scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Artificial Intelligence Research in 2007"


Journal ArticleDOI
TL;DR: Experimental results for recognition of all Big Five personality traits, in both conversation and text, utilising both self and observer ratings of personality are reported, confirming previous findings linking language and personality, while revealing many new linguistic markers.
Abstract: It is well known that utterances convey a great deal of information about the speaker in addition to their semantic content. One such type of information consists of cues to the speaker's personality traits, the most fundamental dimension of variation between humans. Recent work explores the automatic detection of other types of pragmatic variation in text and conversation, such as emotion, deception, speaker charisma, dominance, point of view, subjectivity, opinion and sentiment. Personality affects these other aspects of linguistic production, and thus personality recognition may be useful for these tasks, in addition to many other potential applications. However, to date, there is little work on the automatic recognition of personality traits. This article reports experimental results for recognition of all Big Five personality traits, in both conversation and text, utilising both self and observer ratings of personality. While other work reports classification results, we experiment with classification, regression and ranking models. For each model, we analyse the effect of different feature sets on accuracy. Results show that for some traits, any type of statistical model performs significantly better than the baseline, but ranking models perform best overall. We also present an experiment suggesting that ranking models are more accurate than multi-class classifiers for modelling personality. In addition, recognition models trained on observed personality perform better than models trained using self-reports, and the optimal feature set depends on the personality trait. A qualitative analysis of the learned models confirms previous findings linking language and personality, while revealing many new linguistic markers.

895 citations


Journal ArticleDOI
TL;DR: The Author-Recipient-Topic model for social network analysis, which learns topic distributions based on the direction-sensitive messages sent between entities, is presented and results are given, providing evidence not only that clearly relevant topics are discovered, but that the ART model better predicts people's roles and gives lower perplexity on previously unseen messages.
Abstract: Previous work in social network analysis (SNA) has modeled the existence of links from one entity to another, but not the attributes such as language content or topics on those links. We present the Author-Recipient-Topic (ART) model for social network analysis, which learns topic distributions based on the direction-sensitive messages sent between entities. The model builds on Latent Dirichlet Allocation (LDA) and the Author-Topic (AT) model, adding the key attribute that distribution over topics is conditioned distinctly on both the sender and recipient--steering the discovery of topics according to the relationships between people. We give results on both the Enron email corpus and a researcher's email archive, providing evidence not only that clearly relevant topics are discovered, but that the ART model better predicts people's roles and gives lower perplexity on previously unseen messages. We also present the Role-Author-Recipient-Topic (RART) model, an extension to ART that explicitly represents people's roles.

484 citations


Journal ArticleDOI
TL;DR: It is proved that essentially all reasonable approximations or heuristics for combinatorial auctions as well as a wide class of cost minimization problems yield non-truthful VCG-based mechanisms and proposes a general method for circumventing the above problem.
Abstract: A major achievement of mechanism design theory is a general method for the construction of truthful mechanisms called VCG (Vickrey, Clarke, Groves). When applying this method to complex problems such as combinatorial auctions, a difficulty arises: VCG mechanisms are required to compute optimal outcomes and are, therefore, computationally infeasible. However, if the optimal outcome is replaced by the results of a sub-optimal algorithm, the resulting mechanism (termed VCG-based) is no longer necessarily truthful. The first part of this paper studies this phenomenon in depth and shows that it is near universal. Specifically, we prove that essentially all reasonable approximations or heuristics for combinatorial auctions as well as a wide class of cost minimization problems yield non-truthful VCG-based mechanisms. We generalize these results for affine maximizers. The second part of this paper proposes a general method for circumventing the above problem. We introduce a modification of VCG-based mechanisms in which the agents are given a chance to improve the output of the underlying algorithm. When the agents behave truthfully, the welfare obtained by the mechanism is at least as good as the one obtained by the algorithm's output. We provide a strong rationale for truth-telling behavior. Our method satisfies individual rationality as well.

263 citations


Journal ArticleDOI
TL;DR: This work describes how to convert the heuristic search algorithm A* into an anytime algorithm that finds a sequence of improved solutions and eventually converges to an optimal solution.
Abstract: We describe how to convert the heuristic search algorithm A* into an anytime algorithm that finds a sequence of improved solutions and eventually converges to an optimal solution. The approach we adopt uses weighted heuristic search to find an approximate solution quickly, and then continues the weighted search to find improved solutions as well as to improve a bound on the suboptimality of the current solution. When the time available to solve a search problem is limited or uncertain, this creates an anytime heuristic search algorithm that allows a flexible tradeoff between search time and solution quality. We analyze the properties of the resulting Anytime A* algorithm, and consider its performance in three domains; sliding-tile puzzles, STRIPS planning, and multiple sequence alignment. To illustrate the generality of this approach, we also describe how to transform the memory-efficient search algorithm Recursive Best-First Search (RBFS) into an anytime algorithm.

260 citations


Journal ArticleDOI
TL;DR: Existing relatedness measures perform better using Wikipedia than a baseline given by Google counts, and it is shown that Wikipedia outperforms WordNet on some datasets.
Abstract: Wikipedia provides a semantic network for computing semantic relatedness in a more structured fashion than a search engine and with more coverage than WordNet. We present experiments on using Wikipedia for computing semantic relatedness and compare it to WordNet on various benchmarking datasets. Existing relatedness measures perform better using Wikipedia than a baseline given by Google counts, and we show that Wikipedia outperforms WordNet on some datasets. We also address the question whether and how Wikipedia can be integrated into NLP applications as a knowledge base. Including Wikipedia improves the performance of a machine learning based coreference resolution system, indicating that it represents a valuable resource for NLP applications. Finally, we show that our method can be easily used for languages other than English by computing semantic relatedness for a German dataset.

255 citations


Journal ArticleDOI
TL;DR: A probabilistic, relational planning rule representation is developed that compactly models noisy, nondeterministic action effects, and it is demonstrated that this learning algorithm allows agents to effectively model world dynamics.
Abstract: In this article, we work towards the goal of developing agents that can learn to act in complex worlds. We develop a probabilistic, relational planning rule representation that compactly models noisy, nondeterministic action effects, and show how such rules can be effectively learned. Through experiments in simple planning domains and a 3D simulated blocks world with realistic physics, we demonstrate that this learning algorithm allows agents to effectively model world dynamics.

220 citations


Journal ArticleDOI
TL;DR: It is shown that scoring protocols are susceptible to manipulation by coalitions, when the number of candidates is constant, and it is demonstrated that NP-hard manipulations may be tractable in the average-case.
Abstract: Encouraging voters to truthfully reveal their preferences in an election has long been an important issue. Recently, computational complexity has been suggested as a means of precluding strategic behavior. Previous studies have shown that some voting protocols are hard to manipulate, but used NP-hardness as the complexity measure. Such a worst-case analysis may be an insufficient guarantee of resistance to manipulation. Indeed, we demonstrate that NP-hard manipulations may be tractable in the average-case. For this purpose, we augment the existing theory of average-case complexity with some new concepts. In particular, we consider elections distributed with respect to junta distributions, which concentrate on hard instances. We use our techniques to prove that scoring protocols are susceptible to manipulation by coalitions, when the number of candidates is constant.

183 citations


Journal ArticleDOI
TL;DR: The main contributions of the paper are the decidability proof of the fuzzy DL languages fuzzy-SI and fuzzy-SHIN, as well as decision procedures for the knowledge base satisfiability problem of the fuzzy- SI and fuzzy -SHIN.
Abstract: It is widely recognized today that the management of imprecision and vagueness will yield more intelligent and realistic knowledge-based applications. Description Logics (DLs) are a family of knowledge representation languages that have gained considerable attention the last decade, mainly due to their decidability and the existence of empirically high performance of reasoning algorithms. In this paper, we extend the well known fuzzy ALC DL to the fuzzy SHIN DL, which extends the fuzzy ALC DL with transitive role axioms (S), inverse roles (I), role hierarchies (H) and number restrictions (N). We illustrate why transitive role axioms are difficult to handle in the presence of fuzzy interpretations and how to handle them properly. Then we extend these results by adding role hierarchies and finally number restrictions. The main contributions of the paper are the decidability proof of the fuzzy DL languages fuzzy-SI and fuzzy-SHIN, as well as decision procedures for the knowledge base satisfiability problem of the fuzzy-SI and fuzzy-SHIN.

182 citations


Journal ArticleDOI
TL;DR: This paper presents and evaluates a trainable sentence planner for providing restaurant information in the MATCH dialogue system, and provides the first demonstration of individual preferences for sentence planning operations, affecting the content order, discourse structure and sentence structure of system responses.
Abstract: One of the biggest challenges in the development and deployment of spoken dialogue systems is the design of the spoken language generation module. This challenge arises from the need for the generator to adapt to many features of the dialogue domain, user population, and dialogue context. A promising approach is trainable generation, which uses general-purpose linguistic knowledge that is automatically adapted to the features of interest, such as the application domain, individual user, or user group. In this paper we present and evaluate a trainable sentence planner for providing restaurant information in the MATCH dialogue system. We show that trainable sentence planning can produce complex information presentations whose quality is comparable to the output of a template-based generator tuned to this domain. We also show that our method easily supports adapting the sentence planner to individuals, and that the individualized sentence planners generally perform better than models trained and tested on a population of individuals. Previous work has documented and utilized individual preferences for content selection, but to our knowledge, these results provide the first demonstration of individual preferences for sentence planning operations, affecting the content order, discourse structure and sentence structure of system responses. Finally, we evaluate the contribution of different feature sets, and show that, in our application, n-gram features often do as well as features based on higher-level linguistic representations.

159 citations


Journal ArticleDOI
TL;DR: In this paper, the authors define a number of original inference rules that, besides being applied efficiently, transform Max-SAT instances into equivalent Max SAT instances which are easier to solve.
Abstract: Exact Max-SAT solvers, compared with SAT solvers, apply little inference at each node of the proof tree. Commonly used SAT inference rules like unit propagation produce a simplified formula that preserves satisfiability but, unfortunately, solving the Max-SAT problem for the simplified formula is not equivalent to solving it for the original formula. In this paper, we define a number of original inference rules that, besides being applied efficiently, transform Max-SAT instances into equivalent Max-SAT instances which are easier to solve. The soundness of the rules, that can be seen as refinements of unit resolution adapted to Max-SAT, are proved in a novel and simple way via an integer programming transformation. With the aim of finding out how powerful the inference rules are in practice, we have developed a new Max-SAT solver, called MaxSatz, which incorporates those rules, and performed an experimental investigation. The results provide empirical evidence that MaxSatz is very competitive, at least, on random Max-2SAT, random Max-3SAT, Max-Cut, and Graph 3-coloring instances, as well as on the benchmarks from the Max-SAT Evaluation 2006.

144 citations


Journal ArticleDOI
TL;DR: This work addresses the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics suitable for modeling matchmaking in a logical framework, and presents reasonable algorithms for semantic matchmaking based on the devised inferences.
Abstract: Matchmaking arises when supply and demand meet in an electronic marketplace, or when agents search for a web service to perform some task, or even when recruiting agencies match curricula and job profiles. In such open environments, the objective of a matchmaking process is to discover best available offers to a given request. We address the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics. We devise Concept Abduction and Concept Contraction as non-monotonic inferences in Description Logics suitable for modeling matchmaking in a logical framework, and prove some related complexity results. We also present reasonable algorithms for semantic matchmaking based on the devised inferences, and prove that they obey to some commonsense properties. Finally, we report on the implementation of the proposed matchmaking framework, which has been used both as a mediator in e-marketplaces and for semantic web services discovery.

Journal ArticleDOI
TL;DR: This paper describes Marvin, a planner that competed in the Fourth International Planning Competition (IPC 4), which uses action-sequence-memoisation techniques to generate macro-actions, which are then used during search for a solution plan.
Abstract: This paper describes Marvin, a planner that competed in the Fourth International Planning Competition (IPC 4). Marvin uses action-sequence-memoisation techniques to generate macro-actions, which are then used during search for a solution plan. We provide an overview of its architecture and search behaviour, detailing the algorithms used. We also empirically demonstrate the effectiveness of its features in various planning domains; in particular, the effects on performance due to the use of macro-actions, the novel features of its search behaviour, and the native support of ADL and Derived Predicates.

Journal ArticleDOI
TL;DR: The algorithm, called Probabilistic-FF, extends the heuristic forward-searchmachinery of Conformant-FF to problems with probabilistic uncertainty about both the initial state and action effects, serving to elegantly define both the search space and theHeuristic function.
Abstract: We present a new algorithm for probabilistic planning with no observability. Our algorithm, called Probabilistic-FF, extends the heuristic forward-searchmachinery of Conformant-FF to problems with probabilistic uncertainty about both the initial state and action effects. Specifically, Probabilistic-FF combines Conformant-FF's techniques with a powerful machinery for weighted model counting in (weighted) CNFs, serving to elegantly define both the search space and the heuristic function. Our evaluation of Probabilistic-FF shows its fine scalability in a range of probabilistic domains, constituting a several orders of magnitude improvement over previous results in this area. We use a problematic case to point out the main open issue to be addressed by further research.

Journal ArticleDOI
TL;DR: This work determines the optimal auction and shows that the loss incurred relative to unconstrained auctions is mild, and proves non-surprising properties of these kinds of auctions, e.g., that asymmetric auctions are better than symmetric ones and that multi-round auctions reduce the communication complexity only by a linear factor.
Abstract: We study auctions with severe bounds on the communication allowed: each bidder may only transmit t bits of information to the auctioneer. We consider both welfare- and profit-maximizing auctions under this communication restriction. For both measures, we determine the optimal auction and show that the loss incurred relative to unconstrained auctions is mild. We prove non-surprising properties of these kinds of auctions, e.g., that in optimal mechanisms bidders simply report the interval in which their valuation lies in, as well as some surprising properties, e.g., that asymmetric auctions are better than symmetric ones and that multi-round auctions reduce the communication complexity only by a linear factor.

Journal ArticleDOI
TL;DR: This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers.
Abstract: This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers. These classifiers are developed with a rich set of novel features that encode proposition and sentence-level information. To our knowledge, this is the first work that: (a) performs a thorough analysis of learning-based inference models for semantic role labeling, and (b) compares several inference strategies in this context. We evaluate the proposed inference strategies in the framework of the CoNLL-2005 shared task using only automatically-generated syntactic information. The extensive experimental evaluation and analysis indicates that all the proposed inference strategies are successful - they all outperform the current best results reported in the CoNLL-2005 evaluation exercise - but each of the proposed approaches has its advantages and disadvantages. Several important traits of a state-of-the-art SRL combination strategy emerge from this analysis: (i) individual models should be combined at the granularity of candidate arguments rather than at the granularity of complete solutions; (ii) the best combination strategy uses an inference model based in learning; and (iii) the learning-based inference benefits from max-margin classifiers and global feedback.

Journal ArticleDOI
TL;DR: The main contributions of this paper are an extension of the earlier work on the theoretical foundations of AgentSpeak interpreters; a computationally grounded semantics for (the core) performatives used in speech-act based agent communication languages; and a well-defined extension ofAgentSpeak that supports agent communication.
Abstract: Research on agent communication languages has typically taken the speech acts paradigm as its starting point. Despite their manifest attractions, speech-act models of communication have several serious disadvantages as a foundation for communication in artificial agent systems. In particular, it has proved to be extremely difficult to give a satisfactory semantics to speech-act based agent communication languages. In part, the problem is that speech-act semantics typically make reference to the "mental states" of agents (their beliefs, desires, and intentions), and there is in general no way to attribute such attitudes to arbitrary computational agents. In addition, agent programming languages have only had their semantics formalised for abstract, stand-alone versions, neglecting aspects such as communication primitives. With respect to communication, implemented agent programming languages have tended to be rather ad hoc. This paper addresses both of these problems, by giving semantics to speech-act based messages received by an AgentSpeak agent. AgentSpeak is a logic-based agent programming language which incorporates the main features of the PRS model of reactive planning systems. The paper builds upon a structural operational semantics to AgentSpeak that we developed in previous work. The main contributions of this paper are as follows: an extension of our earlier work on the theoretical foundations of AgentSpeak interpreters; a computationally grounded semantics for (the core) performatives used in speech-act based agent communication languages; and a well-defined extension of AgentSpeak that supports agent communication.

Journal ArticleDOI
TL;DR: A wide class of real-time search algorithms with automatically-built state abstraction are extended and completeness and convergence of the resulting family of algorithms are proved.
Abstract: Real-time heuristic search methods are used by situated agents in applications that require the amount of planning per move to be independent of the problem size. Such agents plan only a few actions at a time in a local search space and avoid getting trapped in local minima by improving their heuristic function over time. We extend a wide class of real-time search algorithms with automatically-built state abstraction and prove completeness and convergence of the resulting family of algorithms. We then analyze the impact of abstraction in an extensive empirical study in real-time pathfinding. Abstraction is found to improve efficiency by providing better trading offs between planning time, learning speed and other negatively correlated performance measures.

Journal ArticleDOI
TL;DR: How the algorithms described here provide a general architecture for addressing the pipeline problem -- the problem of passing information back and forth between various stages of processing in a perceptual system is discussed.
Abstract: We consider the problem of computing a lightest derivation of a global structure using a set of weighted rules. A large variety of inference problems in AI can be formulated in this framework. We generalize A* search and heuristics derived from abstractions to a broad class of lightest derivation problems. We also describe a new algorithm that searches for lightest derivations using a hierarchy of abstractions. Our generalization of A* gives a new algorithm for searching AND/OR graphs in a bottom-up fashion. We discuss how the algorithms described here provide a general architecture for addressing the pipeline problem -- the problem of passing information back and forth between various stages of processing in a perceptual system. We consider examples in computer vision and natural language processing. We apply the hierarchical search algorithm to the problem of estimating the boundaries of convex objects in grayscale images and compare it to other search methods. A second set of experiments demonstrate the use of a new compositional model for finding salient curves in images.

Journal ArticleDOI
TL;DR: This paper proposes an associated deterministic scheduling problem whose solution is proved, under certain conditions, to be a lower bound for the probabilistic problem and demonstrates that a combination of the use of the associated Deterministic problem and Monte Carlo simulation results in algorithms that scale best both in terms of problem size and uncertainty.
Abstract: Most classical scheduling formulations assume a fixed and known duration for each activity. In this paper, we weaken this assumption, requiring instead that each duration can be represented by an independent random variable with a known mean and variance. The best solutions are ones which have a high probability of achieving a good makespan. We first create a theoretical framework, formally showing how Monte Carlo simulation can be combined with deterministic scheduling algorithms to solve this problem. We propose an associated deterministic scheduling problem whose solution is proved, under certain conditions, to be a lower bound for the probabilistic problem. We then propose and investigate a number of techniques for solving such problems based on combinations of Monte Carlo simulation, solutions to the associated deterministic problem, and either constraint programming or tabu search. Our empirical results demonstrate that a combination of the use of the associated deterministic problem and Monte Carlo simulation results in algorithms that scale best both in terms of problem size and uncertainty. Further experiments point to the correlation between the quality of the deterministic solution and the quality of the probabilistic solution as a major factor responsible for this success.

Journal ArticleDOI
TL;DR: This article defines a set of high-level observation and action modules, from which rule-based policies are constructed automatically, and argues that learning is successful mainly because policies may apply concurrent actions and thus the policy space is sufficiently rich.
Abstract: In this article we propose a method that can deal with certain combinatorial reinforcement learning tasks. We demonstrate the approach in the popular Ms. Pac-Man game. We define a set of high-level observation and action modules, from which rule-based policies are constructed automatically. In these policies, actions are temporally extended, and may work concurrently. The policy of the agent is encoded by a compact decision list. The components of the list are selected from a large pool of rules, which can be either handcrafted or generated automatically. A suitable selection of rules is learnt by the cross-entropy method, a recent global optimization algorithm that fits our framework smoothly. Cross-entropy-optimized policies perform better than our hand-crafted policy, and reach the score of average human players. We argue that learning is successful mainly because (i) policies may apply concurrent actions and thus the policy space is sufficiently rich, (ii) the search is biased towards low-complexity policies and therefore, solutions with a compact description can be found quickly if they exist.

Journal ArticleDOI
TL;DR: This paper draws the strategy-proof landscape for many merging operators from the literature, including model- based ones and formula-based ones, and the general case and several restrictions on the merging process are considered.
Abstract: Merging operators aim at defining the beliefs/goals of a group of agents from the beliefs/goals of each member of the group. Whenever an agent of the group has preferences over the possible results of the merging process (i.e., the possible merged bases), she can try to rig the merging process by lying on her true beliefs/goals if this leads to a better merged base according to her point of view. Obviously, strategy-proof operators are highly desirable in order to guarantee equity among agents even when some of them are not sincere. In this paper, we draw the strategy-proof landscape for many merging operators from the literature, including model-based ones and formula-based ones. Both the general case and several restrictions on the merging process are considered.

Journal ArticleDOI
TL;DR: In this article, a generalization of the fixpoint-based and level mapping-based answer set semantics of normal logic programs to the case of logic programs with arbitrary types of abstract constraint atoms (c-atoms) is presented.
Abstract: In this paper, we present two alternative approaches to defining answer sets for logic programs with arbitrary types of abstract constraint atoms (c-atoms). These approaches generalize the fixpoint-based and the level mapping based answer set semantics of normal logic programs to the case of logic programs with arbitrary types of c-atoms. The results are four different answer set definitions which are equivalent when applied to normal logic programs. The standard fixpoint-based semantics of logic programs is generalized in two directions, called answer set by reduct and answer set by complement. These definitions, which differ from each other in the treatment of negation-as-failure (naf) atoms, make use of an immediate consequence operator to perform answer set checking, whose definition relies on the notion of conditional satisfaction of c-atoms w.r.t. a pair of interpretations. The other two definitions, called strongly and weakly well-supported models, are generalizations of the notion of well-supported models of normal logic programs to the case of programs with c-atoms. As for the case of fixpoint-based semantics, the difference between these two definitions is rooted in the treatment of naf atoms. We prove that answer sets by reduct (resp. by complement) are equivalent to weakly (resp. strongly) well-supported models of a program, thus generalizing the theorem on the correspondence between stable models and well-supported models of a normal logic program to the class of programs with c-atoms. We show that the newly defined semantics coincide with previously introduced semantics for logic programs with monotone c-atoms, and they extend the original answer set semantics of normal logic programs. We also study some properties of answer sets of programs with c-atoms, and relate our definitions to several semantics for logic programs with aggregates presented in the literature.

Journal ArticleDOI
TL;DR: A new sampling methodology for Bayesian networks that samples only a subset of variables and applies exact inference to the rest, and is demonstrated empirically the benefit of this scheme on a range of benchmarks.
Abstract: The paper presents a new sampling methodology for Bayesian networks that samples only a subset of variables and applies exact inference to the rest. Cutset sampling is a network structure-exploiting application of the Rao-Blackwellisation principle to sampling in Bayesian networks. It improves convergence by exploiting memory-based inference algorithms. It can also be viewed as an anytime approximation of the exact cutset-conditioning algorithm developed by Pearl. Cutset sampling can be implemented efficiently when the sampled variables constitute a loop-cutset of the Bayesian network and, more generally, when the induced width of the network's graph conditioned on the observed sampled variables is bounded by a constant w. We demonstrate empirically the benefit of this scheme on a range of benchmarks.

Journal ArticleDOI
TL;DR: This paper shows that several versions of exhaustive DPLL search correspond to such well-known languages as FBDD, OBDD, and a precisely-defined subset of d-DNNF.
Abstract: This paper is concerned with a class of algorithms that perform exhaustive search on propositional knowledge bases. We show that each of these algorithms defines and generates a propositional language. Specifically, we show that the trace of a search can be interpreted as a combinational circuit, and a search algorithm then defines a propositional language consisting of circuits that are generated across all possible executions of the algorithm. In particular, we show that several versions of exhaustive DPLL search correspond to such well-known languages as FBDD, OBDD, and a precisely-defined subset of d-DNNF. By thus mapping search algorithms to propositional languages, we provide a uniform and practical framework in which successful search techniques can be harnessed for compilation of knowledge into various languages of interest, and a new methodology whereby the power and limitations of search algorithms can be understood by looking up the tractability and succinctness of the corresponding propositional languages.

Journal ArticleDOI
TL;DR: This work introduces the technique and performs three sets of experiments on the job shop scheduling problem, inquire into the diversity of the elite solution set, and compares the best parameter setting of SGMPCS to chronological backtracking, limited discrepancy search, randomized restart, and a sophisticated tabu search algorithm on a set of well-known benchmark problems.
Abstract: Solution-Guided Multi-Point Constructive Search (SGMPCS) is a novel constructive search technique that performs a series of resource-limited tree searches where each search begins either from an empty solution (as in randomized restart) or from a solution that has been encountered during the search. A small number of these "elite" solutions is maintained during the search. We introduce the technique and perform three sets of experiments on the job shop scheduling problem. First, a systematic, fully crossed study of SGMPCS is carried out to evaluate the performance impact of various parameter settings. Second, we inquire into the diversity of the elite solution set, showing, contrary to expectations, that a less diverse set leads to stronger performance. Finally, we compare the best parameter setting of SGMPCS from the first two experiments to chronological backtracking, limited discrepancy search, randomized restart, and a sophisticated tabu search algorithm on a set of well-known benchmark problems. Results demonstrate that SGMPCS is significantly better than the other constructive techniques tested, though lags behind the tabu search.

Journal ArticleDOI
TL;DR: This work proposes bin completion, a branch-and-bound strategy for one-dimensional, multicontainer packing problems, and shows that the basic bin completion framework can be enhanced by using a number of extensions, including nogood-based pruning techniques that allow further exploitation of the dominance criterion.
Abstract: Many combinatorial optimization problems such as the bin packing and multiple knapsack problems involve assigning a set of discrete objects to multiple containers. These problems can be used to model task and resource allocation problems in multi-agent systems and distributed systms, and can also be found as subproblems of scheduling problems. We propose bin completion, a branch-and-bound strategy for one-dimensional, multicontainer packing problems. Bin completion combines a bin-oriented search space with a powerful dominance criterion that enables us to prune much of the space. The performance of the basic bin completion framework can be enhanced by using a number of extensions, including nogood-based pruning techniques that allow further exploitation of the dominance criterion. Bin completion is applied to four problems: multiple knapsack, bin covering, min-cost covering, and bin packing. We show that our bin completion algorithms yield new, state-of-the-art results for the multiple knapsack, bin covering, and min-cost covering problems, outperforming previous algorithms by several orders of magnitude with respect to runtime on some classes of hard, random problem instances. For the bin packing problem, we demonstrate significant improvements compared to most previous results, but show that bin completion is not competitive with current state-of-the-art cutting-stock based approaches.

Journal ArticleDOI
TL;DR: This paper investigates compressing PDBs by merging several entries into one, thereby allowing the use of P DBs that exceed available memory in their uncompressed form, and presents experimental results on a number of combinatorial problems.
Abstract: A pattern database (PDB) is a heuristic function implemented as a lookup table that stores the lengths of optimal solutions for subproblem instances. Standard PDBs have a distinct entry in the table for each subproblem instance. In this paper we investigate compressing PDBs by merging several entries into one, thereby allowing the use of PDBs that exceed available memory in their uncompressed form. We introduce a number of methods for determining which entries to merge and discuss their relative merits. These vary from domain-independent approaches that allow any set of entries in the PDB to be merged, to more intelligent methods that take into account the structure of the problem. The choice of the best compression method is based on domain-dependent attributes. We present experimental results on a number of combinatorial problems, including the four-peg Towers of Hanoi problem, the sliding-tile puzzles, and the Top-Spin puzzle. For the Towers of Hanoi, we show that the search time can be reduced by up to three orders of magnitude by using compressed PDBs compared to uncompressed PDBs of the same size. More modest improvements were observed for the other domains.

Journal ArticleDOI
TL;DR: A general, flexible framework for learning mappings from images to actions by interacting with the environment and shows how high-level visual features can be generated when the power of local descriptors is insufficient for completely disambiguating the aliased states.
Abstract: In this paper we present a general, flexible framework for learning mappings from images to actions by interacting with the environment. The basic idea is to introduce a feature-based image classifier in front of a reinforcement learning algorithm. The classifier partitions the visual space according to the presence or absence of few highly informative local descriptors that are incrementally selected in a sequence of attempts to remove perceptual aliasing. We also address the problem of fighting overfitting in such a greedy algorithm. Finally, we show how high-level visual features can be generated when the power of local descriptors is insufficient for completely disambiguating the aliased states. This is done by building a hierarchy of composite features that consist of recursive spatial combinations of visual features. We demonstrate the efficacy of our algorithms by solving three visual navigation tasks and a visual version of the classical "Car on the Hill" control problem.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a new method to cancel the attraction to A, by choosing a clause with t > 0 literals satisfied by A with probability proportional to q>t for some q < 1.
Abstract: To test incomplete search algorithms for constraint satisfaction problems such as 3- SAT, we need a source of hard, but satisfiable, benchmark instances. A simple way to do this is to choose a random truth assignment A, and then choose clauses randomly from among those satisfied by A. However, this method tends to produce easy problems, since the majority of literals point toward the "hidden" assignment A. Last year, Achlioptas, Jia and Moore proposed a problem generator that cancels this effect by hiding both A and its complement A (Achlioptas, Jia, & Moore, 2004). While the resulting formulas appear to be just as hard for DPLL algorithms as random 3-SAT formulas with no hidden assignment, they can be solved by WalkSAT in only polynomial time. Here we propose a new method to cancel the attraction to A, by choosing a clause with t > 0 literals satisfied by A with probability proportional to q>t for some q < 1. By varying q, we can generate formulas whose variables have no bias, i.e., which are equally likely to be true or false; we can even cause the formula to "deceptively" point away from A. We present theoretical and experimental results suggesting that these formulas are exponentially hard both for DPLL algorithms and for incomplete algorithms such as WalkSAT.

Journal ArticleDOI
TL;DR: This paper presents and evaluates a general framework for the design of truthful auctions for matching agents in a dynamic, two-sided market and examines experimentally the allocative efficiency of CHAIN when instantiated on various single-period rules, including the canonical McAfee double-auction rule.
Abstract: In this paper we present and evaluate a general framework for the design of truthful auctions for matching agents in a dynamic, two-sided market. A single commodity, such as a resource or a task, is bought and sold by multiple buyers and sellers that arrive and depart over time. Our algorithm, CHAIN, provides the first framework that allows a truthful dynamic double auction (DA) to be constructed from a truthful, single-period (i.e. static) double-auction rule. The pricing and matching method of the CHAIN construction is unique amongst dynamic-auction rules that adopt the same building block. We examine experimentally the allocative efficiency of CHAIN when instantiated on various single-period rules, including the canonical McAfee double-auction rule. For a baseline we also consider non-truthful double auctions populated with "zero-intelligence plus"-style learning agents. CHAIN-based auctions perform well in comparison with other schemes, especially as arrival intensity falls and agent valuations become more volatile.