scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Bacteriology in 1995"


Journal ArticleDOI
TL;DR: The tight regulation of the PBAD promoter is exploited to study the phenotypes of null mutations of essential genes and the use of pBAD vectors as an expression system is explored.
Abstract: We have constructed a series of plasmid vectors (pBAD vectors) containing the PBAD promoter of the araBAD (arabinose) operon and the gene encoding the positive and negative regulator of this promoter, araC. Using the phoA gene and phoA fusions to monitor expression in these vectors, we show that the ratio of induction/repression can be 1,200-fold, compared with 50-fold for PTAC-based vectors. phoA expression can be modulated over a wide range of inducer (arabinose) concentrations and reduced to extremely low levels by the presence of glucose, which represses expression. Also, the kinetics of induction and repression are very rapid and significantly affected by the ara allele in the host strain. Thus, the use of this system which can be efficiently and rapidly turned on and off allows the study of important aspects of bacterial physiology in a very simple manner and without changes of temperature. We have exploited the tight regulation of the PBAD promoter to study the phenotypes of null mutations of essential genes and explored the use of pBAD vectors as an expression system.

4,997 citations


Journal ArticleDOI
TL;DR: Both types of vesicles contained DNA, with a significantly higher content in g-MVs, and could play an important role in genetic transformation and disease by serving as a transport vehicle for DNA and virulence factors and are presumably involved in septic shock.
Abstract: Pseudomonas aeruginosa blebs-off membrane vesicles (MVs) into culture medium during normal growth. Release of these vesicles increased approximately threefold after exposure of the organism to four times the MIC of gentamicin. Natural and gentamicin-induced membrane vesicles (n-MVs and g-MVs and g-MVs, respectively) were isolated by filtration and differential centrifugation, and several of their biological activities were characterized. Electron microscopy of both n-MVs and g-MVs revealed that they were spherical bilayer MVs with a diameter of 50 to 150 nm. Immunoelectron microscopy and Western blot (immunoblot) analysis of the vesicles demonstrated the presence of B-band lipopolysaccharide (LPS), with a slightly higher proportion of B-band LPS in g-MVs than in n-MVs. A-band LPS was occasionally detected in g-MVs but not in n-MVs. In addition to LPS, several enzymes, such as phospholipase C, protease, hemolysin, and alkaline phosphatase, which are known to contribute to the pathogenicity of Pseudomonas infections were found to be present in both vesicle types. Both types of vesicles contained DNA, with a significantly higher content in g-MVs. These vesicles could thus play an important role in genetic transformation and disease by serving as a transport vehicle for DNA and virulence factors and are presumably involved in septic shock.

623 citations


Journal ArticleDOI
TL;DR: Several members of the family Enterobacteriaceae were examined for differences in extreme acid survival strategies and a surprising degree of variety was found between three related genera.
Abstract: Several members of the family Enterobacteriaceae were examined for differences in extreme acid survival strategies. A surprising degree of variety was found between three related genera. The minimum growth pH of Salmonella typhimurium was shown to be significantly lower (pH 4.0) than that of either Escherichia coli (pH 4.4) or Shigella flexneri (pH 4.8), yet E. coli and S. flexneri both survive exposure to lower pH levels (2 to 2.5) than S. typhimurium (pH 3.0) in complex medium. S. typhimurium and E. coli but not S. flexneri expressed low-pH-inducible log-phase and stationary-phase acid tolerance response (ATR) systems that function in minimal or complex medium to protect cells to pH 3.0. All of the organisms also expressed a pH-independent general stress resistance system that contributed to acid survival during stationary phase. E. coli and S. flexneri possessed several acid survival systems (termed acid resistance [AR]) that were not demonstrable in S. typhimurium. These additional AR systems protected cells to pH 2.5 and below but required supplementation of minimal medium for either induction or function. One acid-inducible AR system required oxidative growth in complex medium for expression but successfully protected cells to pH 2.5 in unsupplemented minimal medium, while two other AR systems important for fermentatively grown cells required the addition of either glutamate or arginine during pH 2.5 acid challenge. The arginine AR system was only observed in E. coli and required stationary-phase induction in acidified complex medium. The product of the adi locus, arginine decarboxylase, was responsible for arginine-based acid survival.

577 citations


Journal ArticleDOI
TL;DR: It would be surprising if some of the variety of poly P functions observed in microorganisms did not apply to aspects of human growth and development, such as aging and the aberrations of disease.
Abstract: Pursuit of the enzymes that make and degrade poly P has provided analytic reagents which confirm the ubiquity of poly P in microbes and animals and provide reliable means for measuring very low concentrations. Many distinctive functions appear likely for poly P, depending on its abundance, chain length, biologic source, and subcellular location. These include being an energy supply and ATP substitute, a reservoir for Pi, a chelator of metals, a buffer against alkali, a channel for DNA entry, a cell capsule and, of major interest, a regulator of responses to stresses and adjustments for survival in the stationary phase of culture growth and development. Whether microbe or human, we depend on adaptations in the stationary phase, which is really a dynamic phase of life. Much attention has been focused on the early and reproductive phases of organisms, which are rather brief intervals of rapid growth, but more concern needs to be given to the extensive period of maturity. Survival of microbial species depends on being able to manage in the stationary phase. In view of the universality and complexity of basic biochemical mechanisms, it would be surprising if some of the variety of poly P functions observed in microorganisms did not apply to aspects of human growth and development, such as aging and the aberrations of disease. Of theoretical interest regarding poly P is its antiquity in prebiotic evolution, which along with its high energy and phosphate content make it a plausible precursor to RNA, DNA, and proteins. Practical interest in poly P includes many industrial applications, among which is its use in the microbial depollution of P1 in marine environments.

531 citations


Journal ArticleDOI
TL;DR: Mutants of Pseudomonas aeruginosa PAO1 that were deficient in the ability to produce proteases that degrade casein were detected among the survivors of chemical mutagenesis, and RhlR-RhlI represent the second autoinducer-responsive regulatory mechanism found in P. aerug inosa that controls expression of multiple virulence factor exoproducts, including elastase.
Abstract: Mutants of Pseudomonas aeruginosa PAO1 that were deficient in the ability to produce proteases that degrade casein were detected among the survivors of chemical mutagenesis. One such mutant (PDO31) showed reduced production of elastolytic activity, beta-hemolytic activity, and pyocyanin. A 4.3-kb EcoRI fragment from a gene bank of PAO1 that complemented defects in PDO31 was found. Transposon mutagenesis and deletion derivatives of the clone were used in conjunction with complementation tests to determine the physical location of the gene of interest. Nucleotide sequence analysis revealed an open reading frame (rhlR) encoding a putative 27.6-kDa protein (RhlR) with homology to autoinducer-responsive regulators of quorum sensing systems such as LuxR of Vibrio fischeri and LasR of P. aeruginosa. Further sequence analysis downstream of rhlR revealed an independently transcribed gene (rhlI) that encodes a putative 22.2-kDa protein with homology to members of the family of autoinducer synthetases, such as LuxI of V. fischeri and LasI of P. aeruginosa. The rhlRI sequences were also recently reported by others (U.A. Ochsner and J. Reiser, Proc. Natl. Acad. Sci. USA 92: 6424-6428, 1995) as an autoinducer-mediated regulation mechanism for rhamnolipid biosurfactant synthesis in P. aeruginosa PG201. Mutants with defects in rhlR or rhlI were constructed in PAO1 by gene replacement, using clones modified by Tn501 insertion. Compared with the wild type, the rhlR and rhlI mutants both showed defects in the production of elastase, LasA protease, rhamnolipid, and pyocyanin. Transcription from the gene for elastase, as measured with a lasB-cat fusion, demonstrated that production of elastase was subject to cell density-dependent gene activation in PAO1. However, transcription of lasB-cat in the rhlI mutant, which had lost the presumptive autoinducer synthetase (predicted to activate RhlR), showed low basal activity and had lost all cell density-dependent transcription of lasB. Thus, RhlR-RhlI represent the second autoinducer-responsive regulatory mechanism found in P. aeruginosa that controls expression of multiple virulence factor exoproducts, including elastase.

492 citations


Journal ArticleDOI
TL;DR: The astaxanthin biosynthetic pathway is proposed for the first time at the level of the biosynthesis genes because of the low substrate specificity of the crt genes.
Abstract: A carotenoid biosynthesis gene cluster for the production of astaxanthin was isolated from the marine bacterium Agrobacterium aurantiacum. This cluster contained five carotenogenic genes with the same orientation, which were designated crtW, crtZ, crtY, crtI, and crtB. The stop codons of individual crt genes except for crtB overlapped the start codons of the following crt genes. Escherichia coli transformants carrying the Erwinia uredovora carotenoid biosynthesis genes provide suitable substrates for carotenoid biosynthesis. The functions of the five crt genes of A. aurantiacum were determined through chromatographic and spectroscopic analyses of the pigments accumulated in some E. coli transformants carrying various combinations of the E. uredovora and A. aurantiacum carotenogenic genes. As a result, the astaxanthin biosynthetic pathway is proposed for the first time at the level of the biosynthesis genes. The crtW and crtZ gene products, which mediated the oxygenation reactions from beta-carotene to astaxanthin, were found to have low substrate specificity. This allowed the production of many presumed intermediates of astaxanthin, i.e., adonixanthin, phoenicoxanthin (adonirubin), canthaxanthin, 3'-hydroxyechinenone, and 3-hydroxyechinenone.

450 citations


Journal ArticleDOI
TL;DR: It is proposed that a transient iron overload occurs in wild-type cells on return to normal growth conditions following iron starvation, with the coupling between iron and MnSOD regulation helping the cells cope.
Abstract: The Escherichia coli Fur protein, with its iron(II) cofactor, represses iron assimilation and manganese superoxide dismutase (MnSOD) genes, thus coupling iron metabolism to protection against oxygen toxicity. Iron assimilation is triggered by iron starvation in wild-type cells and is constitutive in fur mutants. We show that iron metabolism deregulation in fur mutants produces an iron overload, leading to oxidative stress and DNA damage including lethal and mutagenic lesions. fur recA mutants were not viable under aerobic conditions and died after a shift from anaerobiosis to aerobiosis. Reduction of the intracellular iron concentration by an iron chelator (ferrozine), by inhibition of ferric iron transport (tonB mutants), or by overexpression of the iron storage ferritin H-like (FTN) protein eliminated oxygen sensitivity. Hydroxyl radical scavengers dimethyl sulfoxide and thiourea also provided protection. Functional recombinational repair was necessary for protection, but SOS induction was not involved. Oxygen-dependent spontaneous mutagenesis was significantly increased in fur mutants. Similarly, SOD deficiency rendered sodA sodB recA mutants nonviable under aerobic conditions. Lethality was suppressed by tonB mutations but not by iron chelation or overexpression of FTN. Thus, superoxide-mediated iron reduction was responsible for oxygen sensitivity. Furthermore, overexpression of SOD partially protected fur recA mutants. We propose that a transient iron overload, which could potentially generate oxidative stress, occurs in wild-type cells on return to normal growth conditions following iron starvation, with the coupling between iron and MnSOD regulation helping the cells cope.

448 citations


Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the macromolécules Végétales of Grenoble cedex 9, which shows clear patterns in the response of the immune system to E.coli.
Abstract: INDER M. SAXENA, R. MALCOLM BROWN, JR., MICHEL FEVRE, ROBERTO A. GEREMIA, AND BERNARD HENRISSAT* Department of Botany, University of Texas, Austin, Texas 78713-7640; Laboratoire de Biologie Cellulaire Fongique, Centre de Génétique Moléculaire et Cellulaire, Université Claude Bernard, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne cedex, France; and Centre de Recherches sur les Macromolécules Végétales, CNRS, BP 53, 38041 Grenoble cedex 9, France

436 citations


Journal ArticleDOI
TL;DR: This work has shown that in the absence of the retentive outer membrane, components carrying out functions within the gram-positive cell envelope must somehow be tethered in order to prevent their loss into the growth environment.
Abstract: Our view of the complexity of the Gram-positive bacterial cell envelope has altered considerably in recent years, with the recognition of the presence of a variety of proteins retained by different mechanisms. Lipoproteins, i.e., proteins containing lipid covalently linked to an N-terminal cysteine residue, have been extensively studied in gram-negative bacteria (7), but examples from gram-positive species have only quite recently been recognized (Table 1). Despite its thickness, the peptidoglycan layer of gram-positive bacteria remains a relatively porous structure. Thus, in the absence of the retentive outer membrane, components carrying out functions within the gram-positive cell envelope must somehow be tethered in order to prevent their loss into the growth environment. The lipidated N terminus is presumed to anchor lipoproteins into the outer leaflet of the cell membrane, and lipoproteins can be compared topographically to the other major class of macroamphiphiles present in the gram-positive cell envelope, the lipoteichoic acids and lipoglycans (65). Several approaches can be used to identify lipoproteins: (i) metabolic labelling with radiolabelled fatty acid, usually palmitic acid; (ii) interference with protein processing by the antibiotic globomycin, which inhibits lipoprotein processing by signal peptidase II; and (iii) presence of a conserved consensus sequence within prelipoprotein signal peptides, which is thought to direct processing of the prelipoprotein to form the mature acylated protein (6, 7, 71). The last has become the standard method for recognition of putative lipoproteins, but it must be stressed that relatively few lipoprotein structures have yet been the subjects of rigorous chemical analysis.

431 citations


Journal ArticleDOI
TL;DR: In this paper, the relative abundance of each individual tRNA isoacceptor in Escherichia coli can be altered by varying its cognate codon concentration, which results in a loss of ribosomes and protein synthetic capacity.
Abstract: We attempted to test the idea that the relative abundance of each individual tRNA isoacceptor in Escherichia coli can be altered by varying its cognate codon concentration. In order to change the overall codon composition of the messenger pool, we have expressed in E. coli lacZ with the aid of T7 RNA polymerase so that their respective gene products individually accounted for 30% of the total bacterial protein. Unexpectedly, the maximum expression of either test gene has no specific effect on the relative rates of synthesis of the tRNA species that we studied. Instead, we find that there is a cumulative breakdown of rRNAs, which results in a loss of ribosomes and protein synthetic capacity. After either of the test genes is maximally induced, there is a growing fraction of protein synthesis invested in beta-galactosidase or delta tufB that is matched by a comparable decrease of the fraction of normal protein synthesis. We have also observed enhanced accumulation of two heat shock proteins during overexpression. Finally, after several hours of overexpression of either test protein, the bacteria are no longer viable. These results are relevant to the practical problems of obtaining high expression levels for cloned proteins.

421 citations


Journal ArticleDOI
TL;DR: It has been shown that the level of sacB expression strongly depends on the growth conditions; its expression level is about eightfold higher in cells grown on agar plates than in cells growing in liquid medium.
Abstract: Growth under conditions of salt stress has important effects on the synthesis of degradative enzymes in Bacillus subtilis. Salt stress strongly stimulates the expression of sacB, encoding levansucrase (about ninefold), and downregulates the expression of aprE, encoding alkaline protease (about sixfold). It is suggested that the DegS-DegU two-component system is involved in sensing salt stress. Moreover, it has been shown that the level of sacB expression strongly depends on the growth conditions; its expression level is about eightfold higher in cells grown on agar plates than in cells grown in liquid medium.

Journal ArticleDOI
TL;DR: The analyses document the presence of eight novel NifH types, which appear to be a variety of significant components of the diazotrophic community, dominated mainly by proteobacteria.
Abstract: To demonstrate the extent of phylogenetic diversity of diazotrophic bacteria associated with rice roots, we characterized phylogenetically 23 nifH gene sequences obtained by PCR amplification of mixed organism DNA extracted directly from rice roots without culturing the organisms. The analyses document the presence of eight novel NifH types, which appear to be a variety of significant components of the diazotrophic community, dominated mainly by proteobacteria.

Journal ArticleDOI
TL;DR: The chromosomally encoded arsenical resistance (ars) operon subcloned into a multicopy plasmid was found to confer a moderate level of resistance to arsenite and antimonite in Escherichia coli as mentioned in this paper.
Abstract: The chromosomally encoded arsenical resistance (ars) operon subcloned into a multicopy plasmid was found to confer a moderate level of resistance to arsenite and antimonite in Escherichia coli. When the operon was deleted from the chromosome, the cells exhibited hypersensitivity to arsenite, antimonite, and arsenate. Expression of the ars genes was inducible by arsenite. By Southern hybridization, the operon was found in all strains of E. coli examined but not in Salmonella typhimurium, Pseudomonas aeruginosa, or Bacillus subtilis.

Journal ArticleDOI
TL;DR: A system for generating chromosomal insertions in lactococci based on the conditional replication of lactococcal pWV01-derived Ori+ RepA- vector pORI19, containing lacZ alpha and the multiple cloning site of pUC19 is described.
Abstract: A system for generating chromosomal insertions in lactococci is described. It is based on the conditional replication of lactococcal pWV01-derived Ori+ RepA- vector pORI19, containing lacZ alpha and the multiple cloning site of pUC19. Chromosomal AluI fragments of Lactococcus lactis were cloned in pORI19 in RepA+ helper strain Escherichia coli EC101. The frequency of Campbell-type recombinants, following introduction of this plasmid bank into L. lactis (RepA-), was increased by combining the system with temperature-sensitive pWV01 derivative pVE6007. Transformation of L. lactis MG1363 (pVE6007) with the pORI19 bank of lactococcal chromosomal fragments at the permissive temperature allowed replication of several copies of a recombinant plasmid from the bank within a cell because of the provision in trans of RepA-Ts from pVE6007. A temperature shift to 37 degrees C resulted in loss of pVE6007 and integration of the pORI19 derivatives at high frequencies. A bank of lactococcal mutants was made in this way and successfully screened for the presence of two mutations: one in the monocistronic 1.3-kb peptidoglycan hydrolase gene (acmA) and one in the hitherto uncharacterized maltose fermentation pathway. Reintroduction of pVE6007 into the Mal- mutant at 30 degrees C resulted in excision of the integrated plasmid and restoration of the ability of ferment maltose. The integration plasmid (pMAL) was rescued by using the isolated plasmid content of a restored Mal+ colony to transform E. coli EC101. Nucleotide sequencing of the 564-bp chromosomal fragment in pMAL revealed an internal part of an open reading frame of which the translated product showed significant homology with ATP-binding proteins MalK of E. coli, Salmonella typhimurium, and Enterobacter aerogenes and MsmK of Streptococcus mutans. This combined use of two types of conditional replicating pWV01-derived vectors represents a novel, powerful tool for chromosomal gene inactivation, targeting, cloning, and sequencing of the labelled gene.

Journal ArticleDOI
TL;DR: The deduced amino acid sequences of the EutE and EutG proteins revealed a significant degree of homology with the Escherichia coli alcohol dehydrogenase AdhE sequence, indicating that ethanolamine may be an important source of nitrogen and carbon for S. typhimurium in vivo.
Abstract: A fragment of the Salmonella typhimurium ethanolamine utilization operon was cloned and characterized. The 6.3-kb nucleotide sequence encoded six complete open reading frames, termed cchA, cchB, eutE, eutJ, eutG, and eutH. In addition, the nucleotide sequences of two incomplete open reading frames, termed eutX and eutI, were also determined. Comparison of the deduced amino acid sequences and entries in the GenBank database indicated that eutI encodes a phosphate acetyltransferase-like enzyme. The deduced amino acid sequences of the EutE and EutG proteins revealed a significant degree of homology with the Escherichia coli alcohol dehydrogenase AdhE sequence. Mutations in eutE or eutG completely abolished the ability of mutants to utilize ethanolamine as a carbon source and reduced the ability to utilize ethanolamine as a nitrogen source. The product of eutE is most probably an acetaldehyde dehydrogenase catalyzing the conversion of acetaldehyde into acetyl coenzyme A. The product of the eutG gene, an uncommon iron-containing alcohol dehydrogenase, may protect the cell from unconverted acetaldehyde by converting it into an alcohol. The deduced amino acid sequence of cchA resembles that of carboxysome shell proteins from Thiobacillus neapolitanus and Synechococcus sp. as well as that of the PduA product from S. typhimurium. CchA and CchB proteins may be involved in the formation of an intracellular microcompartment responsible for the metabolism of ethanolamine. The hydrophobic protein encoded by the eutH gene possesses some characteristics of bacterial permeases and might therefore be involved in the transport of ethanolamine. Ethanolamine-utilization mutants were slightly attenuated in a mouse model of S. typhimurium infection, indicating that ethanolamine may be an important source of nitrogen and carbon for S. typhimurium in vivo.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the effect of LasR and PAI on the transcriptional start points of lasI in Escherichia coli and Pseudomonas aeruginosa.
Abstract: In Pseudomonas aeruginosa, the transcriptional activator LasR and the Pseudomonas autoinducer PAI, are necessary for efficient transcriptional activation of the lasB gene, encoding elastase (L. Passador, J. M. Cook, M.J. Gambello, L. Rust, and B. H. Iglewski, Science 260:1127-1130, 1993). The transcriptional start points of lasI in Escherichia coli and P. aeruginosa were determined by S1 nuclease mapping. In the presence of both LasR and PAI, the start site, T1, is located at position -25 relative to the ATG translational start codon. A minor transcriptional start, T2, is found at position -13 when lasI is transcribed in the absence of either LasR or PAI in P. aeruginosa and E. coli, respectively. To begin to closely examine the regulation of lasI, whose product is involved in the synthesis of PAI, a lasI-lacZ fusion on a lambda phage was constructed to form monolysogens of E. coli MG4. Lysogens supplied only with either lasI or lasR via multicopy plasmids demonstrated no significant increase in beta-galactosidase expression compared with control levels. Lysogens in which both lasR and lasI were supplied in multicopy exhibited a 62-fold increase in expression, and a lysogen in which lasR was supplied in trans and which was grown in the presence of exogenous PAI exhibited a 60-fold increase. Thus, LasR and PAI are necessary for the full expression of lasI in E. coli. The interchangeability of the P. aeruginosa and Vibrio fischeri homologs LasR and LuxR and their respective autoinducers, PAI and VAI, as activators of lasI-lacZ was examined. Only the combination of LasR and PAI significantly increased the expression of lasI. The comparison of lasI-lacZ and lasB-lacZ expression lysogens grown in the presence of lasR and PAI revealed that half-maximal expression of lasI required 0.1 nM PAI, in contrast to the 1.0 nM PAI necessary for lasB half-maximal expression. These results suggest an autoinduction regulatory hierarchy in which LasR and low PAI concentrations primarily activate lasI expression in a regulatory loop. With the accumulation of PAI, secondary activation of virulence product genes such as lasB occurs.

Journal ArticleDOI
TL;DR: Nucleotide sequence analysis of the genes encoding two proteins secreted in Salmonella typhimurium indicated that they are homologous to the Shigella sp.
Abstract: Entry into host cells is an essential feature in the pathogenicity of Salmonella spp. The inv locus of Salmonella typhimurium encodes several proteins which are components of a type III protein secretion system required for these organisms to gain access to host cells. We report here the identification of several proteins whose secretion into the culture supernatant of S. typhimurium is dependent on the function of the inv-encoded translocation apparatus. Nucleotide sequence analysis of the genes encoding two of these secreted proteins, SipB and SipC, indicated that they are homologous to the Shigella sp. invasins IpaB and IpaC, respectively. An additional gene was identified, sicA, which encodes a protein homologous to IpgC, a Shigella protein that serves as a molecular chaperone for the invasins IpaB and IpaC. Nonpolar mutations in sicA, sipB, and sipC rendered S. typhimurium unable to enter cultured epithelial cells, indicating that these genes are required for bacterial internalization.

Journal ArticleDOI
TL;DR: The aim of this minireview is to analyze the various mechanisms by which B. thuringiensis accumulates large quantities of toxins as bio- logically active protein crystals.
Abstract: Members of the genus Bacillus are widely used as sources of industrial enzymes, fine biochemicals, antibiotics, and insecticides (for a review, see reference 27). One of these species, Bacillus thuringiensis, accounts for more than 90% of the biopesticides used today (for recent reviews on B. thuringiensis and its toxins, see references 6, 33, and 38). The entomopathogenic properties of this bacterium are due at least in part to the production of d-endotoxins that make up the crystalline inclusions characteristic of B. thuringiensis strains. In 1989, Hofte and Whiteley proposed a classification for d-endotoxins (30). They distinguished four major classes of d-endotoxins (CryI, -II, -III and -IV) and cytolysins (Cyt), found in the crystals of the mosquitocidal strains, on the basis of their insecticidal and molecular properties. The d-endotoxins belonging to each of these classes were grouped in subclasses (A, B, C. . . and a, b, c. . .) according to sequence. Generally, these proteins are toxic for lepidoptera (CryI), both lepidoptera and diptera (CryII), coleoptera (CryIII), and diptera (CryIV). These various insecticidal proteins are synthesized during the stationary phase and accumulate in the mother cell as a crystal inclusion which can account for up to 25% of the dry weight of the sporulated cells (Fig. 1). The amount of crystal protein produced by a B. thuringiensis culture in laboratory conditions (about 0.5 mg of protein per ml) and the size of the crystals (24) indicate that each cell has to synthesize 10 to 2 3 10 d-endotoxin molecules during the stationary phase to form a crystal. This is a massive production of protein and presumably occupies a large proportion of the cell machinery. Nevertheless, sporulation and the associated physiological changes proceed in parallel with d-endotoxin production. The aim of this minireview is to analyze the various mechanisms by which B. thuringiensis accumulates large quantities of toxins as biologically active protein crystals.

Journal ArticleDOI
TL;DR: Escherichia coli strains were grown in batch cultures in different media, and cell size and DNA content were analyzed by flow cytometry, and stationary-phase populations exclusively composed of cells with a single chromosome were never observed.
Abstract: Escherichia coli strains were grown in batch cultures in different media, and cell size and DNA content were analyzed by flow cytometry. Steady-state growth required large dilutions and incubation for many generations at low cell concentrations. In rich media, both cell size and DNA content started to decrease at low cell concentrations, long before the cultures left the exponential growth phase. Stationary-phase cultures contained cells with several chromosomes, even after many days, and stationary-phase populations exclusively composed of cells with a single chromosome were never observed, regardless of growth medium. The cells usually contained only one nucleoid, as visualized by phase and fluorescence microscopy. The results have implications for the use of batch cultures to study steady-state and balanced growth and to determine mutation and recombination frequencies in stationary phase.

Journal ArticleDOI
TL;DR: It is shown here that Erwinia stewartii, the etiological agent of Stewart's wilt of sweet corn, synthesizes an acyl-HSL, and sequence analysis indicates that EsaI and EsaR are homologs of LuxI and LuxR, respectively, which can repress its own expression but seems not to regulate the expression of esaI.
Abstract: N-Acylhomoserine lactone (acyl-HSL)-mediated gene expression, also called autoinduction, is conserved among diverse gram-negative bacteria. In the paradigm Vibrio fischeri system, bioluminescence is autoinducible, and the lux operon requires the transcriptional activator LuxR and the acyl-HSL autoinducer for expression. The production of the acyl-HSL signal molecule is conferred by the luxI gene, and luxR encodes the transcriptional regulator. We show here that Erwinia stewartii, the etiological agent of Stewart's wilt of sweet corn, synthesizes an acyl-HSL. Mass spectral analysis identified the signal molecule as N-(-3-oxohexanoyl)-L-homoserine lactone, which is identical to the V. fischeri autoinducer. We have cloned and sequenced the gene that confers acyl-HSL biosynthesis, called esaI, and the linked gene, esaR, that encodes a gene regulator. The two genes are convergently transcribed and show an unusual overlap of 31 bp at their 3' ends. Sequence analysis indicates that EsaI and EsaR are homologs of LuxI and LuxR, respectively. EsaR can repress its own expression but seems not to regulate the expression of esaI. The untranslated 5' region of esaR contains an inverted repeat with similarity to the lux box-like elements located in the promoter regions of other gene systems regulated by autoinduction. However, unlike the other systems, in which the inverted repeats are located upstream of the -35 promoter elements, the esaR-associated repeat overlaps a putative -10 element. We mutagenized the esaI gene in E. stewartii by gene replacement. The mutant no longer produced detectable levels of the acyl-HSL signal, leading to a concomitant loss of extracellular polysaccharide capsule production and pathogenicity. Both phenotypes were restored by complementation with esal or by exogenous addition of the acyl-HSL.

Journal ArticleDOI
TL;DR: Pseudomonas putida DOT-T1 was isolated after enrichment on minimal medium and used the toluene-4-monooxygenase pathway to catabolyze toluenes, and the catabolic potential was expanded to include m- and p-xylene and related hydrocarbons by transfer of the TOL plasmid pWW0-Km.
Abstract: Pseudomonas putida DOT-T1 was isolated after enrichment on minimal medium with 1% (vol/vol) toluene as the sole C source. The strain was able to grow in the presence of 90% (vol/vol) toluene and was tolerant to organic solvents whose log P(ow) (octanol/water partition coefficient) was higher than 2.3. Solvent tolerance was inducible, as bacteria grown in the absence of toluene required an adaptation period before growth restarted. Mg2+ ions in the culture medium improved solvent tolerance. Electron micrographs showed that cells growing on high concentrations of toluene exhibited a wider periplasmic space than cells growing in the absence of toluene and preserved the outer membrane integrity. Polarographic studies and the accumulation of pathway intermediates showed that the strain used the toluene-4-monooxygenase pathway to catabolyze toluene. Although the strain also thrived in high concentrations of m- and p-xylene, these hydrocarbons could not be used as the sole C source for growth. The catabolic potential of the isolate was expanded to include m- and p-xylene and related hydrocarbons by transfer of the TOL plasmid pWW0-Km.

Journal ArticleDOI
TL;DR: In an attempt to define the in vivo role of msrA, a chromosomal disruption was constructed, suggesting that oxidation of methionine in proteins plays an important role in oxidative damage.
Abstract: The Escherichia coli peptide methionine sulfoxide reductase gene (msrA) encodes a single-subunit polypeptide of 212 amino acid residues (M. A. Rahman, H. Nelson, H. Weissbach, and N. Brot, J. Biol. Chem. 267:15549-15551, 1992). RNA blot analysis showed that the gene is transcribed into an mRNA of about 850 nucleotides. The promoter region was characterized, and the transcription initiation site was identified by primer extension. The synthesis of the MsrA protein increased about threefold in a growth-phase-dependent fashion. In an attempt to define the in vivo role of msrA, a chromosomal disruption was constructed. This mutant was more sensitive to oxidative stress, suggesting that oxidation of methionine in proteins plays an important role in oxidative damage.

Journal ArticleDOI
TL;DR: The morphology and physiological properties of the two species characterize Picrophilus as a novel genus that is a member of a novel family within the order Thermoplasmales.
Abstract: Two species belonging to a novel genus of archaea, designated Picrophilus oshimae and Picrophilus torridus, have been isolated from two different solfataric locations in northern Japan. One habitat harboring both organisms was a dry, extremely acidic soil (pH < 0.5) that was heated by solfataric gases to about 55 degrees C. In the laboratory both species grew heterotrophically on yeast extract and poorly on tryptone under aerobic conditions at temperatures between 45 and 65 degrees C; they grew optimally at 60 degrees C. The pH optimum was 0.7, but growth occurred even around pH 0. Under optimal conditions, the generation time was about 6 h, yielding densities of up to 10(10) cells per ml. The cells were surrounded by a highly filigreed regular tetragonal S-layer, and the core lipids of the membrane were mainly bis-phytanyltetraethers. The 16S rRNA sequences of the two species were about 3% different. The complete 16S rRNA sequence of P. oshimae was 9.3% different from that of the closest relative, Thermoplasma acidophilum. The morphology and physiological properties of the two species characterize Picrophilus as a novel genus that is a member of a novel family within the order Thermoplasmales.

Journal ArticleDOI
TL;DR: The czc-encoded protein complex CzcABC was shown to be a zinc-proton antiporter that mediates resistance to Co2+, Zn2+, and Cd2+ in Alcaligenes eutrophus by cation efflux by using everted membrane vesicles of Escherichia coli and an acridine orange fluorescence quenching assay.
Abstract: The function of the CzcABC protein complex, which mediates resistance to Co2+, Zn2+, and Cd2+ in Alcaligenes eutrophus by cation efflux, was investigated by using everted membrane vesicles of Escherichia coli and an acridine orange fluorescence quenching assay. Since metal cation uptake could not be measured with inside-out membrane vesicles prepared from A. eutrophus and since available E. coli strains did not express the Czc-mediated resistance to cobalt, zinc, and cadmium salts, mutants of E. coli which exhibited a Czc-dependent increase in heavy metal resistance were isolated. E. coli mutant strain EC351 constitutively accumulated Co2+, Zn2+, and Cd2+. In the presence of Czc, net uptake of these heavy metal cations was reduced to the wild-type level. Inside-out vesicles prepared from E. coli EC351 cells displayed a Czc-dependent uptake of Co2+, Zn2+, and Cd2+ and a cation-triggered acridine orange fluorescence increase. The czc-encoded protein complex CzcABC was shown to be a zinc-proton antiporter.

Journal ArticleDOI
TL;DR: Levels of the RAD27 gene transcript are cell cycle regulated in a manner similar to those for several other genes whose products are known to be involved in DNA replication, and the possible role of Rad27 protein in DNA repair and replication is discussed.
Abstract: We have constructed a strain of Saccharomyces cerevisiae with a deletion of the YKL510 open reading frame, which was initially identified in chromosome XI as a homolog of the RAD2 nucleotide excision repair gene (A. Jacquier, P. Legrain, and B. Dujon, Yeast 8:121-132, 1992). The mutant strain exhibits increased sensitivity to UV light and to the alkylating agent methylmethane sulfonate but not to ionizing radiation. We have renamed the YKL510 open reading frame the RAD27 gene, in keeping with the accepted nomenclature for radiation-sensitive yeast mutants. Epistasis analysis indicates that the gene is in the RAD6 group of genes, which are involved in DNA damage tolerance. The mutant strain also exhibits increased plasmid loss, increased spontaneous mutagenesis, and a temperature-sensitive lethality whose phenotype suggests a defect in DNA replication. Levels of the RAD27 gene transcript are cell cycle regulated in a manner similar to those for several other genes whose products are known to be involved in DNA replication. We discuss the possible role of Rad27 protein in DNA repair and replication.

Journal ArticleDOI
TL;DR: It is concluded that the Escherichia coli open reading frame encodes the acetate-activating enzyme, Acs, which activated acetate across a wide range of concentrations in a coenzyme A-dependent manner.
Abstract: Acetyl coenzyme A synthetase (Acs) activates acetate to acetyl coenzyme A through an acetyladenylate intermediate; two other enzymes, acetate kinase (Ack) and phosphotransacetylase (Pta), activate acetate through an acetyl phosphate intermediate We subcloned acs, the Escherichia coli open reading frame purported to encode Acs (F R Blattner, V Burland, G Plunkett III, H J Sofia, and D L Daniels, Nucleic Acids Res 21:5408-5417, 1993) We constructed a mutant allele, delta acs::Km, with the central 072-kb BclI-BclI portion of acs deleted, and recombined it into the chromosome Whereas wild-type cells grew well on acetate across a wide range of concentrations (25 to 50 mM), those deleted for acs grew poorly on low concentrations ( or = 25 mM), and those deleted for acs, ackA, and pta did not grow on acetate at any concentration tested Expression of acs from a multicopy plasmid restored growth to cells deleted for all three genes Relative to wild-type cells, those deleted for acs did not activate acetate as well, those deleted for ackA and pta displayed even less activity, and those deleted for all three genes did not activate acetate at any concentration tested Induction of acs resulted in expression of a 72-kDa protein, as predicted by the reported sequence This protein immunoreacted with antiserum raised against purified Acs isolated from an unrelated species, Methanothrix soehngenii The purified E coli Acs then was used to raise anti-E coli Acs antiserum, which immunoreacted with a 72-kDa protein expressed by wild-type cells but not by those deleted for acs When purified in the presence, but not in the absence, of coenzyme A, the E coli enzyme activated acetate across a wide range of concentrations in a coenzyme A-dependent manner On the basis of these and other observations, we conclude that this open reading frame encodes the acetate-activating enzyme, Acs

Journal ArticleDOI
TL;DR: It is concluded that emrRAB genes constitute an operon and that EmrR serves as a negative regulator of this operon.
Abstract: The emrAB locus of Escherichia coli encodes a multidrug resistance pump that protects the cell from several chemically unrelated antimicrobial agents, e.g., the protonophores carbonyl cyanide m-chlorophenylhydrazone (CCCP) and tetrachlorosalicyl anilide and the antibiotics nalidixic acid and thiolactomycin. The mprA gene is located immediately upstream of this locus and was shown to be a repressor of microcin biosynthesis (I. del Castillo, J. M. Gomez, and F. Moreno, J. Bacteriol. 173:3924-3929, 1991). There is a putative transcriptional terminator sequence between the mprA and emrA genes. To locate the emr promoter, single-copy lacZ operon fusions containing different regions of the emr locus were made. Only fusions containing the mprA promoter region were expressed. mprA is thus the first gene of the operon, and we propose that it be renamed emrR. Overproduction of the EmrR protein (with a multicopy vector containing the cloned emrR gene) suppressed transcription of the emr locus. A mutation in the emrR gene led to overexpression of the EmrAB pump and increased resistance to antimicrobial agents. CCCP, nalidixic acid, and a number of other structurally unrelated chemicals induced expression of the emr genes, and the induction required EmrR. We conclude that emrRAB genes constitute an operon and that EmrR serves as a negative regulator of this operon. Some of the chemicals that induce the pump serve as its substrates, suggesting that their extrusion is the natural function of the pump.

Journal ArticleDOI
Sooan Shin1, Chankyu Park1
TL;DR: Shin et al. as discussed by the authors showed that the expression of the flagellar master operon flhDC is affected by mutations of the pta and ackA genes, encoding phosphotransacetylase and acetate kinase, respectively.
Abstract: During the search for unknown factors involved in motility, we have found that expression of the flagellar master operon flhDC is affected by mutations of the pta and ackA genes, encoding phosphotransacetylase and acetate kinase, respectively (S. Shin, J. Sheen, and C. Park, Korean J. Microbiol. 31:504-511, 1993). Here we describe results showing that this effect is modulated by externally added acetate, except when both pta and ackA are mutated, suggesting the role of acetyl phosphate, an intermediate of acetate metabolism, as a regulatory effector. Furthermore, the following evidence indicates that the phosphorylation of OmpR, a trans factor for osmoregulation, regulates flagellar expression. First, in a strain lacking ompR, the expression of flhDC is no longer responsive to a change in the level of acetyl phosphate. Second, an increase in medium osmolarity does not decrease flhDC expression in an ompR mutant. It is known that such an increase normally enhances OmpR phosphorylation. Third, OmpR protein binds to the DNA fragment containing the flhDC promoter, and its affinity is increased with phosphorylation by acetyl phosphate. DNase I footprinting revealed the regions of the flhDC promoter protected by OmpR in the presence or absence of phosphorylation. Therefore, we propose that the phosphorylated OmpR, generated by either osmolarity change or the internal level of acetyl phosphate, negatively regulates the expression of flagella.

Journal ArticleDOI
TL;DR: A gene of Lactococcus lactis subsp.
Abstract: A gene of Lactococcus lactis subsp. cremoris MG1363 encoding a peptidoglycan hydrolase was identified in a genomic library of the strain in pUC19 by screening Escherichia coli transformants for cell wall lysis activity on a medium containing autoclaved, lyophilized Micrococcus lysodeikticus cells. In cell extracts of L. lactis MG1363 and several halo-producing E. coli transformants, lytic bands of similar sizes were identified by denaturing sodium dodecyl sulfate (SDS)-polyacrylamide gels containing L. lactis or M. lysodeikticus cell walls. Of these clearing bands, corresponding to the presence of lytic enzymes with sizes of 46 and 41 kDa, the 41-kDa band was also present in the supernatant of an L. lactis culture. Deletion analysis of one of the recombinant plasmids showed that the information specifying lytic activity was contained within a 2,428-bp EcoRV-Sau3A fragment. Sequencing of part of this fragment revealed a gene (acmA) that could encode a polypeptide of 437 amino acid residues. The calculated molecular mass of AcmA (46,564 Da) corresponded to that of one of the lytic activities detected. Presumably, the enzyme is synthesized as a precursor protein which is processed by cleavage after the Ala at position 57, thus producing a mature protein with a size of 40,264 Da, which would correspond to the size of the enzyme whose lytic activity was present in culture supernatants of L. lactis. The N-terminal region of the mature protein showed 60% identity with the N-terminal region of the mature muramidase-2 of Enterococcus hirae and the autolysin of Streptococcus faecalis. Like the latter two enzymes, AcmA contains C-terminal repeated regions. In AcmA, these three repeats are separated by nonhomologous intervening sequences highly enriched in serine, threonine, and asparagine. Genes specifying identical activities were detected in various strains of L. lactis subsp. lactis and L. lactis subsp. cremoris by the SDS-polyacrylamide gel electrophoresis detection assay and PCR experiments. By replacement recombination, an acmA deletion mutant which grew as long chains was constructed, indicating that AcmA is required for cell separation.

Journal ArticleDOI
Linda Thöny-Meyer1, F Fischer1, Peter Künzler1, D Ritz1, Hauke Hennecke1 
TL;DR: Several genes of this cluster, here designated ccmABCDEFGH, that are homologous to two separate Bradyrhizobium japonicum gene clusters required for the biogenesis of c-type cytochromes are examined.
Abstract: The so-called aeg-46.5 region of Escherichia coli contains genes whose expression is induced under anaerobic growth conditions in the presence of nitrate or nitrite as the terminal electron acceptor. In this work, we have examined more closely several genes of this cluster, here designated ccmABCDEFGH, that are homologous to two separate Bradyrhizobium japonicum gene clusters required for the biogenesis of c-type cytochromes. A deletion mutant of E. coli which lacked all of these genes was constructed. Maturation of indigenous c-type cytochromes synthesized under anaerobic respiratory conditions, with nitrite, nitrate, or trimethylamine N-oxide as the electron acceptor, was found to be defective in the mutant. The biogenesis of foreign cytochromes, such as the soluble B. japonicum cytochrome c550 and the membrane-bound Bacillus subtilis cytochrome c550, was also investigated. None of these cytochromes was synthesized in its mature form when expressed in the mutant, as opposed to the situation in the wild type. The results suggest that the E. coli ccm gene cluster present in the aeg-46.5 region is required for a general pathway involved in cytochrome c maturation.