scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Artificial Intelligence Research in 2014"


Journal ArticleDOI
TL;DR: This work proposes a flexible architecture to integrate text- and image-based distributional information, and shows in a set of empirical tests that the integrated model is superior to the purely text-based approach, and it provides somewhat complementary semantic information with respect to the latter.
Abstract: Distributional semantic models derive computational representations of word meaning from the patterns of co-occurrence of words in text. Such models have been a success story of computational linguistics, being able to provide reliable estimates of semantic relatedness for the many semantic tasks requiring them. However, distributional models extract meaning information exclusively from text, which is an extremely impoverished basis compared to the rich perceptual sources that ground human semantic knowledge. We address the lack of perceptual grounding of distributional models by exploiting computer vision techniques that automatically identify discrete "visual words" in images, so that the distributional representation of a word can be extended to also encompass its co-occurrence with the visual words of images it is associated with. We propose a flexible architecture to integrate text- and image-based distributional information, and we show in a set of empirical tests that our integrated model is superior to the purely text-based approach, and it provides somewhat complementary semantic information with respect to the latter.

900 citations


Journal ArticleDOI
TL;DR: A state-of-the-art sentiment analysis system that detects (a) the sentiment of short informal textual messages such as tweets and SMS (message-level task) and (b) the Sentiment of a word or a phrase within a message (term- level task).
Abstract: We describe a state-of-the-art sentiment analysis system that detects (a) the sentiment of short informal textual messages such as tweets and SMS (message-level task) and (b) the sentiment of a word or a phrase within a message (term-level task). The system is based on a supervised statistical text classification approach leveraging a variety of surface-form, semantic, and sentiment features. The sentiment features are primarily derived from novel high-coverage tweet-specific sentiment lexicons. These lexicons are automatically generated from tweets with sentiment-word hashtags and from tweets with emoticons. To adequately capture the sentiment of words in negated contexts, a separate sentiment lexicon is generated for negated words. The system ranked first in the SemEval-2013 shared task 'Sentiment Analysis in Twitter' (Task 2), obtaining an F-score of 69.02 in the message-level task and 88.93 in the term-level task. Post-competition improvements boost the performance to an F-score of 70.45 (message-level task) and 89.50 (term-level task). The system also obtains state-of-the-art performance on two additional datasets: the SemEval-2013 SMS test set and a corpus of movie review excerpts. The ablation experiments demonstrate that the use of the automatically generated lexicons results in performance gains of up to 6.5 absolute percentage points.

799 citations


Journal ArticleDOI
TL;DR: This paper presents an integrated geolocation prediction framework, and evaluates the impact of nongeotagged tweets, language, and user-declared metadata on geolocated prediction, and discusses how users differ in terms of their geolocatability.
Abstract: Geographical location is vital to geospatial applications like local search and event detection. In this paper, we investigate and improve on the task of text-based geolocation prediction of Twitter users. Previous studies on this topic have typically assumed that geographical references (e.g., gazetteer terms, dialectal words) in a text are indicative of its author's location. However, these references are often buried in informal, ungrammatical, and multilingual data, and are therefore non-trivial to identify and exploit. We present an integrated geolocation prediction framework and investigate what factors impact on prediction accuracy. First, we evaluate a range of feature selection methods to obtain "location indicative words". We then evaluate the impact of nongeotagged tweets, language, and user-declared metadata on geolocation prediction. In addition, we evaluate the impact of temporal variance on model generalisation, and discuss how users differ in terms of their geolocatability. We achieve state-of-the-art results for the text-based Twitter user geolocation task, and also provide the most extensive exploration of the task to date. Our findings provide valuable insights into the design of robust, practical text-based geolocation prediction systems.

328 citations


Journal ArticleDOI
TL;DR: A novel variant of A* called Enhanced Partial Expansion A* (EPEA*) is presented that advances the idea of PEA* to address the time aspect and shows significant improvements in run-time and memory performance for several standard benchmark applications.
Abstract: When solving instances of problem domains that feature a large branching factor, A* may generate a large number of nodes whose cost is greater than the cost of the optimal solution. We designate such nodes as surplus. Generating surplus nodes and adding them to the OPEN list may dominate both time and memory of the search. A recently introduced variant of A* called Partial Expansion A* (PEA*) deals with the memory aspect of this problem. When expanding a node n, PEA* generates all of its children and puts into OPEN only the children with f = f(n). n is reinserted in the OPEN list with the f-cost of the best discarded child. This guarantees that surplus nodes are not inserted into OPEN. In this paper, we present a novel variant of A* called Enhanced Partial Expansion A* (EPEA*) that advances the idea of PEA* to address the time aspect. Given a priori domain-and heuristic-specific knowledge, EPEA* generates only the nodes with f = f(n). Although EPEA* is not always applicable or practical, we study several variants of EPEA*, which make it applicable to a large number of domains and heuristics. In particular, the ideas of EPEA* are applicable to IDA* and to the domains where pattern databases are traditionally used. Experimental studies show significant improvements in run-time and memory performance for several standard benchmark applications. We provide several theoretical studies to facilitate an understanding of the new algorithm.

150 citations


Journal ArticleDOI
TL;DR: This work presents Push and Rotate, a new algorithm that is complete for Multi-agent Pathfinding problems in which there are at least two empty vertices, and divides the graph into subgraphs within which it is possible for agents to reach any position of the subgraph, and uses the simple push, swap, and rotate operations to find a solution.
Abstract: Multi-agent Pathfinding is a relevant problem in a wide range of domains, for example in robotics and video games research. Formally, the problem considers a graph consisting of vertices and edges, and a set of agents occupying vertices. An agent can only move to an unoccupied, neighbouring vertex, and the problem of finding the minimal sequence of moves to transfer each agent from its start location to its destination is an NP-hard problem. We present Push and Rotate, a new algorithm that is complete for Multi-agent Pathfinding problems in which there are at least two empty vertices. Push and Rotate first divides the graph into subgraphs within which it is possible for agents to reach any position of the subgraph, and then uses the simple push, swap, and rotate operations to find a solution; a post-processing algorithm is also presented that eliminates redundant moves. Push and Rotate can be seen as extending Luna and Bekris's Push and Swap algorithm, which we showed to be incomplete in a previous publication. In our experiments we compare our approach with the Push and Swap, MAPP, and Bibox algorithms. The latter algorithm is restricted to a smaller class of instances as it requires biconnected graphs, but can nevertheless be considered state of the art due to its strong performance. Our experiments show that Push and Swap suffers from incompleteness, MAPP is generally not competitive with Push and Rotate, and Bibox is better than Push and Rotate on randomly generated biconnected instances, while Push and Rotate performs better on grids.

107 citations


Journal ArticleDOI
TL;DR: The problem of intelligent assistance in a decision-theoretic framework is formed, and it is shown that in all three domains the framework results in an assistant that substantially reduces user effort with only modest computation.
Abstract: There is a growing interest in intelligent assistants for a variety of applications from sorting email to helping people with disabilities to do their daily chores. In this paper, we formulate the problem of intelligent assistance in a decision-theoretic framework, and present both theoretical and empirical results. We first introduce a class of POMDPs called hidden-goal MDPs (HGMDPs), which formalizes the problem of interactively assisting an agent whose goal is hidden and whose actions are observable. In spite of its restricted nature, we show that optimal action selection for HGMDPs is PSPACE-complete even for deterministic dynamics. We then introduce a more restricted model called helper action MDPs (HAMDPs), which are sufficient for modeling many real-world problems. We show classes of HAMDPs for which efficient algorithms are possible. More interestingly, for general HAMDPs we show that a simple myopic policy achieves a near optimal regret, compared to an oracle assistant that knows the agent's goal. We then introduce more sophisticated versions of this policy for the general case of HGMDPs that we combine with a novel approach for quickly learning about the agent being assisted. We evaluate our approach in two game-like computer environments where human subjects perform tasks, and in a real-world domain of providing assistance during folder navigation in a computer desktop environment. The results show that in all three domains the framework results in an assistant that substantially reduces user effort with only modest computation.

97 citations


Journal ArticleDOI
TL;DR: This paper presents a novel general Bayesian Stackelberg game model for security resource allocation in dynamic uncertain domains, and presents results from a real-world experiment on Metro trains in Los Angeles validating the MDP-based model, and most importantly, concretely measuring the benefits of SSGs forSecurity resource allocation.
Abstract: Attacker-Defender Stackelberg security games (SSGs) have emerged as an important research area in multi-agent systems. However, existing SSGs models yield fixed, static, schedules which fail in dynamic domains where defenders face execution uncertainty, i.e., in domains where defenders may face unanticipated disruptions of their schedules. A concrete example is an application involving checking fares on trains, where a defender's schedule is frequently interrupted by fare evaders, making static schedules useless. To address this shortcoming, this paper provides four main contributions. First, we present a novel general Bayesian Stackelberg game model for security resource allocation in dynamic uncertain domains. In this new model, execution uncertainty is handled by using a Markov decision process (MDP) for generating defender policies. Second, we study the problem of computing a Stackelberg equilibrium for this game and exploit problem structure to reduce it to a polynomial-sized optimization problem. Shifting to evaluation, our third contribution shows, in simulation, that our MDP-based policies overcome the failures of previous SSG algorithms. In so doing, we can now build a complete system, that enables handling of schedule interruptions and, consequently, to conduct some of the first controlled experiments on SSGs in the field. Hence, as our final contribution, we present results from a real-world experiment on Metro trains in Los Angeles validating our MDP-based model, and most importantly, concretely measuring the benefits of SSGs for security resource allocation.

92 citations


Journal ArticleDOI
TL;DR: In this article, the authors develop a dynamic model of fair division and propose desirable axiomatic properties for dynamic resource allocation mechanisms, and construct two novel mechanisms that provably satisfy some of these properties, and analyze their performance using real data.
Abstract: Recently fair division theory has emerged as a promising approach for allocation of multiple computational resources among agents. While in reality agents are not all present in the system simultaneously, previous work has studied static settings where all relevant information is known upfront. Our goal is to better understand the dynamic setting. On the conceptual level, we develop a dynamic model of fair division, and propose desirable axiomatic properties for dynamic resource allocation mechanisms. On the technical level, we construct two novel mechanisms that provably satisfy some of these properties, and analyze their performance using real data. We believe that our work informs the design of superior multiagent systems, and at the same time expands the scope of fair division theory by initiating the study of dynamic and fair resource allocation mechanisms.

85 citations


Journal ArticleDOI
TL;DR: An iterative algorithm for computing an exact Nash equilibrium for two-player zero-sum extensive-form games with imperfect information to restrict the game by allowing the players to play only selected sequences of available actions.
Abstract: Developing scalable solution algorithms is one of the central problems in computational game theory. We present an iterative algorithm for computing an exact Nash equilibrium for two-player zero-sum extensive-form games with imperfect information. Our approach combines two key elements: (1) the compact sequence-form representation of extensive- form games and (2) the algorithmic framework of double-oracle methods. The main idea of our algorithm is to restrict the game by allowing the players to play only selected sequences of available actions. After solving the restricted game, new sequences are added by finding best responses to the current solution using fast algorithms. We experimentally evaluate our algorithm on a set of games inspired by patrolling scenarios, board, and card games. The results show significant runtime improvements in games admitting an equilibrium with small support, and substantial improvement in memory use even on games with large support. The improvement in memory use is particularly important because it allows our algorithm to solve much larger game instances than existing linear programming methods. Our main contributions include (1) a generic sequence-form double-oracle algorithm for solving zero-sum extensive-form games; (2) fast methods for maintaining a valid restricted game model when adding new sequences; (3) a search algorithm and pruning methods for computing best-response sequences; (4) theoretical guarantees about the convergence of the algorithm to a Nash equilibrium; (5) experimental analysis of our algorithm on several games, including an approximate version of the algorithm.

82 citations


Journal ArticleDOI
TL;DR: A general approach to distributed state-space search in which each agent performs only the part of the state expansion relevant to it, which yields a distributed version of the a* algorithm that is the first cost-optimal distributed algorithm for privacy-preserving planning.
Abstract: This paper deals with the problem of classical planning for multiple cooperative agents who have private information about their local state and capabilities they do not want to reveal. Two main approaches have recently been proposed to solve this type of prob- lem - one is based on reduction to distributed constraint satisfaction, and the other on partial-order planning techniques. In classical single-agent planning, constraint-based and partial-order planning techniques are currently dominated by heuristic forward search. The question arises whether it is possible to formulate a distributed heuristic forward search algorithm for privacy-preserving classical multi-agent planning. Our work provides a positive answer to this question in the form of a general approach to distributed state-space search in which each agent performs only the part of the state expansion relevant to it. The resulting algorithms are simple and efficient - outperforming previous algorithms by orders of magnitude - while offering similar flexibility to that of forward-search algorithms for single-agent planning. Furthermore, one particular variant of our general approach yields a distributed version of the a* algorithm that is the first cost-optimal distributed algorithm for privacy-preserving planning.

78 citations


Journal ArticleDOI
TL;DR: In this article, the authors study the model checking problem for artifact-centric multi-agent systems against specifications expressed in a quantified version of temporal-epistemic logic expressing the knowledge of the agents in the exchange.
Abstract: Artifact systems are a novel paradigm for specifying and implementing business processes described in terms of interacting modules called artifacts. Artifacts consist of data and lifecycles, accounting respectively for the relational structure of the artifacts' states and their possible evolutions over time. In this paper we put forward artifact-centric multi-agent systems, a novel formalisation of artifact systems in the context of multi-agent systems operating on them. Differently from the usual process-based models of services, we give a semantics that explicitly accounts for the data structures on which artifact systems are defined. We study the model checking problem for artifact-centric multi-agent systems against specifications expressed in a quantified version of temporal-epistemic logic expressing the knowledge of the agents in the exchange. We begin by noting that the problem is undecidable in general. We identify a noteworthy class of systems that admit bisimilar, finite abstractions. It follows that we can verify these systems by investigating their finite abstractions; we also show that the corresponding model checking problem is EXPSPACE-complete. We then introduce artifact-centric programs, compact and declarative representations of the programs governing both the artifact system and the agents. We show that, while these in principle generate infinite-state systems, under natural conditions their verification problem can be solved on finite abstractions that can be effectively computed from the programs. We exemplify the theoretical results here pursued through a mainstream procurement scenario from the artifact systems literature.

Journal ArticleDOI
TL;DR: This work introduces a new framework for structured prediction called HC-Search, which significantly outperforms several state-of-the-art methods and is sensitive to the particular loss function of interest and the time-bound allowed for predictions.
Abstract: Structured prediction is the problem of learning a function that maps structured inputs to structured outputs. Prototypical examples of structured prediction include part-of-speech tagging and semantic segmentation of images. Inspired by the recent successes of search-based structured prediction, we introduce a new framework for structured prediction called HC-Search. Given a structured input, the framework uses a search procedure guided by a learned heuristic H to uncover high quality candidate outputs and then employs a separate learned cost function C to select a final prediction among those outputs. The overall loss of this prediction architecture decomposes into the loss due to H not leading to high quality outputs, and the loss due to C not selecting the best among the generated outputs. Guided by this decomposition, we minimize the overall loss in a greedy stagewise manner by first training H to quickly uncover high quality outputs via imitation learning, and then training C to correctly rank the outputs generated via H according to their true losses. Importantly, this training procedure is sensitive to the particular loss function of interest and the time-bound allowed for predictions. Experiments on several benchmark domains show that our approach significantly outperforms several state-of-the-art methods.

Journal ArticleDOI
TL;DR: This paper combines some of the best known calculi in qualitative spatial reasoning, the RCC8 algebra for representing topological information, and the Rectangle Algebra and the Cardinal Direction Calculus for directional information to show that reasoning with topological and directional information is decidable and remains in NP.
Abstract: Increasing the expressiveness of qualitative spatial calculi is an essential step towards meeting the requirements of applications. This can be achieved by combining existing calculi in a way that we can express spatial information using relations from multiple calculi. The great challenge is to develop reasoning algorithms that are correct and complete when reasoning over the combined information. Previous work has mainly studied cases where the interaction between the combined calculi was small, or where one of the two calculi was very simple. In this paper we tackle the important combination of topological and directional information for extended spatial objects. We combine some of the best known calculi in qualitative spatial reasoning, the RCC8 algebra for representing topological information, and the Rectangle Algebra (RA) and the Cardinal Direction Calculus (CDC) for directional information. We consider two different interpretations of the RCC8 algebra, one uses a weak connectedness relation, the other uses a strong connectedness relation. In both interpretations, we show that reasoning with topological and directional information is decidable and remains in NP. Our computational complexity results unveil the significant differences between RA and CDC, and that between weak and strong RCC8 models. Take the combination of basic RCC8 and basic CDC constraints as an example: we show that the consistency problem is in P only when we use the strong RCC8 algebra and explicitly know the corresponding basic RA constraints.

Journal ArticleDOI
TL;DR: A novel encoding of Model Based Diagnosis to Boolean Satisfaction (SAT) focusing on minimal cardinality diagnosis is introduced based on a combination of sophisticated MBD preprocessing algorithms and the application of a SAT compiler which optimizes the encoding to provide more succinct CNF representations than obtained with previous works.
Abstract: This paper introduces a novel encoding of Model Based Diagnosis (MBD) to Boolean Satisfaction (SAT) focusing on minimal cardinality diagnosis. The encoding is based on a combination of sophisticated MBD preprocessing algorithms and the application of a SAT compiler which optimizes the encoding to provide more succinct CNF representations than obtained with previous works. Experimental evidence indicates that our approach is superior to all published algorithms for minimal cardinality MBD. In particular, we can determine, for the first time, minimal cardinality diagnoses for the entire standard ISCAS-85 and 74XXX benchmarks. Our results open the way to improve the state-of-the-art on a range of similar MBD problems.

Journal ArticleDOI
TL;DR: A novel approach to the WSP, using techniques from CSP, has enabled a generic algorithm which is FPT for several families of workflow constraints considered in the literature, and it is proved that the union of FPT languages remains FPT if they satisfy a simple compatibility condition.
Abstract: The Workflow Satisfiability Problem (WSP) is a problem of practical interest that arises whenever tasks need to be performed by authorized users, subject to constraints defined by business rules. We are required to decide whether there exists a plan - an assignment of tasks to authorized users - such that all constraints are satisfied. It is natural to see the WSP as a subclass of the Constraint Satisfaction Problem (CSP) in which the variables are tasks and the domain is the set of users. What makes the WSP distinctive is that the number of tasks is usually very small compared to the number of users, so it is appropriate to ask for which constraint languages the WSP is fixed-parameter tractable (FPT), parameterized by the number of tasks. This novel approach to the WSP, using techniques from CSP, has enabled us to design a generic algorithm which is FPT for several families of workflow constraints considered in the literature. Furthermore, we prove that the union of FPT languages remains FPT if they satisfy a simple compatibility condition. Lastly, we identify a new FPT constraint language, user-independent constraints, that includes many of the constraints of interest in business processing systems. We demonstrate that our generic algorithm has provably optimal running time O*(2k log k), for this language, where k is the number of tasks.

Journal ArticleDOI
TL;DR: In this paper, a new Monte-Carlo tree search algorithm, BRUE, was proposed to guarantee exponential rate and smooth reduction of simple regret for online planning in Markov decision processes (MDPs).
Abstract: We consider online planning in Markov decision processes (MDPs). In online planning, the agent focuses on its current state only, deliberates about the set of possible policies from that state onwards and, when interrupted, uses the outcome of that exploratory deliberation to choose what action to perform next. Formally, the performance of algorithms for online planning is assessed in terms of simple regret, the agent's expected performance loss when the chosen action, rather than an optimal one, is followed. To date, state-of-the-art algorithms for online planning in general MDPs are either best effort, or guarantee only polynomial-rate reduction of simple regret over time. Here we introduce a new Monte-Carlo tree search algorithm, BRUE, that guarantees exponential- rate and smooth reduction of simple regret. At a high level, BRUE is based on a simple yet non-standard state-space sampling scheme, MCTS2e, in which different parts of each sample are dedicated to different exploratory objectives. We further extend BRUE with a variant of "learning by forgetting." The resulting parametrized algorithm, BRUE(α), exhibits even more attractive formal guarantees than BRUE. Our empirical evaluation shows that both BRUE and its generalization, BRUE(α), are also very effective in practice and compare favorably to the state-of-the-art.

Journal ArticleDOI
TL;DR: In this paper, the authors use crowdsourcing to collect recordings via a smartphone app, and present an immediate feedback to the users as to whether an insect has been found in the recordings.
Abstract: In recent years, the field of computational sustainability has striven to apply artificial intelligence techniques to solve ecological and environmental problems. In ecology, a key issue for the safeguarding of our planet is the monitoring of biodiversity. Automated acoustic recognition of species aims to provide a cost-effective method for biodiversity monitoring. This is particularly appealing for detecting endangered animals with a distinctive call, such as the New Forest cicada. To this end, we pursue a crowdsourcing approach, whereby the millions of visitors to the New Forest, where this insect was historically found, will help to monitor its presence by means of a smartphone app that can detect its mating call. Existing research in the field of acoustic insect detection has typically focused upon the classification of recordings collected from fixed field microphones. Such approaches segment a lengthy audio recording into individual segments of insect activity, which are independently classified using cepstral coefficients extracted from the recording as features. This paper reports on a contrasting approach, whereby we use crowdsourcing to collect recordings via a smartphone app, and present an immediate feedback to the users as to whether an insect has been found. Our classification approach does not remove silent parts of the recording via segmentation, but instead uses the temporal patterns throughout each recording to classify the insects present. We show that our approach can successfully discriminate between the call of the New Forest cicada and similar insects found in the New Forest, and is robust to common types of environment noise. A large scale trial deployment of our smartphone app collected over 6000 reports of insect activity from over 1000 users. Despite the cicada not having been rediscovered in the New Forest, the effectiveness of this approach was confirmed for both the detection algorithm, which successfully identified the same cicada through the app in countries where the same species is still present, and of the crowdsourcing methodology, which collected a vast number of recordings and involved thousands of contributors.

Journal ArticleDOI
TL;DR: A width notion is introduced that applies to non-deterministic problems as well, a factored belief tracking algorithm is developed, and a meaningful, powerful, and sound approximation scheme, beam tracking, that is exponential in a smaller parameter, the problem causal width, and has much broader applicability is introduced.
Abstract: We consider the problem of belief tracking in a planning setting where states are valuations over a set of variables that are partially observable, and beliefs stand for the sets of states that are possible. While the problem is intractable in the worst case, it has been recently shown that in deterministic conformant and contingent problems, belief tracking is exponential in a width parameter that is often bounded and small. In this work, we extend these results in two ways. First, we introduce a width notion that applies to non-deterministic problems as well, develop a factored belief tracking algorithm that is exponential in the problem width, and show how it applies to existing benchmarks. Second, we introduce a meaningful, powerful, and sound approximation scheme, beam tracking, that is exponential in a smaller parameter, the problem causal width, and has much broader applicability. We illustrate the value of this algorithm over large instances of problems such as Battleship, Minesweeper, and Wumpus, where it yields state-of-the-art performance in real-time.

Journal ArticleDOI
TL;DR: A new condition referred to as the self-contradiction axiom is presented that guarantees the consistency property in both ASPIC-like and assumption-based systems and is implied by both properties of closure under contraposition or transposition.
Abstract: Properties like logical closure and consistency are important properties in any logical reasoning system. Caminada and Amgoud showed that not every logic-based argument system satisfies these relevant properties. But under conditions like closure under contraposition or transposition of the monotonic part of the underlying logic, ASPIC-like systems satisfy these properties. In contrast, the logical closure and consistency properties are not well-understood for other well-known and widely applied systems like logic programming or assumption based argumentation. Though conditions like closure under contraposition or transposition seem intuitive in ASPIC-like systems, they rule out many sensible ASPIClike systems that satisfy both properties of closure and consistency. We present a new condition referred to as the self-contradiction axiom that guarantees the consistency property in both ASPIC-like and assumption-based systems and is implied by both properties of closure under contraposition or transposition. We develop a logicassociated abstract argumentation framework, by associating abstract argumentation with abstract logics to represent the conclusions of arguments. We show that logicassociated abstract argumentation frameworks capture ASPIC-like systems (without preferences) and assumption-based argumentation. We present two simple and natural properties of compactness and cohesion in logic-associated abstract argumentation frameworks and show that they capture the logical closure and consistency properties. We demonstrate that in both assumption-based argumentation and ASPIC-like systems, cohesion follows naturally from the self-contradiction axiom. We further give a translation from ASPIC-like systems (without preferences) into equivalent assumption-based systems that keeps the selfcontradiction axiom invariant.

Journal ArticleDOI
TL;DR: This paper uniformly proposes a semantic knowledge forgetting, called HT-and FLP-forgetting, for logic programs under stable model andFLP-stable model semantics, respectively, and shows that this semantic forgetting result is always expressible; and proves a representation theorem stating that the HT- and FLP -forgetting can be precisely characterized by Zhang-Zhou's four forgetting postulates under the HT/FLP semantics.
Abstract: The ability of discarding or hiding irrelevant information has been recognized as an important feature for knowledge based systems, including answer set programming. The notion of strong equivalence in answer set programming plays an important role for different problems as it gives rise to a substitution principle and amounts to knowledge equivalence of logic programs. In this paper, we uniformly propose a semantic knowledge forgetting, called HT-and FLP-forgetting, for logic programs under stable model and FLP-stable model semantics, respectively. Our proposed knowledge forgetting discards exactly the knowledge of a logic program which is relevant to forgotten variables. Thus it preserves strong equivalence in the sense that strongly equivalent logic programs will remain strongly equivalent after forgetting the same variables. We show that this semantic forgetting result is always expressible; and we prove a representation theorem stating that the HT-and FLP-forgetting can be precisely characterized by Zhang-Zhou's four forgetting postulates under the HT-and FLP-model semantics, respectively. We also reveal underlying connections between the proposed forgetting and the forgetting of propositional logic, and provide complexity results for decision problems in relation to the forgetting. An application of the proposed forgetting is also considered in a conflict solving scenario.

Journal ArticleDOI
TL;DR: A new metric, called disappointment, is advocated for evaluating expert algorithms in repeated games, and a new meta-algorithm is described that can be applied to existing expert algorithms to substantially reduce disappointment in many two-player repeated games when associates follow various static, reinforcement learning, and expert algorithms.
Abstract: We consider the problem of learning in repeated games against arbitrary associates. Specifically, we study the ability of expert algorithms to quickly learn effective strategies in repeated games, towards the ultimate goal of learning near-optimal behavior against any arbitrary associate within only a handful of interactions. Our contribution is three-fold. First, we advocate a new metric, called disappointment, for evaluating expert algorithms in repeated games. Unlike minimizing traditional notions of regret, minimizing disappointment in repeated games is equivalent to maximizing payoffs. Unfortunately, eliminating disappointment is impossible to guarantee in general. However, it is possible for an expert algorithm to quickly achieve low disappointment against many known classes of algorithms in many games. Second, we show that popular existing expert algorithms often fail to achieve low disappointment against a variety of associates, particularly in early rounds of the game. Finally, we describe a new meta-algorithm that can be applied to existing expert algorithms to substantially reduce disappointment in many two-player repeated games when associates follow various static, reinforcement learning, and expert algorithms.

Journal ArticleDOI
TL;DR: A principled and flexible technique for improving h+, by augmenting delete-relaxed planning tasks with a limited amount of delete information by introducing special fluents that explicitly represent conjunctions of fluents in the original planning task, rendering h+ the perfect heuristic h* in the limit.
Abstract: Heuristic functions based on the delete relaxation compute upper and lower bounds on the optimal delete-relaxation heuristic h+, and are of paramount importance in both optimal and satisficing planning. Here we introduce a principled and flexible technique for improving h+, by augmenting delete-relaxed planning tasks with a limited amount of delete information. This is done by introducing special fluents that explicitly represent conjunctions of fluents in the original planning task, rendering h+ the perfect heuristic h* in the limit. Previous work has introduced a method in which the growth of the task is potentially exponential in the number of conjunctions introduced. We formulate an alternative technique relying on conditional effects, limiting the growth of the task to be linear in this number. We show that this method still renders h+ the perfect heuristic h* in the limit. We propose techniques to find an informative set of conjunctions to be introduced in different settings, and analyze and extend existing methods for lower-bounding and upperbounding h+ in the presence of conditional effects. We evaluate the resulting heuristic functions empirically on a set of IPC benchmarks, and show that they are sometimes much more informative than standard delete-relaxation heuristics.

Journal ArticleDOI
TL;DR: In this article, it was shown that LOBBYING is fixed-parameter tractable for parameter m and provided a greedy logarithmic-factor approximation algorithm which solves LOBBING even optimally if m ≤ 4.
Abstract: Assume that each of n voters may or may not approve each of m issues. If an agent (the lobby) may influence up to k voters, then the central question of the NP-hard LOBBYING problem is whether the lobby can choose the voters to be influenced so that as a result each issue gets a majority of approvals. This problem can be modeled as a simple matrix modification problem: Can one replace k rows of a binary n×m-matrix by k all-1 rows such that each column in the resulting matrix has a majority of 1s? Significantly extending on previous work that showed parameterized intractability (W[2]-completeness) with respect to the number k of modified rows, we study how natural parameters such as n, m, k, or the "maximum number of 1s missing for any column to have a majority of 1s" (referred to as "gap value g") govern the computational complexity of LOBBYING. Among other results, we prove that LOBBYING is fixed-parameter tractable for parameter m and provide a greedy logarithmic-factor approximation algorithm which solves LOBBYING even optimally if m ≤ 4. We also show empirically that this greedy algorithm performs well on general instances. As a further key result, we prove that LOBBYING is LOGSNP-complete for constant values g ≥ 1, thus providing a first natural complete problem from voting for this complexity class of limited nondeterminism.

Journal ArticleDOI
TL;DR: It is shown that inferences under strong independence are NP-hard even in trees with binary variables except for a single ternary one, and it is proved that under epistemic irrelevance the polynomial-time complexity of inferences in credal trees is not likely to extend to more general models.
Abstract: Credal networks are graph-based statistical models whose parameters take values in a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The computational complexity of inferences on such models depends on the irrelevance/independence concept adopted. In this paper, we study inferential complexity under the concepts of epistemic irrelevance and strong independence. We show that inferences under strong independence are NP-hard even in trees with binary variables except for a single ternary one. We prove that under epistemic irrelevance the polynomial-time complexity of inferences in credal trees is not likely to extend to more general models (e.g., singly connected topologies). These results clearly distinguish networks that admit efficient inferences and those where inferences are most likely hard, and settle several open questions regarding their computational complexity. We show that these results remain valid even if we disallow the use of zero probabilities. We also show that the computation of bounds on the probability of the future state in a hidden Markov model is the same whether we assume epistemic irrelevance or strong independence, and we prove a similar result for inference in naive Bayes structures. These inferential equivalences are important for practitioners, as hidden Markov models and naive Bayes structures are used in real applications of imprecise probability.

Journal ArticleDOI
TL;DR: This paper uses a novel encoding of regular role inclusions using bounded-stack pushdown automata--that is, FAs extended with a stack of bounded size to solve the open problem of answering conjunctive queries over OWL 2 EL knowledge bases.
Abstract: OWL 2 EL is a popular ontology language that supports role inclusions--axioms of the form S1...Sn ⊆ S that capture compositional properties of roles. Role inclusions closely correspond to context-free grammars, which was used to show that answering conjunctive queries (CQs) over OWL 2 EL knowledge bases with unrestricted role inclusions is undecidable. However, OWL 2 EL inherits from OWL 2 DL the syntactic regularity restriction on role inclusions, which ensures that role chains implying a particular role can be described using a finite automaton (FA). This is sufficient to ensure decidability of CQ answering; however, the FAs can be worst-case exponential in size so the known approaches do not provide a tight upper complexity bound. In this paper, we solve this open problem and show that answering CQs over OWL 2 EL knowledge bases is PSpace-complete in combined complexity (i.e., the complexity measured in the total size of the input). To this end, we use a novel encoding of regular role inclusions using bounded-stack pushdown automata--that is, FAs extended with a stack of bounded size. Apart from theoretical interest, our encoding can be used in practical tableau algorithms to avoid the exponential blowup due to role inclusions. In addition, we sharpen the lower complexity bound and show that the problem is PSPACE-hard even if we consider only role inclusions as part of the input (i.e., the query and all other parts of the knowledge base are fxed). Finally, we turn our attention to navigational queries over OWL 2 EL knowledge bases, and we show that answering positive, converse-free conjunctive graph XPath queries is PSPACE-complete as well; this is interesting since allowing the converse operator in queries is known to make the problem ExpTime-hard. Thus, in this paper we present several important contributions to the landscape of the complexity of answering expressive queries over description logic knowledge bases.

Journal ArticleDOI
TL;DR: This work presents an approach based on unfounded sets as a generalization of related techniques for ASP programs, and provides a syntactic criterion that allows one to skip the minimality check in many cases.
Abstract: HEX-programs extend logic programs under the answer set semantics with external computations through external atoms. As reasoning from ground Horn programs with nonmonotonic external atoms of polynomial complexity is already on the second level of the polynomial hierarchy, minimality checking of answer set candidates needs special attention. To this end, we present an approach based on unfounded sets as a generalization of related techniques for ASP programs. The unfounded set detection is expressed as a propositional SAT problem, for which we provide two different encodings and optimizations to them. We then integrate our approach into a previously developed evaluation framework for HEX-programs, which is enriched by additional learning techniques that aim at avoiding the reconstruction of the same or related unfounded sets. Furthermore, we provide a syntactic criterion that allows one to skip the minimality check in many cases. An experimental evaluation shows that the new approach significantly decreases runtime.

Journal ArticleDOI
TL;DR: This paper studies the approximability of a number of graph problems: Treewidth and Pathwidth of graphs, Minimum Fill-In, and a variety of different graph layout problems such as Minimum Cut Linear Arrangement, and shows that all of these problems are NP-hard to approximate to within any constant factor in polynomial time.
Abstract: Graphical models, such as Bayesian Networks and Markov networks play an important role in artificial intelligence and machine learning. Inference is a central problem to be solved on these networks. This, and other problems on these graph models are often known to be hard to solve in general, but tractable on graphs with bounded Treewidth. Therefore, finding or approximating the Treewidth of a graph is a fundamental problem related to inference in graphical models. In this paper, we study the approximability of a number of graph problems: Treewidth and Pathwidth of graphs, Minimum Fill-In, One-Shot Black (and Black-White) pebbling costs of directed acyclic graphs, and a variety of different graph layout problems such as Minimum Cut Linear Arrangement and Interval Graph Completion. We show that, assuming the recently introduced Small Set Expansion Conjecture, all of these problems are NP-hard to approximate to within any constant factor in polynomial time.

Journal ArticleDOI
TL;DR: Experimental results show that the large-scale optimization of the evaluation function improves the playing strength of shogi programs, and the new method performs significantly better than other methods.
Abstract: This paper presents a new method, Minimax Tree Optimization (MMTO), to learn a heuristic evaluation function of a practical alpha-beta search program. The evaluation function may be a linear or non-linear combination of weighted features, and the weights are the parameters to be optimized. To control the search results so that the move decisions agree with the game records of human experts, a well-modeled objective function to be minimized is designed. Moreover, a numerical iterative method is used to find local minima of the objective function, and more than forty million parameters are adjusted by using a small number of hyper parameters. This method was applied to shogi, a major variant of chess in which the evaluation function must handle a larger state space than in chess. Experimental results show that the large-scale optimization of the evaluation function improves the playing strength of shogi programs, and the new method performs significantly better than other methods. Implementation of the new method in our shogi program Bonanza made substantial contributions to the program's first-place finish in the 2013 World Computer Shogi Championship. Additionally, we present preliminary evidence of broader applicability of our method to other two-player games such as chess.

Journal ArticleDOI
TL;DR: The meta-mining model is used within a data mining workflow planner, to guide the planner during the workflow planning, and the quality of the data mining workflows are evaluated to show that they are significantly better than alternative methods that can only do workflow selection and not planning.
Abstract: Knowledge Discovery in Databases is a complex process that involves many different data processing and learning operators. Today's Knowledge Discovery Support Systems can contain several hundred operators. A major challenge is to assist the user in designing workflows which are not only valid but also - ideally - optimize some performance measure associated with the user goal. In this paper we present such a system. The system relies on a meta-mining module which analyses past data mining experiments and extracts meta-mining models which associate dataset characteristics with workflow descriptors in view of workflow performance optimization. The meta-mining model is used within a data mining workflow planner, to guide the planner during the workflow planning. We learn the meta-mining models using a similarity learning approach, and extract the workflow descriptors by mining the workflows for generalized relational patterns accounting also for domain knowledge provided by a data mining ontology. We evaluate the quality of the data mining workflows that the system produces on a collection of real world datasets coming from biology and show that it produces workflows that are significantly better than alternative methods that can only do workflow selection and not planning.

Journal ArticleDOI
TL;DR: This paper develops a simple yet expressive extension of standard GDL that allows for formalising the rules of arbitrary finite, n-player games with randomness and incomplete state knowledge and develops a full embedding of extended GDL into the Situation Calculus augmented by Scherl and Levesque's knowledge fluent.
Abstract: A general game player is a system that can play previously unknown games just by being given their rules. For this purpose, the Game Description Language (GDL) has been developed as a high-level knowledge representation formalism to communicate game rules to players. In this paper, we address a fundamental limitation of state-of-the-art methods and systems for General Game Playing, namely, their being confined to deterministic games with complete information about the game state. We develop a simple yet expressive extension of standard GDL that allows for formalising the rules of arbitrary finite, n-player games with randomness and incomplete state knowledge. In the second part of the paper, we address the intricate reasoning challenge for general game-playing systems that comes with the new description language. We develop a full embedding of extended GDL into the Situation Calculus augmented by Scherl and Levesque's knowledge fluent. We formally prove that this provides a sound and complete reasoning method for players' knowledge about game states as well as about the knowledge of the other players.