scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Bacteriology in 1979"


Journal ArticleDOI
TL;DR: Exopolysaccharide, isolated from growth medium of Serratia marcescens SM-6, enhanced the exolipase formation as efficiently as hyaluronate, and was discussed mainly in terms of the "detachment hypothesis."
Abstract: Among 21 different polysaccharides tested, 5 greatly enhanced the spontaneous and cyclic AMP-induced formation of exolipase: glycogen, hyaluronate, laminarin, pectin B, and gum arabic. These polysaccharides have in common the tendency to form highly ordered networks because of the branching or helical arrangement, or both, of their molecules. None of the polysaccharides could be utilized by the cells as the sole carbon source. Strong lipid extraction of four different polysaccharides did not reduce their exolipase-enhancing efficacy. At a constant cell density the stimulation of exolipase formation by various concentrations of glycogen followed saturation kinetics, suggesting a limited number of "sites" for the glycogen to act. The active principle present in a solution of pectin was destroyed by degradation (beta-elimination) of the polymer. Hyaluronate lost its exolipase-enhancing activity by exhaustive hydrolysis with hyaluronidase but was resistant to proteinase K. Exopolysaccharide, isolated from growth medium of Serratia marcescens SM-6, enhanced the exolipase formation as efficiently as hyaluronate. The results of this work are discussed mainly in terms of the "detachment hypothesis."

1,041 citations


Journal ArticleDOI
TL;DR: Proteins encoded by plasmid DNA are specifically labeled in UV-irradiated cells of Escherichia coli carrying recA and uvrA mutations because extensive degradation of the chromosome DNA occurs concurrently with amplification of plasmID DNA.
Abstract: Proteins encoded by plasmid DNA are specifically labeled in UV-irradiated cells of Escherichia coli carrying recA and uvrA mutations because extensive degradation of the chromosome DNA occurs concurrently with amplification of plasmid DNA.

977 citations


Journal ArticleDOI
TL;DR: A bipolarly flagellated magnetotactic spirillum containing intracellular chains of single domain-sized magnetite crystals was isolated by applying a magnetic field to sediments from a freshwater swamp and the two types were similar.
Abstract: A bipolarly flagellated magnetotactic spirillum containing intracellular chains of single domain-sized magnetite crystals was isolated by applying a magnetic field to sediments from a freshwater swamp. The organism was cultured in a chemically defined medium containing ferric quinate and succinate as sources of iron and carbon, respectively. Nonmagnetic variants of this isolate were maintained in chemically defined medium lacking ferric quinate. In contrast to magnetic cells, these had less iron and lacked measurable magnetic remanence and the intracytoplasmic crystals. In other respects, including moles percent guanine plus cytosine content, growth characteristics, nutrition, and physiology, the two types were similar. The isolate reduced nitrate without accumulating nitrite and produced ammonia during growth. Nitrate or ammonium ions served as a nitrogen source. The organism was microaerophilic and did not grow anaerobically with nitrate in the medium. In chemically defined medium, cells synthesized magnetite only if the initial O2 concentration in the atmosphere of sealed cultures was 6% (vol/vol) or less.

442 citations


Journal ArticleDOI
TL;DR: It was shown that five of the eight major outer membrane proteins were "heat modifiable" in that their mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was determined by the solubilization temperature, and protein F represents a new class of heat-modifiable protein.
Abstract: A number of polyacrylamide gel systems and solubilization procedures were studied to define the number and nature of "major" polypeptide bands in the outer membrane of Pseudomonas aeruginosa. It was shown that five of the eight major outer membrane proteins were "heat modifiable" in that their mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was determined by the solubilization temperature. Four of these heat-modifiable proteins had characteristics similar to protein II of the Escherichia coli outer membrane. Addition of lipopolysaccharide subsequent to solubilization caused reversal of the heat modification. The other heat-modifiable protein, the porin protein F, was unusually stable to sodium dodecyl sulfate. Long periods of boiling in sodium dodecyl sulfate were required to cause conversion to the heat-modified form. This was demonstrated both with outer membrane-associated and purified lipopolysaccharide-depleted protein F. Furthermore, lipopolysaccharide treatment had no effect on the mobility of heat-modified protein F. Thus it is concluded that protein F represents a new class of heat-modifiable protein. It was further demonstrated that the electrophoretic mobility of protein F was modified by 2-mercaptoethanol and that the 2-mercaptoethanol and heat modification of mobility were independent of one another. The optimal conditions for the examination of the outer membrane proteins of P. aeruginosa by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis are discussed. Images

431 citations


Journal ArticleDOI
TL;DR: Analysis of the detailed results indicates that metabolic coordination within the normal (Arrhenius) range is largely achieved by modulation of enzyme activity rather than amount and the restricted growth that occurs outside this range is accompanied by marked changes in the levels of most of these proteins.
Abstract: The adaptation of Escherichia coli B/r to temperature was studied by measuring the levels of 133 proteins (comprising 70% of the cell9s protein mass) during balanced growth in rich medium at seven temperatures from 13.5 to 46 degrees C. The growth rate of this strain in either rich or minimal medium varies as a simple function of temperature with an Arrhenius constant of approximately 13,500 cal (ca. 56,500 J) per mol from 23 to 37 degrees C, the so-called normal range; above and below this range the growth rate decreases sharply. Analysis of the detailed results indicates that (i) metabolic coordination within the normal (Arrhenius) range is largely achieved by modulation of enzyme activity rather than amount; (ii) the restricted growth that occurs outside this range is accompanied by marked changes in the levels of most of these proteins; (iii) a few proteins are thermometer-like in varying simply with temperature over the whole temperature range irrespective of the influence of temperature on cell growth; and (iv) the temperature response of half of the proteins can be predicted from current information on their metabolic role or from their variation in level in different media at 37 degrees C.

361 citations


Journal ArticleDOI
TL;DR: Lactic streptococci, classically regarded as homolactic fermenters of glucose and lactose, became heterolactic when grown with limiting carbohydrate concentrations in a chemostat, indicating that fine control of enzyme activity is an important factor in the fermentation change.
Abstract: Lactic streptococci, classically regarded as homolactic fermenters of glucose and lactose, became heterolactic when grown with limiting carbohydrate concentrations in a chemostat. At high dilution rates (D) with excess glucose present, about 95% of the fermented sugar was converted to l-lactate. However, as D was lowered and glucose became limiting, five of the six strains tested changed to a heterolactic fermentation such that at D = 0.1 h−1 as little as 1% of the glucose was converted to l-lactate. The products formed after this phenotypic change in fermentation pattern were formate, acetate, and ethanol. The level of lactate dehydrogenase, which is dependent upon ketohexose diphosphate for activity, decreased as fermentation became heterolactic with Streptococcus lactis ML3. Transfer of heterolactic cells from the chemostat to buffer containing glucose resulted in the nongrowing cells converting nearly 80% of the glucose to l-lactate, indicating that fine control of enzyme activity is an important factor in the fermentation change. These nongrowing cells metabolizing glucose had elevated (ca. twofold) intracellular fructose 1,6-diphosphate concentrations ([FDP]in) compared with those in the glucose-limited heterolactic cells in the chemostat. [FDP]in was monitored during the change in fermentation pattern observed in the chemostat when glucose became limiting. Cells converting 95 and 1% of the glucose to l-lactate contained 25 and 10 mM [FDP]in, respectively. It is suggested that factors involved in the change to heterolactic fermentation include both [FDP]in and the level of lactate dehydrogenase.

360 citations


Journal ArticleDOI
TL;DR: Temperature-sensitive nalA mutants of Escherichia coli have been used to investigate the structure and functions of deoxyribonucleic acid (DNA) gyrase, proving definitively that n alA is the structural gene for subunit A and the nalidixic acid target are one and the same protein.
Abstract: Temperature-sensitive nalA mutants of Escherichia coli have been used to investigate the structure and functions of deoxyribonucleic acid (DNA) gyrase. Extracts of one such mutant (nalA43) had thermosensitive DNA gyrase subunit A activity but normal gyrase subunit B activity, proving definitively that nalA is the structural gene for subunit A. Extracts of a second nalA (Ts) mutant (nalA45) had a 50-fold deficiency of gyrase subunit A activity. The residual DNA supertwisting was catalyzed by the mutant DNA gyrase rather than by a novel supertwisting enzyme. The nalA45(Ts) extract was also deficient in the nalidixic acid target, which is defined as the protein necessary to confer drug sensitivity to in vitro DNA replication directed by a nalidixic acid-resistant mutant extract. Thus, gyrase subunit A and the nalidixic acid target are one and the same protein, the nalA gene product. Shift of the nalA43(Ts) mutant to a nonpermissive temperature resulted in a precipitous decline in the rate of [(3)H]thymidine incorporation, demonstrating an obligatory role of the nalA gene product in DNA replication. The rates of incorporation of [(3)H]uridine pulses and continuously administered [(3)H]uracil were quickly reduced approximately twofold upon temperature shift of the nalA43(Ts) mutant, and therefore some but not all transcription requires the nalA gene product. The thermosensitive growth of bacteriophages phiX174 and T4 in the nalA43(Ts) host shows that these phages depend on the host nalA gene product. In contrast, the growth of phage T7 was strongly inhibited by nalidixic acid but essentially unaffected by the nalA43(Ts) mutation. The inhibition of T7 growth by nalidixic acid was, however, eliminated by temperature inactivation of the nal43 gene product. Therefore, nalidixic acid may block T7 growth by a corruption rather than a simple elimination of the nalidixic acid target. Possible mechanisms for such a corruption are considered, and their relevance to the puzzling dominance of drug sensitivity is discussed.

328 citations


Journal ArticleDOI
TL;DR: Short-term labeling experiments with M. thermoautotrophicum and M. hungatii clearly suggest that the pathway of methane oxidation is not identical with a simple back reaction of the methane formation process.
Abstract: Methanogenic bacteria were found to form and oxidize methane at the same time. As compared to the quantity of methane formed, the amount of methane simultaneously oxidized varied between 0.3 and 0.001%, depending on the strain used. All the nine tested strains of methane producers (Methanobacterium ruminantium, Methanobacterium strain M.o.H., M. formicicum, M. thermoautotrophicum, M. arbophilicum, Methanobacterium strain AZ, Methanosarcina barkeri, Methanospirillum hungatii, and the "acetate organism") reoxidized methane to carbon dioxide. In addition, they assimilated a small part of the methane supplied into cell material. Methanol and acetate also occurred as oxidation products in M. barkeri cultures. Acetate was also formed by the "acetate organism," a methane bacterium unable to use methanogenic substrates other than acetate. Methane was the precursor of the methyl group of the acetate synthesized in the course of methane oxidation. Methane formation and its oxidation were inhibited equally by 2-bromoethanesulfonic acid. Short-term labeling experiments with M. thermoautotrophicum and M. hungatii clearly suggest that the pathway of methane oxidation is not identical with a simple back reaction of the methane formation process. Images

308 citations


Journal ArticleDOI
TL;DR: Under cultural conditions, sophorose appears to induce an incomplete array of cellulase enzymes, as indicated by enzymatic and electrophoretic studies, and response to pH suggest either that synthesis and secretion of the enzyme are closely associated or concurrent events affected by surface interactions with the medium.
Abstract: Sophorose (2-O-beta-glucopyranosyl-D-glucose) induces carboxymethyl cellulase in Trichoderma reesei QM6a mycelium with 1.5 to 2 h. The induction response to sophorose concentration, although complicated by the metabolism of sophorose, shows saturation kinetics. Most of the cellulase appears after most of the sophorose has been taken up, but the presence of an inducer is required to maintain cellulase synthesis because enzyme production ceases after separation of the mycelium from the induction medium. Cellulase appears simultaneously in the medium and in the mycelium, and no appreciable levels accumulate in the mycelium. Response to pH suggest either that synthesis and secretion of the enzyme are closely associated or concurrent events affected by surface interactions with the medium. Effects of temperature and pH on cellulase induction by sophorose are similar to those reported for induction by cellulose. The kinetics of absorption by mycelium differs from that of other beta-linked saccharides and glucose, the uptake of sophorose being much slower. Under our cultural conditions, sophorose appears to induce an incomplete array of cellulase enzymes, as indicated by enzymatic and electrophoretic studies.

276 citations


Journal ArticleDOI
TL;DR: The structure and products of the two cistrons encoding the Escherichia coli heat-labile toxin (LT) were studied and it was indicated that the maximum size of the LT DNA region was 1.2 x 10(6) daltons.
Abstract: The structure and products of the two cistrons encoding the Escherichia coli heat-labile toxin (LT) were studied. The LT deoxyribonucleic acid (DNA) region had been isolated as part of a DNA fragment from the plasmid P307, and this fragment was joined to the cloning vector pBR313. Deletion mutations of various lengths were introduced into the LT DNA region and into the adjacent DNA sequences. Analysis of the deletions indicated that the maximum size of the LT DNA region was 1.2 x 10(6) daltons. Two proteins of 11,500 daltons and 25,500 daltons had been shown to be encoded by the LT DNA region. The functions of these LT gene products were investigated. The 11,500-dalton protein had an adsorption activity for Y-1 adrenal cells, and this protein was shown to form aggregates of four or five monomers. The 25,500-dalton protein was shown to have an adenylate cyclase-activating activity. The two cistrons encoding for each of the LT proteins have been located on a genetic map of the LT DNA region. Both cistrons are probably transcribed from the same promoter. Images

265 citations


Journal ArticleDOI
TL;DR: The results suggest that a number of envelope proteins may be exported at a common site, and that there are only a limited number of such sites, and indicate that it is not sufficient to simply attach an amino-terminal signal sequence to a polypeptide to assure its export.
Abstract: We have employed the technique of gene fusion to fuse the LacZ gene encoding the cytoplasmic enzyme beta-galactosidase with the malE gene encoding the periplasmic maltose binding protein (MBP). Strains were obtained which synthesize malE-lacZ hybrid proteins of various sizes. These proteins have, at their amino terminus, a portion of the MBP and at their carboxyl terminus, enzymatically active beta-galactosidase. When the hybrid protein includes only a small, amino-terminal portion of the MBP, the hybrid protein residues in the cytoplasm. When the hybrid protein contains enough of the MBP to include an intact MBP signal sequence, a significant portion of the hybrid protein is found in the cytoplasmic membrane, suggesting that secretion of the hybrid protein has been initiated. However, in no case is the hybrid protein secreted into the periplasm, even when the hybrid protein includes almost the entire MBP. In the latter case, the synthesis and attempted export of the hybrid protein interferes with the export of at least certain normal envelope proteins, which accumulate in the cell in their precursor forms, and the cell dies. These results suggest that a number of envelope proteins may be exported at a common site, and that there are only a limited number of such sites. Also, these results indicate that it is not sufficient to simply attach an amino-terminal signal sequence to a polypeptide to assure its export.

Journal ArticleDOI
TL;DR: The results suggest that yeast cells are able to initiate cell division at different cell sizes and that regulation of cell size occurs within G1.
Abstract: For cells of the yeast Saccharomyces cerevisiae, the size at initiation of budding is proportional to growth rate for rates from 0.33 to 0.23 h-1. At growth rates lower than 0.23 h-1, cells displayed a minimum cell size at bud initiation independent of growth rate. Regardless of growth rate, cells displayed an increase in volume each time budding was initiated. When abnormally small cells, produced by starvation for nitrogen, were placed in fresh medium containing nitrogen but with different carbon sources, they did not initiate budding until they had grown to the critical size characteristic of that medium. Moreover, when cells were shifted from a medium supporting a low growth rate and small size at bud initiation to a medium supporting a higher growth rate and larger size at bud initiation, there was a transient accumulation of cells within G1. These results suggest that yeast cells are able to initiate cell division at different cell sizes and that regulation of cell size occurs within G1.

Journal ArticleDOI
TL;DR: An iron-binding compound was isolated from ethyl acetate extracts of culture supernatant fluids of Pseudomonas aeruginosa and was purified by successive paper and thin-layer chromatographic procedures, which characterized it by UV, visible, infrared, and fluorescence spectroscopy.
Abstract: An iron-binding compound was isolated from ethyl acetate extracts of culture supernatant fluids of Pseudomonas aeruginosa and was purified by successive paper and thin-layer chromatographic procedures. The purified compound was characterized by UV, visible, infrared, and fluorescence spectroscopy. The compound possesses phenolic characteristics, with little or no similarity to dihydroxybenzoates and no indication of a hydroxamate group. P. aeruginosa synthesized the compound during active growth in culture media containing less than 5 X 10(-6) M added FeCl3. When added to iron-poor cultures of P. aeruginosa, the compound promoted the growth of the bacterium and also reversed growth inhibition by the iron chelator ethylenediamine-di-(o-hydroxyphenylacetic acid).

Journal ArticleDOI
TL;DR: The mean size and percentage of budded cells of a wild-type haploid strain of Saccharomyces cerevisiae grown in batch culture over a wide range of doubling times (tau) have been measured using microscopic measurements and a particle size analyzer, consistent with the notion that initiation of the cell cycle occurs at "start" after attainment of a critical cell size.
Abstract: The mean size and percentage of budded cells of a wild-type haploid strain of Saccharomyces cerevisiae grown in batch culture over a wide range of doubling times (tau) have been measured using microscopic measurements and a particle size analyzer. Mean size increased over a 2.5-fold range with increasing growth rate (from tau = 450 min to tau = 75 min). Mean size is principally a function of growth rate and not of a particular carbon source. The duration of the budded phase increased at slow growth rates according to the empirical equation, budded phase = 0.5 tau + 27 (all in minutes). Using a recent model of the cell cycle in which division is thought to be asymmetric, equations have been derived for mean cell age and mean cell volume. The data are consistent with the notion that initiation of the cell cycle occurs at "start" after attainment of a critical cell size, and this size is dependent on growth rate, being, at slow growth rates, 63% of the volume of fast growth rates. Previous reports are reanalyzed in the light of the unequal division model and associated population equations.

Journal ArticleDOI
TL;DR: Two classes of tylosin-resistant mutants were shown to be due to alterations in the plasmid and not to modifications of the host genome and expressed resistance inducibly.
Abstract: A plasmid, pE194, obtained from Staphylococcus aureus confers resistance to macrolide, lincosamide, and streptogramin type B ("MLS") antibiotics. For full expression, the resistance phenotype requires a period of induction by subinhibitory concentrations of erythromycin. A copy number in the range of 10 to 25 copies per cell is maintained during cultivation at 32 degrees C. It is possible to transfer pE194 to Bacillus subtilis by transformation. In B. subtilis, the plasmid is maintained at a copy number of approximately 10 per cell at 37 degrees C, and resistance is inducible. Tylosin, a macrolide antibiotic which resembles erythromycin structurally and to which erythromycin induces resistance, lacks inducing activity. Two types of plasmid mutants were obtained and characterized after selection on medium containing 10 microgram of tylosin per ml. One mutant class appeared to express resistance constitutively and maintained a copy number indistinguishable from that of the parent plasmid. The other mutant type had a 5- to 10-fold-elevated plasmid copy number (i.e., 50 to 100 copies per cell) and expressed resistance inducibly. Both classes of tylosin-resistant mutants were shown to be due to alterations in the plasmid and not to modifications of the host genome.

Journal ArticleDOI
TL;DR: The results indicate that substances that cannot pass through the outer membrane switch the synthesis of O-9 to that ofO-8 more effectively than those that can penetrate this membrane with the aid of O, O-8, or both.
Abstract: Supplementation of the growth medium with high concentrations of sugars or low-molecular-weight dextrans results in a drastic change in the ratio of outer membrane proteins O-8 and O-9, due to induction of O-8 synthesis and suppression of O-9 synthesis. Sugars and dextrans of molecular weights greater than 600 to 700 switched the synthesis of O-9 to that of O-8 more effectively than those of lower molecular weight, although the effect was almost the same within each of the two groups irrespective of the differences in molecular weight within the group. Proteins O-8 or O-9, or both, are responsible for the formation of pores that allow the passive diffusion of hydrophilic molecules whose molecular weights are smaller than about 600 (T. Nakae, Biochem. Biophys. Res. Commun. 71:877-884, 1976). The results indicate that substances that cannot pass through the outer membrane switch the synthesis of O-9 to that of O-8 more effectively than those that can penetrate this membrane with the aid of O-8, O-9, or both. It is suggested that the osmotic pressure exerted on the outer membrane plays an important role in the regulation of synthesis of the two proteins.

Journal ArticleDOI
TL;DR: It appears that the yields of other extracellular products of P. aeruginosa besides toxin A are influenced by the concentration of iron in the growth medium, and this hemagglutinin was nondialyzable, heat stable, and resistant to Pronase and trypsin.
Abstract: The effect of the iron content of the medium on the yields of extracellular products by seven distinct strains of Pseudomonas aeruginosa was examined. All strains showed at least an 85% decrease in toxin A yields when grown in medium containing 5.0 μg of iron per ml (high iron) as compared to 0.05 μg/ml (low iron), whereas bacterial growth increased approximately twofold. During the course of examining extracellular products produced by P. aeruginosa, we found many strains that produced an extracellular factor which agglutinated erythrocytes. This hemagglutinin was nondialyzable, heat stable, and resistant to Pronase and trypsin. The effect of iron on extracellular yields of hemagglutinin was strain dependent; four of seven strains showed decreases in hemagglutinin yields in high-iron medium. Similarly, the effect of increasing the iron concentration of the growth medium on yields of total extracellular proteases or on elastase was strain dependent. The amount of total extracellular protein was decreased by at least 31% in the high-iron medium for all strains of P. aeruginosa examined. Detailed studies on one strain (WR-9) showed that, in the presence of increasing amounts of iron in the medium, the extracellular yields of toxin A, protease, and hemagglutinin were decreased in a similar manner. In addition, the kinetics of release of these extracellular products were similar at a given iron concentration. Thus it appears that the yields of other extracellular products of P. aeruginosa besides toxin A are influenced by the concentration of iron in the growth medium.

Journal ArticleDOI
TL;DR: The involvement of promoters in Nal and novobiocin action, as well as a possible role of in vivo negative supercoiling in the selectivity of gene expression, are discussed.
Abstract: Nalidixic acid (Nal), a drug which affects deoxyribonucleic acid gyrase activity, inhibits the expression of catabolite-sensitive genes: the three maltose operons, the lactose and galactose operons, and the tryptophanase gene. A correlation between the degree of sensitivity to Nal and that to catabolite repression has been observed. The expression of the threonine and tryptophan operons, insensitive to catabolite repression, is insensitive to Nal. The expression of the lacZ gene under the control of the IQ promoter is activated by Nal. Strains carrying a mutation in the nalA locus are resistant to these effects. Novobiocin, which inhibits the negative supercoiling activity of deoxyribonucleic acid gyrase, affects expression of the operons similarly to Nal. The involvement of promoters in Nal and novobiocin action, as well as a possible role of in vivo negative supercoiling in the selectivity of gene expression, are discussed.

Journal ArticleDOI
TL;DR: It is indicated that hemin can serve as a sole source of iron for yersiniae and that the organisms possess an efficient cell-bound transport system for Fe3+.
Abstract: Escherichia coli, Bacillus megaterium, and three species of yersiniae grew rapidly without significant production of soluble siderophores in a defined iron-sufficient medium (20 microM Fe3+) In iron-deficient medium (01 to 03 microM Fe3+) all organisms showed reduced growth, and there was extensive production of siderophores by E coli and B megaterium Release of soluble siderophores by Yersinia pestis, Y pseudotuberculosis, or Y enterocolitica in this medium was not detected Citrate (1 mM) inhibited growth of yersiniae in iron-deficient medium, indicating that the organisms lack an inducible Fe3+-citrate transport mechanism Uptake of 59Fe3+ by all yersiniae was an energy-dependent saturable process, showing increased accumulation after adaptation to iron-deficient medium Growth of Y pseudotuberculosis and Y enterocolitica but not Y pestis on iron-limited solid medium was enhanced to varying degrees by exogenous siderophores (desferal, schizokinen, aerobactin, and enterochelin) Only hemin (01 pmol) or a combination of inorganic iron plus protoporphyrin IX promoted growth of Y pestis on agar rendered highly iron deficient with egg white conalbumin (10 microM) Growth of Y pseudotuberculosis and Y enterocolitica was stimulated on this medium by Fe3+ or hemin These results indicate that hemin can serve as a sole source of iron for yersiniae and that the organisms possess an efficient cell-bound transport system for Fe3+ Images

Journal ArticleDOI
TL;DR: The ssb gene appears to be allelic with lexC, a gene with a proposed role in regulating inducible deoxyribonucleic acid repair, which is implicated in repair and recombination as well as in replication.
Abstract: A mutation in the Escherichia coli gene for single-strand binding protein results in temperature-sensitive deoxyribonucleic acid replication (R. R. Meyer, J. Glassberg, and A. Kornberg, Proc. Natl. Acad. Sci. U.S.A. 76:1702-1705, 1979). The mutant (ssb-1) is also more sensitive to ultraviolet irradiation and about one-fifth as active in recombination. Single-strand binding protein is thus implicated in repair and recombination as well as in replication. The mutation in ssb is located between uvrA and melA at 90.8 min on the genetic map. The ssb gene appears to be allelic with lexC, a gene with a proposed role in regulating inducible deoxyribonucleic acid repair.

Journal ArticleDOI
TL;DR: The phototrophic bacterium Rhodopseudomonas capsulata was found to be capable of growing chemoautotrophically under aerobic conditions in darkness, suggesting that it is one of the most metabolically versatile procaryotes known.
Abstract: The phototrophic bacterium Rhodopseudomonas capsulata was found to be capable of growing chemoautotrophically under aerobic conditions in darkness. Growth was strictly dependent on the presence of H2 as the source of energy and reducing power, O2 as the terminal electron acceptor for energy transduction, and CO2 as the sole carbon source; under optimal conditions the generation time was about 6 h. Chemoautotrophically grown cells showed a relatively high content of bacteriochlorophyll a and intracytoplasmic membranes (chromatophores). Experiments with various mutants of R. capsulata, affected in electron transport, indicate that either of the two terminal oxidases of this bacterium can participate in the energy-yielding oxidation of H2. The ability of R. capsulata to multiply in at least five different physiological growth modes suggests that it is one of the most metabolically versatile procaryotes known.

Journal ArticleDOI
TL;DR: No correlation of low or high levels of fructose-1,6-bisphosphate with the degree of catabolite repression and inactivation could be found, and this observation does not support the concept that hexose metabolites are directly involved in these regulatory mechanisms in yeast.
Abstract: Saccharomyces cerevisiae mutants unable to grow and ferment glucose have been isolated. Of 45 clones isolated, 25 had single enzyme defects of one of the following activities: phosphoglucose isomerase (pgi), phosphofructokinase (pfk), triosephosphate isomerase (tpi), phosphoglycerate kinase (pgk), phosphoglyceromutase (pgm), and pyruvate kinase (pyk). Phosphofructokinase activities in crude extracts of the pfk mutant were only 2% of the wild-type level. However, normal growth on glucose medium and normal fermentation of glucose suggested either that the mutant enzyme was considerably more active in vivo or, alternatively, that 2% residual activity was sufficient for normal glycolysis. All other mutants were moderately to strongly inhibited by glucose. Unusually high concentrations of glycolytic metabolites were observed before the reaction catalyzed by the enzyme which was absent in a given mutant strain when incubated on glucose. This confirmed at the cellular level the location of the defect as determined by enzyme assays. With adh (lacks all three alcohol dehydrogenase isozymes) and pgk mutants, accumulation of the typical levels of hexosephosphates was prevented when respiration was blocked with antimycin A. A typical feature of all glycolytic mutants described here was the rapid depletion of the intracellular adenosine 5′-triphosphate pool after transfer to glucose medium. No correlation of low or high levels of fructose-1,6-bisphosphate with the degree of catabolite repression and inactivation could be found. This observation does not support the concept that hexose metabolites are directly involved in these regulatory mechanisms in yeast.

Journal ArticleDOI
TL;DR: A mutant of Rhizobium meliloti selected as unable to grow on L-arabinose also failed to growing on acetate or pyruvate, and was found to lack alpha-ketoglutarate dehydrogenase activity, and revertants of normal growth phenotype contained the activity again.
Abstract: A mutant of Rhizobium meliloti selected as unable to grow on L-arabinose also failed to grow on acetate or pyruvate. It grew, but slower than the parental strain, on many other carbon sources. Assay showed it to lack alpha-ketoglutarate dehydrogenase (kgd) activity, and revertants of normal growth phenotype contained the activity again. Other enzymes of the tricarboxylic acid cycle and of the glyoxylate cycle were present in both mutant and parent strains. Enzymes of pyruvate metabolism were also assayed. L-Arabinose degradation in R. meliloti was found to differ from the known pathway in R. japonicum, since the former strain lacked 2-keto-o-deoxy-L-arabonate aldolase but contained alpha-ketoglutarate semialdehyde dehydrogenase; thus, it is likely that R. meliloti has the L-arabinose pathway leading to alpha-ketoglutarate rather than the one to glycolaldehyde and pyruvate. This finding accounts for the L-arabinose negativity of the mutant. Resting cells of the mutant were able to metabolize the three substrates which did not allow growth.

Journal ArticleDOI
TL;DR: It is concluded that the H( 2)-oxidizing system in H(2) uptake-positive bacteroids benefits the N(2)-fixing process by providing respiratory protection of the O(2-labile nitrogenase proteins and generating ATP to support maximal rates of C(2]H( 2) reduction by oxidation of the H (2) produced from the nitrogenase system.
Abstract: Rhizobium japonicum 122 DES bacteroids from soybean nodules possess an active H2-oxidizing system that recycles all of the H2 lost through nitrogenase-dependent H2 evolution The addition of 72 μM H2 to suspensions of bacteroids increased O2 uptake 300% and the rate of C2H2 reduction 300 to 500% The optimal partial pressure of O2 was increased, and the partial pressure of O2 range for C2H2 reduction was extended by adding H2 A supply of succinate to bacteroids resulted in effects similar to those obtained by adding H2 Both H2 and succinate provided respiratory protection for the N2-fixing system in bacteroids The oxidation of H2 by bacteroids increased the steady-state pool of ATP by 20 to 40% In the presence of 50 mM iodoacetate, which caused much greater inhibition of endogenous respiration than of H2 oxidation, the addition of H2 increased the steady-state pool of ATP in bacteroids by 500% Inhibitor evidence and an absolute requirement for O2 indicated that the H2-stimulated ATP synthesis occurred through oxidative phosphorylation In the presence of 50 mM iodoacetate, H2-dependent ATP synthesis occurred at a rate sufficient to support nitrogenase activity The addition of H2 to H2 uptake-negative strains of R japonicum had no effect on ATP formation or C2H2 reduction It is concluded that the H2-oxidizing system in H2 uptake-positive bacteroids benefits the N2-fixing process by providing respiratory protection of the O2-labile nitrogenase proteins and generating ATP to support maximal rates of C2H2 reduction by oxidation of the H2 produced from the nitrogenase system

Journal ArticleDOI
TL;DR: The results of growth experiments and transport studies suggest that these malE mutants are impaired in their ability to transport maltodextrins across the outer membrane, which implies that the maltose binding protein (in wild-type strains) cooperates with the lambda receptor in permeation through the outer membranes.
Abstract: Wild-type Escherichia coli K-12 was found to grow equally well on maltose and on maltodextrins containing up to seven glucose residues. Three classes of mutants unable to grow on maltodextrins, but still able to grow on maltose, were investigated in detail. The first class, already known, was composed of phage lambda-resistant mutants, which lack the outer membrane protein coded by gene lamB. These mutants grow on maltose and maltotriose but not at all on maltotetraose and longer maltodextrins which cannot cross the outer membrane. A second class of mutants were affected in malE, the structural gene of the periplasmic maltose binding protein. The maltose binding proteins isolated from the new mutants were altered in their substrate binding properties, but not in a way that could account for the mutant phenotypes. Rather, the results of growth experiments and transport studies suggest that these malE mutants are impaired in their ability to transport maltodextrins across the outer membrane. This implies that the maltose binding protein (in wild-type strains) cooperates with the lambda receptor in permeation through the outer membrane. The last class of mutants described in this paper were affected in malG, or perhaps in an as yet undetected gene close to malG. They were defective in the transfer of maltodextrins from the periplasmic space to the cytoplasm but only slightly affected in the transport of maltose.

Journal ArticleDOI
TL;DR: Thirteen strains of a strict anaerobic, extreme thermophilic bacterium were isolated from soil samples of moderate temperature, from a sewage plant in Georgia, and from hot springs in Utah and Wyoming, and identified as strains of Clostridium thermohydrosulfuricum.
Abstract: Thirteen strains of a strict anaerobic, extreme thermophilic bacterium were isolated from soil samples of moderate temperature, from a sewage plant in Georgia, and from hot springs in Utah and Wyoming. They were identified as strains of Clostridium thermohydrosulfuricum. The guanosine + cytosine content (moles percent) was 37.6 (determined by buoyant density) and 34.1 (determined by melting temperature). All strains required a factor present in yeast extract or tryptone growth. Growth characteristics were as follows: a pH range of 5 to 9, with the optimum between 6.9 to 7.5, in a temperature range of 40 to 78 degrees C, with the optimum at 68 degrees C. The doubling time, when grown on glucose at temperature and pH optima, was 1.2 h. The main products of glucose fermentation were ethanol, lactate, acetate, CO2, and H2. The fermentation was inhibited by H2. Formation of spores occurred easily on glucose-agar medium or when cultures growing at temperatures above 65 degrees C were allowed to cool to temperature below 55 degrees C. C. thermohydrosulfuricum occurs widely distributed in the natural environment.

Journal ArticleDOI
TL;DR: Amber and ochre suppressor mutations in Salmonella typhimurium were selected and amino acid insertions directed by the suppressors were inferred from suppression patterns of Escherichia coli lacI amber mutations.
Abstract: Amber and ochre suppressor mutations in Salmonella typhimurium were selected. The amino acid insertions directed by the suppressors were inferred from suppression patterns of Escherichia coli lacI amber mutations. These amber mutations only respond to nonsense suppressors that direct the insertion of particular amino acids. Four Salmonella amber suppressors characterized insert serine, glutamine, tyrosine, and (probably) leucine. Of the three ochre suppressors characterized, two direct the insertion of tyrosine and one directs that of lysine. Of the three amber and two ochre suppressors which have been mapped by phage P22 cotransduction, all are located in the same relative position on the Salmonella map as the analogous E. coli suppressors are on the E. coli map.

Journal ArticleDOI
TL;DR: It is proposed the temperature-sensitive Schizosaccharomyces pombe mutant, cdc16-116, is unable to complete septum formation and proceed to cell separation and is also defective in a control which prevents the manufacture of more than one sePTum in each cell cycle.
Abstract: A temperature-sensitive Schizosaccharomyces pombe mutant, cdc16-116, has been isolated which undergoes uncontrolled septation during its cell division cycle. The mutant accumulates two types of cells after 3 h of growth at the restrictive temperature: (i) type I cells (85% of the population), which complete nuclear division and then form up to five septa between the divided nuclei; and (ii) type II cells (15% of the population), which form an asymmetrically situated septum in the absence of any nuclear division. cdc16-116 is a monogenic recessive mutation unlinked to any previously known cdc gene of S. pombe. It is not affected in a previously reported control by which septation is dependent upon completion of nuclear division. We propose the cdc16-116 is unable to complete septum formation and proceed to cell separation and is also defective in a control which prevents the manufacture of more than one septum in each cell cycle. Images

Journal ArticleDOI
TL;DR: Observations support the hypothesis that RAD6-dependent activities can be separated into two functionally distinct groups: a group of error-free repair activities that are responsible for a large amount of the radiation resistance of wild-type strains and also for their resistance to trimethoprim, and a group that account at best for only a very small amount ofWild-type recovery.
Abstract: Dominant mutations at two newly identified loci, designated SRS1 and SRS2, that metabolically suppress the trimethoprim sensitivity of rad6 and rad18 strains, have been isolated from trimethoprim-resistant mutants arising spontaneously in rad6-1 rad18-2 strains of the yeast Saccharomyces cerevisiae. The SRS2 mutations also efficiently suppress the ultraviolet light sensitivity of the parent strains. They do not, however, suppress their sensitivity to ionizing radiation or their deficiency with respect to induced mutagenesis and sporulation. Such observations support the hypothesis that RAD6-dependent activities can be separated into two functionally distinct groups: a group of error-free repair activities that are responsible for a large amount of the radiation resistance of wild-type strains and also for their resistance to trimethoprim, and a group of error-prone activities that are responsible for induced mutagenesis and are also important in sporulation, but which account at best for only a very small amount of wild-type recovery.

Journal ArticleDOI
TL;DR: A variety of derivatives, analogs, and potential biosynthetic precursors of coenzyme M were tested; only a restricted range of thioether, thioester, and thiocarbonate derivatives of the cofactor were found to replace the HS--CoM requirement.
Abstract: The specificity of the growth requirement of Methanobacterium ruminantium strain M1 for a new coenzyme, 2-mercaptoethanesulfonic acid (HS--CoM), was examined. A variety of derivatives, analogs, and potential biosynthetic precursors of coenzyme M were tested; only a restricted range of thioether, thioester, and thiocarbonate derivatives of the cofactor were found to replace the HS--CoM requirement. Bromoethanesulfonic acid (BrCH2CH2SO3-), a halogenated analog of HS--CoM, potently inhibited the growth response. No coenzyme was detectable in a wide range of nonmethanogenic eucaryotic tissues and procaryotic organisms. However, all methanogens available in pure culture exhibited high levels of coenzyme M which ranged from 0.3 to 16 nmol/mg of dry weight.