scispace - formally typeset
Search or ask a question
JournalISSN: 0739-0572

Journal of Atmospheric and Oceanic Technology 

American Meteorological Society
About: Journal of Atmospheric and Oceanic Technology is an academic journal published by American Meteorological Society. The journal publishes majorly in the area(s): Radar & Lidar. It has an ISSN identifier of 0739-0572. Over the lifetime, 5098 publications have been published receiving 197440 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a relocatable system for generalized inverse (GI) modeling of barotropic ocean tides is described, where the GI penalty functional is minimized using a representer method, which requires repeated solution of the forward and adjoint linearized shallow water equations.
Abstract: A computationally efficient relocatable system for generalized inverse (GI) modeling of barotropic ocean tides is described. The GI penalty functional is minimized using a representer method, which requires repeated solution of the forward and adjoint linearized shallow water equations (SWEs). To make representer computations efficient, the SWEs are solved in the frequency domain by factoring the coefficient matrix for a finite-difference discretization of the second-order wave equation in elevation. Once this matrix is factored representers can be calculated rapidly. By retaining the first-order SWE system (defined in terms of both elevations and currents) in the definition of the discretized GI penalty functional, complete generality in the choice of dynamical error covariances is retained. This allows rational assumptions about errors in the SWE, with soft momentum balance constraints (e.g., to account for inaccurate parameterization of dissipation), but holds mass conservation constraints. Wh...

3,133 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a reference guide to users wishing to make use of the Tropical Rainfall Measuring Mission data, which covers each of the three primary rainfall instruments: the passive microwave radiometer, the precipitation radar, and the Visible and Infrared Radiometer System on board the spacecraft.
Abstract: This note is intended to serve primarily as a reference guide to users wishing to make use of the Tropical Rainfall Measuring Mission data. It covers each of the three primary rainfall instruments: the passive microwave radiometer, the precipitation radar, and the Visible and Infrared Radiometer System on board the spacecraft. Radiometric characteristics, scanning geometry, calibration procedures, and data products are described for each of these three sensors.

2,317 citations

Journal ArticleDOI
TL;DR: Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a two-wavelength polarization lidar that performs global profiling of aerosols and clouds in the troposphere and lower stratosphere as discussed by the authors.
Abstract: The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a two-wavelength polarization lidar that performs global profiling of aerosols and clouds in the troposphere and lower stratosphere. CALIOP is the primary instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, which has flown in formation with the NASA A-train constellation of satellites since May 2006. The global, multiyear dataset obtained from CALIOP provides a new view of the earth’s atmosphere and will lead to an improved understanding of the role of aerosols and clouds in the climate system. A suite of algorithms has been developed to identify aerosol and cloud layers and to retrieve a variety of optical and microphysical properties. CALIOP represents a significant advance over previous space lidars, and the algorithms that have been developed have many innovative aspects to take advantage of its capabilities. This paper provides a brief overview of the CALIPSO mission, the CA...

1,833 citations

Journal ArticleDOI
Abstract: A database is described that has been designed to fulfill the need for daily climate data over global land areas. The dataset, known as Global Historical Climatology Network (GHCN)-Daily, was developed for a wide variety of potential applications, including climate analysis and monitoring studies that require data at a daily time resolution (e.g., assessments of the frequency of heavy rainfall, heat wave duration, etc.). The dataset contains records from over 80 000 stations in 180 countries and territories, and its processing system produces the official archive for U.S. daily data. Variables commonly include maximum and minimum temperature, total daily precipitation, snowfall, and snow depth; however, about two-thirds of the stations report precipitation only. Quality assurance checks are routinely applied to the full dataset, but the data are not homogenized to account for artifacts associated with the various eras in reporting practice at any particular station (i.e., for changes in systematic...

1,438 citations

Journal ArticleDOI
TL;DR: An unstructured grid, finite-volume, three-dimensional (3D) primitive equation ocean model has been developed for the study of coastal oceanic and estuarine circulation as discussed by the authors.
Abstract: An unstructured grid, finite-volume, three-dimensional (3D) primitive equation ocean model has been developed for the study of coastal oceanic and estuarine circulation. The model consists of momentum, continuity, temperature, salinity, and density equations and is closed physically and mathematically using the Mellor and Yamada level-2.5 turbulent closure submodel. The irregular bottom slope is represented using a s-coordinate transformation, and the horizontal grids comprise unstructured triangular cells. The finite-volume method (FVM) used in this model combines the advantages of a finite-element method (FEM) for geometric flexibility and a finite-difference method (FDM) for simple discrete computation. Currents, temperature, and salinity in the model are computed in the integral form of the equations, which provides a better representation of the conservative laws for mass, momentum, and heat in the coastal region with complex geometry. The model was applied to the Bohai Sea, a semienclosed coastal ocean, and the Satilla River, a Georgia estuary characterized by numerous tidal creeks and inlets. Compared with the results obtained from the finite-difference model (ECOM-si), the new model produces a better simulation of tidal elevations and residual currents, especially around islands and tidal creeks. Given the same initial distribution of temperature in the Bohai Sea, the FVCOM and ECOM-si models show similar distributions of temperature and stratified tidal rectified flow in the interior region away from the coast and islands, but FVCOM appears to provide a better simulation of temperature and currents around the islands, barriers, and inlets with complex topography.

1,436 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202355
2022152
2021131
2020150
2019151
2018116