scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Artificial Intelligence Research in 2010"


Journal ArticleDOI
TL;DR: The goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs, and to provide pointers into the literature for those who are less familiar with the field.
Abstract: Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field.

2,843 citations


Journal ArticleDOI
TL;DR: It is found that using landmarks improves performance, whereas the incorporation of action costs into the heuristic estimators proves not to be beneficial, and in some domains a search that ignores cost solves far more problems, raising the question of how to deal with action costs more effectively in the future.
Abstract: LAMA is a classical planning system based on heuristic forward search. Its core feature is the use of a pseudo-heuristic derived from landmarks, propositional formulas that must be true in every solution of a planning task. LAMA builds on the Fast Downward planning system, using finite-domain rather than binary state variables and multi-heuristic search. The latter is employed to combine the landmark heuristic with a variant of the well-known FF heuristic. Both heuristics are cost-sensitive, focusing on high-quality solutions in the case where actions have non-uniform cost. A weighted A* search is used with iteratively decreasing weights, so that the planner continues to search for plans of better quality until the search is terminated. LAMA showed best performance among all planners in the sequential satisficing track of the International Planning Competition 2008. In this paper we present the system in detail and investigate which features of LAMA are crucial for its performance. We present individual results for some of the domains used at the competition, demonstrating good and bad cases for the techniques implemented in LAMA. Overall, we find that using landmarks improves performance, whereas the incorporation of action costs into the heuristic estimators proves not to be beneficial. We show that in some domains a search that ignores cost solves far more problems, raising the question of how to deal with action costs more effectively in the future. The iterated weighted A* search greatly improves results, and shows synergy effects with the use of landmarks.

595 citations


Journal ArticleDOI
TL;DR: This work presents Theta*, a variant of A*, that propagates informati on along grid edges without constraining the paths to grid edges, and shows experimentally that Theta* finds shorter and more realistic looking paths than either of these existing techniques.
Abstract: Grids with blocked and unblocked cells are often used to represent terrain in robotics and video games. However, paths formed by grid edges can be longer than true shortest paths in the terrain since their headings are artificially constrained. We present two new correct and complete anyangle path-planning algorithms that avoid this shortcoming. Basic Theta* and Angle-Propagation Theta* are both variants of A* that propagate information along grid edges without constraining paths to grid edges. Basic Theta* is simple to understand and implement, fast and finds short paths. However, it is not guaranteed to find true shortest paths. Angle-Propagation Theta* achieves a better worst-case complexity per vertex expansion than Basic Theta* by propagating angle ranges when it expands vertices, but is more complex, not as fast and finds slightly longer paths. We refer to Basic Theta* and Angle-Propagation Theta* collectively as Theta*. Theta* has unique properties, which we analyze in detail. We show experimentally that it finds shorter paths than both A* with post-smoothed paths and Field D* (the only other version of A* we know of that propagates information along grid edges without constraining paths to grid edges) with a runtime comparable to that of A* on grids. Finally, we extend Theta* to grids that contain unblocked cells with non-uniformtraversal costs and introduce variants of Theta* which provide different tradeoffs between path length and runtime.

544 citations


Journal ArticleDOI
TL;DR: A novel refinement search planning algorithm - the Intent-based Partial Order Causal Link (IPOCL) planner - is described that, in addition to creating causally sound plot progression, reasons about character intentionality by identifying possible character goals that explain their actions and creating plan structures that explain why those characters commit to their goals.
Abstract: Narrative, and in particular storytelling, is an important part of the human experience. Consequently, computational systems that can reason about narrative can be more effective communicators, entertainers, educators, and trainers. One of the central challenges in computational narrative reasoning is narrative generation, the automated creation of meaningful event sequences. There are many factors - logical and aesthetic - that contribute to the success of a narrative artifact. Central to this success is its understandability. We argue that the following two attributes of narratives are universal: (a) the logical causal progression of plot, and (b) character believability. Character believability is the perception by the audience that the actions performed by characters do not negatively impact the audience's suspension of disbelief. Specifically, characters must be perceived by the audience to be intentional agents. In this article, we explore the use of refinement search as a technique for solving the narrative generation problem - to find a sound and believable sequence of character actions that transforms an initial world state into a world state in which goal propositions hold. We describe a novel refinement search planning algorithm - the Intent-based Partial Order Causal Link (IPOCL) planner - that, in addition to creating causally sound plot progression, reasons about character intentionality by identifying possible character goals that explain their actions and creating plan structures that explain why those characters commit to their goals. We present the results of an empirical evaluation that demonstrates that narrative plans generated by the IPOCL algorithm support audience comprehension of character intentions better than plans generated by conventional partial-order planners.

507 citations


Journal ArticleDOI
TL;DR: Key ideas from the two areas of paraphrasing and textual entailment are summarized by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.
Abstract: Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.

435 citations


Journal ArticleDOI
TL;DR: Experimental evaluation shows that the proposed method outperforms every lexicon-based method of semantic relatedness in the selected tasks and the used data sets, and competes well against corpus-based and hybrid approaches.
Abstract: The computation of relatedness between two fragments of text in an automated manner requires taking into account a wide range of factors pertaining to the meaning the two fragments convey, and the pairwise relations between their words. Without doubt, a measure of relatedness between text segments must take into account both the lexical and the semantic relatedness between words. Such a measure that captures well both aspects of text relatedness may help in many tasks, such as text retrieval, classification and clustering. In this paper we present a new approach for measuring the semantic relatedness between words based on their implicit semantic links. The approach exploits only a word thesaurus in order to devise implicit semantic links between words. Based on this approach, we introduce Omiotis, a new measure of semantic relatedness between texts which capitalizes on the word-to-word semantic relatedness measure (SR) and extends it to measure the relatedness between texts. We gradually validate our method: we first evaluate the performance of the semantic relatedness measure between individual words, covering word-to-word similarity and relatedness, synonym identification and word analogy; then, we proceed with evaluating the performance of our method in measuring text-to-text semantic relatedness in two tasks, namely sentence-to-sentence similarity and paraphrase recognition. Experimental evaluation shows that the proposed method outperforms every lexicon-based method of semantic relatedness in the selected tasks and the used data sets, and competes well against corpus-based and hybrid approaches.

164 citations


Journal ArticleDOI
TL;DR: In this paper, the authors study the impact of the addition of a new argument on the outcome of the argumentation system, more particularly on the set of its extensions, by comparing the new set of extensions to the initial one.
Abstract: In this paper, we address the problem of change in an abstract argumentation system. We focus on a particular change: the addition of a new argument which interacts with previous arguments. We study the impact of such an addition on the outcome of the argumentation system, more particularly on the set of its extensions. Several properties for this change operation are defined by comparing the new set of extensions to the initial one, these properties are called "structural" when the comparisons are based on set-cardinality or set-inclusion relations. Several other properties are proposed where comparisons are based on the status of some particular arguments: the accepted arguments; these properties refer to the "evolution of this status" during the change, e.g., Monotony and Priority to Recency. All these properties may be more or less desirable according to specific applications. They are studied under two particular semantics: the grounded and preferred semantics.

161 citations


Journal ArticleDOI
TL;DR: A model for cooperative games with overlapping coalitions-or overlapping coalition formation (OCF) games is introduced, and the issue of stability in this setting is explored, including a notion of the core, which generalizes the corresponding notion in the traditional (non-overlapping) scenario.
Abstract: In the usual models of cooperative game theory, the outcome of a coalition formation process is either the grand coalition or a coalition structure that consists of disjoint coalitions. However, in many domains where coalitions are associated with tasks, an agent may be involved in executing more than one task, and thus may distribute his resources among several coalitions. To tackle such scenarios, we introduce a model for cooperative games with overlapping coalitions-or overlapping coalition formation (OCF) games. We then explore the issue of stability in this setting. In particular, we introduce a notion of the core, which generalizes the corresponding notion in the traditional (non-overlapping) scenario. Then, under some quite general conditions, we characterize the elements of the core, and show that any element of the core maximizes the social welfare. We also introduce a concept of balancedness for overlapping coalitional games, and use it to characterize coalition structures that can be extended to elements of the core. Finally, we generalize the notion of convexity to our setting, and show that under some natural assumptions convex games have a non-empty core. Moreover, we introduce two alternative notions of stability in OCF that allow a wider range of deviations, and explore the relationships among the corresponding definitions of the core, as well as the classic (non-overlapping) core and the Aubin core. We illustrate the general properties of the three cores, and also study them from a computational perspective, thus obtaining additional insights into their fundamental structure.

138 citations


Journal ArticleDOI
TL;DR: In this paper, the authors introduce Branch-and-Bound ADOPT (BnB-ADOPT), a memory-bounded asynchronous DCOP search algorithm that uses the message-passing and communication framework of ADOP, but changes the search strategy from best-first search to depth-first branch-andbound search.
Abstract: Distributed constraint optimization (DCOP) problems are a popular way of formulating and solving agent-coordination problems. A DCOP problem is a problem where several agents coordinate their values such that the sum of the resulting constraint costs is minimal. It is often desirable to solve DCOP problems with memory-bounded and asynchronous algorithms. We introduce Branch-and-Bound ADOPT (BnB-ADOPT), a memory-bounded asynchronous DCOP search algorithm that uses the message-passing and communication framework of ADOPT (Modi, Shen, Tambe, & Yokoo, 2005), a well known memory-bounded asynchronous DCOP search algorithm, but changes the search strategy of ADOPT from best-first search to depth-first branch-and-bound search. Our experimental results show that BnB-ADOPT finds cost-minimal solutions up to one order of magnitude faster than ADOPT for a variety of large DCOP problems and is as fast as NCBB, a memory-bounded synchronous DCOP search algorithm, for most of these DCOP problems. Additionally, it is often desirable to find bounded-error solutions for DCOP problems within a reasonable amount of time since finding cost-minimal solutions is NP-hard. The existing bounded-error approximation mechanism allows users only to specify an absolute error bound on the solution cost but a relative error bound is often more intuitive. Thus, we present two new bounded-error approximation mechanisms that allow for relative error bounds and implement them on top of BnB-ADOPT.

137 citations


Journal ArticleDOI
TL;DR: The authors presented a framework for learning to interpret and generate language using only perceptual context as supervision and demonstrated its capabilities by developing a system that learns to sportscast simulated robot soccer games in both English and Korean without any language-specific prior knowledge.
Abstract: We present a novel framework for learning to interpret and generate language using only perceptual context as supervision. We demonstrate its capabilities by developing a system that learns to sportscast simulated robot soccer games in both English and Korean without any language-specific prior knowledge. Training employs only ambiguous supervision consisting of a stream of descriptive textual comments and a sequence of events extracted from the simulation trace. The system simultaneously establishes correspondences between individual comments and the events that they describe while building a translation model that supports both parsing and generation. We also present a novel algorithm for learning which events are worth describing. Human evaluations of the generated commentaries indicate they are of reasonable quality and in some cases even on par with those produced by humans for our limited domain.

109 citations


Journal ArticleDOI
TL;DR: In this article, the Kalman Temporal Differences (KTD) framework is proposed for reinforcement learning. But the proposed framework is not suitable for the stochastic MDP problem.
Abstract: Because reinforcement learning suffers from a lack of scalability, online value (and Q-) function approximation has received increasing interest this last decade. This contribution introduces a novel approximation scheme, namely the Kalman Temporal Differences (KTD) framework, that exhibits the following features: sample-efficiency, non-linear approximation, non-stationarity handling and uncertainty management. A first KTD-based algorithm is provided for deterministic Markov Decision Processes (MDP) which produces biased estimates in the case of stochastic transitions. Than the eXtended KTD framework (XKTD), solving stochastic MDP, is described. Convergence is analyzed for special cases for both deterministic and stochastic transitions. Related algorithms are experimented on classical benchmarks. They compare favorably to the state of the art while exhibiting the announced features.

Journal ArticleDOI
TL;DR: The solution to this new variational problem is given by a stochastic controller called the Bayesian control rule, which implements adaptive behavior as a mixture of experts.
Abstract: This paper proposes a method to construct an adaptive agent that is universal with respect to a given class of experts, where each expert is designed specifically for a particular environment. This adaptive control problem is formalized as the problem of minimizing the relative entropy of the adaptive agent from the expert that is most suitable for the unknown environment. If the agent is a passive observer, then the optimal solution is the well-known Bayesian predictor. However, if the agent is active, then its past actions need to be treated as causal interventions on the I/O stream rather than normal probability conditions. Here it is shown that the solution to this new variational problem is given by a stochastic controller called the Bayesian control rule, which implements adaptive behavior as a mixture of experts. Furthermore, it is shown that under mild assumptions, the Bayesian control rule converges to the control law of the most suitable expert.

Journal ArticleDOI
TL;DR: This work uses anomaly detection, which identifies patterns not conforming to a historic norm, to identify intrusions in network-based and host-based intrusion detection systems.
Abstract: Intrusion detection systems (IDSs) fall into two high-level categories: network-based systems (NIDS) that monitor network behaviors, and host-based systems (HIDS) that monitor system calls. In this work, we present a general technique for both systems. We use anomaly detection, which identifies patterns not conforming to a historic norm. In both types of systems, the rates of change vary dramatically over time (due to burstiness) and over components (due to service difference). To efficiently model such systems, we use continuous time Bayesian networks (CTBNs) and avoid specifying a fixed update interval common to discrete-time models. We build generative models from the normal training data, and abnormal behaviors are flagged based on their likelihood under this norm. For NIDS, we construct a hierarchical CTBN model for the network packet traces and use Rao-Blackwellized particle filtering to learn the parameters. We illustrate the power of our method through experiments on detecting real worms and identifying hosts on two publicly available network traces, the MAWI dataset and the LBNL dataset. For HIDS, we develop a novel learning method to deal with the finite resolution of system log file time stamps, without losing the benefits of our continuous time model. We demonstrate the method by detecting intrusions in the DARPA 1998 BSM dataset.

Journal ArticleDOI
TL;DR: It is shown that a significant level of personalization can be achieved using a relatively small amount of information about users, and how to find a provably near-optimal optimization of the utility-privacy tradeoff in an efficient manner is demonstrated.
Abstract: Online offerings such as web search, news portals, and e-commerce applications face the challenge of providing high-quality service to a large, heterogeneous user base. Recent efforts have highlighted the potential to improve performance by introducing methods to personalize services based on special knowledge about users and their context. For example, a user's demographics, location, and past search and browsing may be useful in enhancing the results offered in response to web search queries. However, reasonable concerns about privacy by both users, providers, and government agencies acting on behalf of citizens, may limit access by services to such information. We introduce and explore an economics of privacy in personalization, where people can opt to share personal information, in a standing or on-demand manner, in return for expected enhancements in the quality of an online service. We focus on the example of web search and formulate realistic objective functions for search efficacy and privacy. We demonstrate how we can find a provably near-optimal optimization of the utility-privacy tradeoff in an efficient manner. We evaluate our methodology on data drawn from a log of the search activity of volunteer participants. We separately assess users preferences about privacy and utility via a large-scale survey, aimed at eliciting preferences about peoples willingness to trade the sharing of personal data in returns for gains in search efficiency. We show that a significant level of personalization can be achieved using a relatively small amount of information about users.

Journal ArticleDOI
TL;DR: Two algorithms exploit the compactness of rules for efficient and fexible decision-theoretic planning by combining these rules with the Upper Confidence Bounds applied to Trees (UCT) algorithm based on look-ahead trees.
Abstract: Noisy probabilistic relational rules are a promising world model representation for several reasons. They are compact and generalize over world instantiations. They are usually interpretable and they can be learned effectively from the action experiences in complex worlds. We investigate reasoning with such rules in grounded relational domains. Our algorithms exploit the compactness of rules for efficient and fexible decision-theoretic planning. As a first approach, we combine these rules with the Upper Confidence Bounds applied to Trees (UCT) algorithm based on look-ahead trees. Our second approach converts these rules into a structured dynamic Bayesian network representation and predicts the effects of action sequences using approximate inference and beliefs over world states. We evaluate the effectiveness of our approaches for planning in a simulated complex 3D robot manipulation scenario with an articulated manipulator and realistic physics and in domains of the probabilistic planning competition. Empirical results show that our methods can solve problems where existing methods fail.

Journal ArticleDOI
TL;DR: In this paper, an incentive-compatible polynomial-time approximation scheme for multiunit auctions with general k-minded player valuations is presented, which fully optimizes over an appropriately chosen subrange of possible allocations and then uses VCG payments over this sub-range.
Abstract: We present an incentive-compatible polynomial-time approximation scheme for multiunit auctions with general k-minded player valuations. The mechanism fully optimizes over an appropriately chosen sub-range of possible allocations and then uses VCG payments over this sub-range. We show that obtaining a fully polynomial-time incentive-compatible approximation scheme, at least using VCG payments, is NP-hard. For the case of valuations given by black boxes, we give a polynomial-time incentive-compatible 2-approximation mechanism and show that no better is possible, at least using VCG payments.

Journal ArticleDOI
TL;DR: It is empirically demonstrated, using the 74XXX and ISCAS85 suites of benchmark combinatorial circuits, that SAFARI achieves several orders-of-magnitude speedup over two well-known deterministic algorithms, CDA* and HA*, for multiple-fault diagnoses; further, SAFARI can compute a range of multiple-Fault diagnoses that CDA*, and HA* cannot.
Abstract: We propose a StochAstic Fault diagnosis AlgoRIthm, called SAFARI, which trades off guarantees of computing minimal diagnoses for computational efficiency. We empirically demonstrate, using the 74XXX and ISCAS85 suites of benchmark combinatorial circuits, that SAFARI achieves several orders-of-magnitude speedup over two well-known deterministic algorithms, CDA* and HA*, for multiple-fault diagnoses; further, SAFARI can compute a range of multiple-fault diagnoses that CDA* and HA* cannot. We also prove that SAFARI is optimal for a range of propositional fault models, such as the widely-used weak-fault models (models with ignorance of abnormal behavior). We discuss the optimality of SAFARI in a class of strong-fault circuit models with stuck-at failure modes. By modeling the algorithm itself as a Markov chain, we provide exact bounds on the minimality of the diagnosis computed. SAFARI also displays strong anytime behavior, and will return a diagnosis after any non-trivial inference time.

Journal ArticleDOI
TL;DR: Algorithm IJGP belongs to the class of Generalized Belief Propagation algorithms, a framework that allowed connections with approximate algorithms from statistical physics and is shown empirically to surpass the performance of mini-clustering and belief propagation, as well as a number of other state of theart algorithms on several classes of networks.
Abstract: The paper investigates parameterized approximate message-passing schemes that are based on bounded inference and are inspired by Pearl's belief propagation algorithm (BP). We start with the bounded inference mini-clustering algorithm and then move to the iterative scheme called Iterative Join-Graph Propagation (IJGP), that combines both iteration and bounded inference. Algorithm IJGP belongs to the class of Generalized Belief Propagation algorithms, a framework that allowed connections with approximate algorithms from statistical physics and is shown empirically to surpass the performance of mini-clustering and belief propagation, as well as a number of other state-of-the-art algorithms on several classes of networks. We also provide insight into the accuracy of iterative BP and IJGP by relating these algorithms to well known classes of constraint propagation schemes

Journal ArticleDOI
TL;DR: In this paper, the authors compare different approaches to parallel best-first search in a shared-memory setting, and present a new method, PBNF, that uses abstraction to partition the state space and to detect duplicate states without requiring frequent locking.
Abstract: To harness modern multicore processors, it is imperative to develop parallel versions of fundamental algorithms. In this paper, we compare different approaches to parallel best-first search in a shared-memory setting. We present a new method, PBNF, that uses abstraction to partition the state space and to detect duplicate states without requiring frequent locking. PBNF allows speculative expansions when necessary to keep threads busy. We identify and fix potential livelock conditions in our approach, proving its correctness using temporal logic. Our approach is general, allowing it to extend easily to suboptimal and anytime heuristic search. In an empirical comparison on STRIPS planning, grid pathfinding, and sliding tile puzzle problems using 8-core machines, we show that A*, weighted A* and Anytime weighted A* implemented using PBNF yield faster search than improved versions of previous parallel search proposals.

Journal ArticleDOI
TL;DR: The authors showed that computers understand very little of the meaning of human language and this profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and their ability to reason with us.
Abstract: Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and...

Journal ArticleDOI
TL;DR: This study testifies for the accuracy of the fork decomposition heuristics, yet their empirical evaluation also stresses the tradeoff between their accuracy and the runtime complexity of computing them, as well as verifying empirically that heuristic search with the "databased" fork-decompositionHeuristics favorably competes with the state of the art of cost-optimal planning.
Abstract: State-space search with explicit abstraction heuristics is at the state of the art of cost-optimal planning. These heuristics are inherently limited, nonetheless, because the size of the abstract space must be bounded by some, even if a very large, constant. Targeting this shortcoming, we introduce the notion of (additive) implicit abstractions, in which the planning task is abstracted by instances of tractable fragments of optimal planning. We then introduce a concrete setting of this framework, called fork-decomposition, that is based on two novel fragments of tractable cost-optimal planning. The induced admissible heuristics are then studied formally and empirically. This study testifies for the accuracy of the fork decomposition heuristics, yet our empirical evaluation also stresses the tradeoff between their accuracy and the runtime complexity of computing them. Indeed, some of the power of the explicit abstraction heuristics comes from precomputing the heuristic function offine and then determining h(s) for each evaluated state s by a very fast lookup in a "database." By contrast, while fork-decomposition heuristics can be calculated in polynomial time, computing them is far from being fast. To address this problem, we show that the time-per-node complexity bottleneck of the fork-decomposition heuristics can be successfully overcome. We demonstrate that an equivalent of the explicit abstraction notion of a "database" exists for the fork-decomposition abstractions as well, despite their exponential-size abstract spaces. We then verify empirically that heuristic search with the "databased" fork-decomposition heuristics favorably competes with the state of the art of cost-optimal planning.

Journal ArticleDOI
TL;DR: This work presents a decidability result for entailment of unions of conjunctive queries in the DL ALCHOIQb that contains all three problematic constructors simultaneously and believes that the presented results will pave the way for further progress towards conj unctive query entailment decision procedures for the Description Logics underlying the OWL standards.
Abstract: Description Logics are knowledge representation formalisms that provide, for example, the logical underpinning of the W3C OWL standards. Conjunctive queries, the standard query language in databases, have recently gained significant attention as an expressive formalism for querying Description Logic knowledge bases. Several different techniques for deciding conjunctive query entailment are available for a wide range of DLs. Nevertheless, the combination of nominals, inverse roles, and number restrictions in OWL 1 and OWL 2 DL causes unsolvable problems for the techniques hitherto available. We tackle this problem and present a decidability result for entailment of unions of conjunctive queries in the DL ALCHOIQb that contains all three problematic constructors simultaneously. Provided that queries contain only simple roles, our result also shows decidability of entailment of (unions of) conjunctive queries in the logic that underpins OWL 1 DL and we believe that the presented results will pave the way for further progress towards conjunctive query entailment decision procedures for the Description Logics underlying the OWL standards.

Journal ArticleDOI
TL;DR: This paper proposes a new formula that can make accurate predictions of IDA*'s performance for inconsistent heuristics and if the heuristic values in any level do not obey the unconditional distribution, and introduces the conditional distribution of heuristicvalues which is a generalization of their unconditional heuristic distribution.
Abstract: Korf, Reid, and Edelkamp introduced a formula to predict the number of nodes IDA* will expand on a single iteration for a given consistent heuristic, and experimentally demonstrated that it could make very accurate predictions. In this paper we show that, in addition to requiring the heuristic to be consistent, their formula's predictions are accurate only at levels of the brute-force search tree where the heuristic values obey the unconditional distribution that they defined and then used in their formula. We then propose a new formula that works well without these requirements, i.e., it can make accurate predictions of IDA*'s performance for inconsistent heuristics and if the heuristic values in any level do not obey the unconditional distribution. In order to achieve this we introduce the conditional distribution of heuristic values which is a generalization of their unconditional heuristic distribution. We also provide extensions of our formula that handle individual start states and the augmentation of IDA* with bidirectional pathmax (BPMX), a tech nique for propagating heuristic values when inconsistent heuristics are used. Experimental results demonstrate the accuracy of our new method and all its variations.

Journal ArticleDOI
TL;DR: This paper proposes a simpler and more memory-efficient way of pre-computering subgoals thereby eliminating the main obstacle to applying state-of-the-art real-time search methods in video games.
Abstract: Real-time heuristic search algorithms satisfy a constant bound on the amount of planning per action, independent of problem size. As a result, they scale up well as problems become larger. This property would make them well suited for video games where Artificial Intelligence controlled agents must react quickly to user commands and to other agents. actions. On the downside, real-time search algorithms employ learning methods that frequently lead to poor solution quality and cause the agent to appear irrational by re-visiting the same problem states repeatedly. The situation changed recently with a new algorithm, D LRTA*, which attempted to eliminate learning by automatically selecting subgoals. D LRTA* is well poised for video games, except it has a complex and memory-demanding pre-computation phase during which it builds a database of subgoals. In this paper, we propose a simpler and more memory-efficient way of pre-computering subgoals thereby eliminating the main obstacle to applying state-of-the-art real-time search methods in video games. The new algorithm solves a number of randomly chosen problems off-line, compresses the solutions into a series of subgoals and stores them in a database. When presented with a novel problem on-line, it queries the database for the most similar previously solved case and uses its subgoals to solve the problem. In the domain of pathfinding on four large video game maps, the new algorithm delivers solutions eight times better while using 57 times less memory and requiring 14% less pre-computation time.

Journal ArticleDOI
TL;DR: This paper presents a method to compute and add semantically redundant information to the input theory, indicating where and when the grounder should exploit the data, and simplifies the task of writing input theories that can be grounded efficiently by current systems.
Abstract: Grounding is the task of reducing a first-order theory and finite domain to an equivalent propositional theory. It is used as preprocessing phase in many logic-based reasoning systems. Such systems provide a rich first-order input language to a user and can rely on efficient propositional solvers to perform the actual reasoning. Besides a first-order theory and finite domain, the input for grounders contains in many applications also additional data. By exploiting this data, the size of the grounder's output can often be reduced significantly. A common practice to improve the efficiency of a grounder in this context is by manually adding semantically redundant information to the input theory, indicating where and when the grounder should exploit the data. In this paper we present a method to compute and add such redundant information automatically. Our method therefore simplifies the task of writing input theories that can be grounded efficiently by current systems. We first present our method for classical first-order logic (FO) theories. Then we extend it to FO(ID), the extension of FO with inductive definitions, which allows for more concise and comprehensive input theories. We discuss implementation issues and experimentally validate the practical applicability of our method.

Journal ArticleDOI
TL;DR: This paper studies an alternate formulation of DEC-POMDPs relying on a sequence-form representation of policies and shows how to derive Mixed Integer Linear Programming (MILP) problems that, once solved, give exact optimal solutions to thedecentralized Partially Observable Markov Decision Processes.
Abstract: Decentralized planning in uncertain environments is a complex task generally dealt with by using a decision-theoretic approach, mainly through the framework of Decentralized Partially Observable Markov Decision Processes (DEC-POMDPs). Although DEC-POMDPS are a general and powerful modeling tool, solving them is a task with an overwhelming complexity that can be doubly exponential. In this paper, we study an alternate formulation of DEC-POMDPs relying on a sequence-form representation of policies. From this formulation, we show how to derive Mixed Integer Linear Programming (MILP) problems that, once solved, give exact optimal solutions to the DEC-POMDPs. We show that these MILPs can be derived either by using some combinatorial characteristics of the optimal solutions of the DEC-POMDPs or by using concepts borrowed from game theory. Through an experimental validation on classical test problems from the DEC-POMDP literature, we compare our approach to existing algorithms. Results show that mathematical programming outperforms dynamic programming but is less efficient than forward search, except for some particular problems. The main contributions of this work are the use of mathematical programming for DEC-POMDPs and a better understanding of DEC-POMDPs and of their solutions. Besides, we argue that our alternate representation of DEC-POMDPs could be helpful for designing novel algorithms looking for approximate solutions to DEC-POMDPs.

Journal ArticleDOI
TL;DR: This paper shows that an efficient, robust and easy to implement extension is possible if the cost function is additive, and feasible solutions are represented using multi-valued decision diagrams (MDDs), and proves that even in its simplest form, multiple-cost configuration is NP-hard in the input MDD.
Abstract: In many AI domains such as product configuration, a user should interactively specify a solution that must satisfy a set of constraints. In such scenarios, offline compilation of feasible solutions into a tractable representation is an important approach to delivering efficient backtrack-free user interaction online. In particular, binary decision diagrams (BDDs) have been successfully used as a compilation target for product and service configuration. In this paper we discuss how to extend BDD-based configuration to scenarios involving cost functions which express user preferences. We first show that an efficient, robust and easy to implement extension is possible if the cost function is additive, and feasible solutions are represented using multi-valued decision diagrams (MDDs). We also discuss the effect on MDD size if the cost function is non-additive or if it is encoded explicitly into MDD. We then discuss interactive configuration in the presence of multiple cost functions. We prove that even in its simplest form, multiple-cost configuration is NP-hard in the input MDD. However, for solving two-cost configuration we develop a pseudo-polynomial scheme and a fully polynomial approximation scheme. The applicability of our approach is demonstrated through experiments over real-world configuration models and product-catalogue datasets. Response times are generally within a fraction of a second even for very large instances.

Journal ArticleDOI
TL;DR: DCL-PC is presented, a logic for reasoning about how the abilities of agents and coalitions of agents are altered by transferring control from one agent to another, and two alternative semantics for the logic are given: a 'direct' semantics, in which the distributions of Boolean variables to agents are captured; and a more conventional Kripke semantics.
Abstract: We present DCL-PC: a logic for reasoning about how the abilities of agents and coalitions of agents are altered by transferring control from one agent to another. The logical foundation of DCL-PC is CL-PC, a logic for reasoning about cooperation in which the abilities of agents and coalitions of agents stem from a distribution of atomic Boolean variables to individual agents - the choices available to a coalition correspond to assignments to the variables the coalition controls. The basic modal constructs of CL-PC are of the form 'coalition C can cooperate to bring about ϕ'. DCL-PC extends CL-PC with dynamic logic modalities in which atomic programs are of the form 'agent i gives control of variable p to agent j'; as usual in dynamic logic, these atomic programs may be combined using sequence, iteration, choice, and test operators to form complex programs. By combining such dynamic transfer programs with cooperation modalities, it becomes possible to reason about how the power of agents and coalitions is affected by the transfer of control. We give two alternative semantics for the logic: a 'direct' semantics, in which we capture the distributions of Boolean variables to agents; and a more conventional Kripke semantics. We prove that these semantics are equivalent, and then present an axiomatization for the logic. We investigate the computational complexity of model checking and satisfiability for DCL-PC, and show that both problems are PSPACE-complete (and hence no worse than the underlying logic CL-PC). Finally, we investigate the characterisation of control in DCL-PC. We distinguish between first-order control - the ability of an agent or coalition to control some state of affairs through the assignment of values to the variables under the control of the agent or coalition - and second-order control - the ability of an agent to exert control over the control that other agents have by transferring variables to other agents. We give a logical characterisation of second-order control.

Journal ArticleDOI
TL;DR: This work proposes a novel active clustering algorithm, which allows a user to easily select the dimension along which she wants to cluster the documents by inspecting only a small number of words.
Abstract: While traditional research on text clustering has largely focused on grouping documents by topic, it is conceivable that a user may want to cluster documents along other dimensions, such as the author's mood, gender, age, or sentiment. Without knowing the user's intention, a clustering algorithm will only group documents along the most prominent dimension, which may not be the one the user desires. To address the problem of clustering documents along the user-desired dimension, previous work has focused on learning a similarity metric from data manually annotated with the user's intention or having a human construct a feature space in an interactive manner during the clustering process. With the goal of reducing reliance on human knowledge for fine-tuning the similarity function or selecting the relevant features required by these approaches, we propose a novel active clustering algorithm, which allows a user to easily select the dimension along which she wants to cluster the documents by inspecting only a small number of words. We demonstrate the viability of our algorithm on a variety of commonly-used sentiment datasets.

Journal ArticleDOI
TL;DR: This paper addresses the computationally hard problem of computing optimal control assignments (as defined in Fractal) in terms of a greedy approximation algorithm called FractalG and compares the decrease in the number of remaining minimal cardinality diagnoses of fractalG to that of two more Fractal algorithms: FractalATPG and FractalP.
Abstract: Model-based diagnostic reasoning often leads to a large number of diagnostic hypotheses. The set of diagnoses can be reduced by taking into account extra observations (passive monitoring), measuring additional variables (probing) or executing additional tests (sequential diagnosis/test sequencing). In this paper we combine the above approaches with techniques from Automated Test Pattern Generation (ATPG) and Model-Based Diagnosis (MBD) into a framework called Fractal (FRamework for ACtive Testing ALgorithms). Apart from the inputs and outputs that connect a system to its environment, in active testing we consider additional input variables to which a sequence of test vectors can be supplied. We address the computationally hard problem of computing optimal control assignments (as defined in Fractal) in terms of a greedy approximation algorithm called FractalG. We compare the decrease in the number of remaining minimal cardinality diagnoses of FractalG to that of two more Fractal algorithms: FractalATPG and FractalP. FractalATPG is based on ATPG and sequential diagnosis while FractalP is based on probing and, although not an active testing algorithm, provides a baseline for comparing the lower bound on the number of reachable diagnoses for the Fractal algorithms. We empirically evaluate the trade-offs of the three Fractal algorithms by performing extensive experimentation on the ISCAS85/74XXX benchmark of combinational circuits.