive an algorithm whose ideal version should have better performance than that of having all agents use the ISPA, even in the infinitesimal limit. We present experiments verifying this, and also showing that a machine-learning-based version of this COIN algorithm in which costs are only imprecisely estimated via empirical means (a version potentially applicable in the real world) also outperforms the ISPA, despite having access to less information than does the ISPA. In particular, this COIN algorithm almost always avoids Braess' paradox.

Journal ArticleDOI
TL;DR: Results on automatically training a Problematic Dialogue Predictor to predict problematic human-computer dialogues using a corpus of 4692 dialogues collected with the How May I Help YouSM spoken dialogue system are reported.
Abstract: Spoken dialogue systems promise efficient and natural access to a large variety of information sources and services from any phone However, current spoken dialogue systems are deficient in their strategies for preventing, identifying and repairing problems that arise in the conversation This paper reports results on automatically training a Problematic Dialogue Predictor to predict problematic human-computer dialogues using a corpus of 4692 dialogues collected with the How May I Help YouSM spoken dialogue system The Problematic Dialogue Predictor can be immediately applied to the system's decision of whether to transfer the call to a human customer care agent, or be used as a cue to the system's dialogue manager to modify its behavior to repair problems, and even perhaps, to prevent them We show that a Problematic Dialogue Predictor using automatically-obtainable features from the first two exchanges in the dialogue can predict problematic dialogues 132% more accurately than the baseline

Journal ArticleDOI
TL;DR: In this article, the authors characterize the methodology and examine eight implicit assumptions about the problems, planners and metrics used in many of these comparisons, and find that most of these assumptions are not supported empirically.
Abstract: Recent trends in planning research have led to empirical comparison becoming commonplace. The field has started to settle into a methodology for such comparisons, which for obvious practical reasons requires running a subset of planners on a subset of problems. In this paper, we characterize the methodology and examine eight implicit assumptions about the problems, planners and metrics used in many of these comparisons. The problem assumptions are: PR1) the performance of a general purpose planner should not be penalized/biased if executed on a sampling of problems and domains, PR2) minor syntactic differences in representation do not affect performance, and PR3) problems should be solvable by STRIPS capable planners unless they require ADL. The planner assumptions are: PL1) the latest version of a planner is the best one to use, PL2) default parameter settings approximate good performance, and PL3) time cut-offs do not unduly bias outcome. The metrics assumptions are: M1) performance degrades similarly for each planner when run on degraded runtime environments (e.g., machine platform) and M2) the number of plan steps distinguishes performance. We find that most of these assumptions are not supported empirically; in particular, that planners are affected differently by these assumptions. We conclude with a call to the community to devote research resources to improving the state of the practice and especially to enhancing the available benchmark problems.

Journal ArticleDOI
TL;DR: In this paper, the decidability transfer results from normal modal logics to a large class of description logics are extended to describe logics, which can be seen as a common generalization of description and modality.
Abstract: Fusions are a simple way of combining logics. For normal modal logics, fusions have been investigated in detail. In particular, it is known that, under certain conditions, decidability transfers from the component logics to their fusion. Though description logics are closely related to modal logics, they are not necessarily normal. In addition, ABox reasoning in description logics is not covered by the results from modal logics. In this paper, we extend the decidability transfer results from normal modal logics to a large class of description logics. To cover different description logics in a uniform way, we introduce abstract description systems, which can be seen as a common generalization of description and modal logics, and show the transfer results in this general setting.

Journal ArticleDOI
Rens Bod1
TL;DR: A series of data-oriented parsing (DOP) models that combine the "simplicity principle" and the "likelihood principle" are presented, suggesting an interesting parallel between linguistic and musical structuring.
Abstract: Is there a general model that can predict the perceived phrase structure in language and music? While it is usually assumed that humans have separate faculties for language and music, this work focuses on the commonalities rather than on the differences between these modalities, aiming at finding a deeper "faculty". Our key idea is that the perceptual system strives for the simplest structure (the "simplicity principle"), but in doing so it is biased by the likelihood of previous structures (the "likelihood principle"). We present a series of data-oriented parsing (DOP) models that combine these two principles and that are tested on the Penn Treebank and the Essen Folksong Collection. Our experiments show that (1) a combination of the two principles outperforms the use of either of them, and (2) exactly the same model with the same parameter setting achieves maximum accuracy for both language and music. We argue that our results suggest an interesting parallel between linguistic and musical structuring.

Journal ArticleDOI
TL;DR: A novel, supervised, specific-to-general learner for a simple temporal logic and the resulting algorithm is applied to the task of learning relational event definitions from video and it yields definitions that are competitive with hand-coded ones.
Abstract: We develop, analyze, and evaluate a novel, supervised, specific-to-general learner for a simple temporal logic and use the resulting algorithm to learn visual event definitions from video sequences. First, we introduce a simple, propositional, temporal, event-description language called AMA that is sufficiently expressive to represent many events yet sufficiently restrictive to support learning. We then give algorithms, along with lower and upper complexity bounds, for the subsumption and generalization problems for AMA formulas. We present a positive-examples-only specific-to-general learning method based on these algorithms. We also present a polynomial-time-computable "syntactic" subsumption test that implies semantic subsumption without being equivalent to it. A generalization algorithm based on syntactic subsumption can be used in place of semantic generalization to improve the asymptotic complexity of the resulting learning algorithm. Finally, we apply this algorithm to the task of learning relational event definitions from video and show that it yields definitions that are competitive with hand-coded ones.

Journal ArticleDOI
TL;DR: A structured approach to the problem of retrieval of images by content and present a description logic that has been devised for the semantic indexing and retrieval of image containing complex objects, which allows a user to pose both queries by sketch and queries by example.
Abstract: We propose a structured approach to the problem of retrieval of images by content and present a description logic that has been devised for the semantic indexing and retrieval of images containing complex objects. As other approaches do, we start from low-level features extracted with image analysis to detect and characterize regions in an image. However, in contrast with feature-based approaches, we provide a syntax to describe segmented regions as basic objects and complex objects as compositions of basic ones. Then we introduce a companion extensional semantics for defining reasoning services, such as retrieval, classification, and subsumption. These services can be used for both exact and approximate matching, using similarity measures. Using our logical approach as a formal specification, we implemented a complete client-server image retrieval system, which allows a user to pose both queries by sketch and queries by example. A set of experiments has been carried out on a testbed of images to assess the retrieval capabilities of the system in comparison with expert users ranking. Results are presented adopting a well-established measure of quality borrowed from textual information retrieval.

Journal ArticleDOI
TL;DR: In this paper, a propositional logic to reason about the uncertainty of events is presented, where the uncertainty is modeled by a set of probability measures assigning an interval of probability to each event.
Abstract: We present a propositional logic to reason about the uncertainty of events, where the uncertainty is modeled by a set of probability measures assigning an interval of probability to each event. We give a sound and complete axiomatization for the logic, and show that the satisfiability problem is NP-complete, no harder than satisfiability for propositional logic.

Journal ArticleDOI
TL;DR: A formal framework for incorporating readily available odometric information and geometrical constraints into both the models and the algorithm that learns them is described, which can help to generate better solutions and require fewer iterations, while being robust in the face of data reduction.
Abstract: Hidden Markov models (HMMs) and partially observable Markov decision processes (POMDPs) provide useful tools for modeling dynamical systems. They are particularly useful for representing the topology of environments such as road networks and office buildings, which are typical for robot navigation and planning. The work presented here describes a formal framework for incorporating readily available odometric information and geometrical constraints into both the models and the algorithm that learns them. By taking advantage of such information, learning HMMs/POMDPs can be made to generate better solutions and require fewer iterations, while being robust in the face of data reduction. Experimental results, obtained from both simulated and real robot data, demonstrate the effectiveness of the approach.

Journal ArticleDOI
TL;DR: This approach bridges the gap between the desired normative AI approach, where a strategy should be selected in order to guarantee a desired payoff, and equilibrium analysis, and ensures that a safety level strategy is able to guarantee the value obtained in a Nash equilibrium.
Abstract: Much work in AI deals with the selection of proper actions in a given (known or unknown) environment. However, the way to select a proper action when facing other agents is quite unclear. Most work in AI adopts classical game-theoretic equilibrium analysis to predict agent behavior in such settings. This approach however does not provide us with any guarantee for the agent. In this paper we introduce competitive safety analysis. This approach bridges the gap between the desired normative AI approach, where a strategy should be selected in order to guarantee a desired payoff, and equilibrium analysis. We show that a safety level strategy is able to guarantee the value obtained in a Nash equilibrium, in several classical computer science settings. Then, we discuss the concept of competitive safety strategies, and illustrate its use in a decentralized load balancing setting, typical to network problems. In particular, we show that when we have many agents, it is possible to guarantee an expected payoff which is a factor of 8/9 of the payoff obtained in a Nash equilibrium. Our discussion of competitive safety analysis for decentralized load balancing is further developed to deal with many communication links and arbitrary speeds. Finally, we discuss the extension of the above concepts to Bayesian games, and illustrate their use in a basic auctions setup.

Journal ArticleDOI
TL;DR: This paper analyzes the decision version of the NK landscape model from the perspective of threshold phenomena and phase transitions under two random distributions, the uniform probability model and the fixed ratio model, and proves that the phase transition is easy.
Abstract: In this paper, we analyze the decision version of the NK landscape model from the perspective of threshold phenomena and phase transitions under two random distributions, the uniform probability model and the fixed ratio model. For the uniform probability model, we prove that the phase transition is easy in the sense that there is a polynomial algorithm that can solve a random instance of the problem with the probability asymptotic to 1 as the problem size tends to infinity. For the fixed ratio model, we establish several upper bounds for the solubility threshold, and prove that random instances with parameters above these upper bounds can be solved polynomially. This, together with our empirical study for random instances generated below and in the phase transition region, suggests that the phase transition of the fixed ratio model is also easy.

Journal ArticleDOI
TL;DR: A perspective on knowledge compilation is proposed which calls for analyzing different compilation approaches according to two key dimensions: the succinctness of the target compilation language, and the efficiency of the compilation language itself.
Abstract: We propose a perspective on knowledge compilation which calls for analyzing different compilation approaches according to two key dimensions: the succinctness of the target compilation language, an...

Journal ArticleDOI
TL;DR: This paper presents a reinforcement learning approach for automatically optimizing a dialogue policy, and shows how reinforcement learning can be used to improve the quality of spoken dialogue systems.
Abstract: Designing the dialogue policy of a spoken dialogue system involves many nontrivial choices. This paper presents a reinforcement learning approach for automatically optimizing a dialogue policy, whi...

Journal ArticleDOI
TL;DR: This paper provides an efficient "top-down and prune" induction heuristic, WIDC, mainly derived from recent results on the weak learning and boosting frameworks, and is to the authors' knowledge the first attempt to build a voting classifier as a base formula using the strong learning framework.
Abstract: Recent advances in the study of voting classification algorithms have brought empirical and theoretical results clearly showing the discrimination power of ensemble classifiers. It has been previously argued that the search of this classification power in the design of the algorithms has marginalized the need to obtain interpretable classifiers. Therefore, the question of whether one might have to dispense with interpretability in order to keep classification strength is being raised in a growing number of machine learning or data mining papers. The purpose of this paper is to study both theoretically and empirically the problem. First, we provide numerous results giving insight into the hardness of the simplicity-accuracy tradeoff for voting classifiers. Then we provide an efficient "top-down and prune" induction heuristic, WIDC, mainly derived from recent results on the weak learning and boosting frameworks. It is to our knowledge the first attempt to build a voting classifier as a base formula using the weak learning framework (the one which was previously highly successful for decision tree induction), and not the strong learning framework (as usual for such classifiers with boosting-like approaches). While it uses a well-known induction scheme previously successful in other classes of concept representations, thus making it easy to implement and compare, WIDC also relies on recent or new results we give about particular cases of boosting known as partition boosting and ranking loss boosting. Experimental results on thirty-one domains, most of which readily available, tend to display the ability of WIDC to produce small, accurate, and interpretable decision committees.