scispace - formally typeset
Search or ask a question
JournalISSN: 0219-7200

Journal of Bioinformatics and Computational Biology 

Imperial College Press
About: Journal of Bioinformatics and Computational Biology is an academic journal published by Imperial College Press. The journal publishes majorly in the area(s): Cluster analysis & Gene regulatory network. It has an ISSN identifier of 0219-7200. Over the lifetime, 1153 publications have been published receiving 19370 citations. The journal is also known as: Bioinformatics and computational biology.


Papers
More filters
Journal ArticleDOI
TL;DR: How to selecting a small subset out of the thousands of genes in microarray data is important for accurate classification of phenotypes.
Abstract: How to selecting a small subset out of the thousands of genes in microarray data is important for accurate classification of phenotypes. Widely used methods typically rank genes according to their ...

2,005 citations

Journal ArticleDOI
TL;DR: This work focuses on improving sequence-based predictions of long (>30 amino acid residues) regions lacking specific 3-D structure by means of four new neural-network-based Predictors Of Natural Disordered Regions (PONDRs): VL3, VL 3H, V l3P, and Vl3E.
Abstract: Protein existing as an ensemble of structures, called intrinsically disordered, has been shown to be responsible for a wide variety of biological functions and to be common in nature. Here we focus on improving sequence-based predictions of long (>30 amino acid residues) regions lacking specific 3-D structure by means of four new neural-network-based Predictors Of Natural Disordered Regions (PONDRs): VL3, VL3H, VL3P, and VL3E. PONDR VL3 used several features from a previously introduced PONDR VL2, but benefitted from optimized predictor models and a slightly larger (152 vs. 145) set of disordered proteins that were cleaned of mislabeling errors found in the smaller set. PONDR VL3H utilized homologues of the disordered proteins in the training stage, while PONDR VL3P used attributes derived from sequence profiles obtained by PSI-BLAST searches. The measure of accuracy was the average between accuracies on disordered and ordered protein regions. By this measure, the 30-fold cross-validation accuracies of VL3, VL3H, and VL3P were, respectively, 83.6 +/- 1.4%, 85.3 +/- 1.4%, and 85.2 +/- 1.5%. By combining VL3H and VL3P, the resulting PONDR VL3E achieved an accuracy of 86.7 +/- 1.4%. This is a significant improvement over our previous PONDRs VLXT (71.6 +/- 1.3%) and VL2 (80.9 +/- 1.4%). The new disorder predictors with the corresponding datasets are freely accessible through the web server at http://www.ist.temple.edu/disprot.

441 citations

Journal ArticleDOI
TL;DR: To overcome the limitations of hard clustering, this work applied soft clustering which offers several advantages for researchers, including more noise robust and a priori pre-filtering of genes can be avoided.
Abstract: Clustering is an important tool in microarray data analysis. This unsupervised learning technique is commonly used to reveal structures hidden in large gene expression data sets. The vast majority of clustering algorithms applied so far produce hard partitions of the data, i.e. each gene is assigned exactly to one cluster. Hard clustering is favourable if clusters are well separated. However, this is generally not the case for microarray time-course data, where gene clusters frequently overlap. Additionally, hard clustering algorithms are often highly sensitive to noise. To overcome the limitations of hard clustering, we applied soft clustering which offers several advantages for researchers. First, it generates accessible internal cluster structures, i.e. it indicates how well corresponding clusters represent genes. This can be used for the more targeted search for regulatory elements. Second, the overall relation between clusters, and thus a global clustering structure, can be defined. Additionally, soft clustering is more noise robust and a priori pre-filtering of genes can be avoided. This prevents the exclusion of biologically relevant genes from the data analysis. Soft clustering was implemented here using the fuzzy c-means algorithm. Procedures to find optimal clustering parameters were developed. A software package for soft clustering has been developed based on the open-source statistical language R. The package called Mfuzz is freely available.

375 citations

Journal ArticleDOI
TL;DR: Extending the single optimized spaced seed of PatternHunter to multiple ones, PatternHunter II simultaneously remedies the lack of sensitivity of Blastn and the Lack of speed of Smith-Waterman, for homology search.
Abstract: Extending the single optimized spaced seed of PatternHunter(20) to multiple ones, PatternHunter II simultaneously remedies the lack of sensitivity of Blastn and the lack of speed of Smith-Waterman, for homology search. At Blastn speed, PatternHunter II approaches Smith-Waterman sensitivity, bringing homology search methodology research back to a full circle.

301 citations

Journal ArticleDOI
TL;DR: Large scale benchmark test for fold recognition shows that RAPTOR significantly outperforms other programs at the fold similarity level, and also performs very well in recognizing the hard Homology Modeling (HM) targets.
Abstract: This paper presents a novel linear programming approach to do protein 3-dimensional (3D) structure prediction via threading. Based on the contact map graph of the protein 3D structure template, the protein threading problem is formulated as a large scale integer programming (IP) problem. The IP formulation is then relaxed to a linear programming (LP) problem, and then solved by the canonical branch-and-bound method. The final solution is globally optimal with respect to energy functions. In particular, our energy function includes pairwise interaction preferences and allowing variable gaps which are two key factors in making the protein threading problem NP-hard. A surprising result is that, most of the time, the relaxed linear programs generate integral solutions directly. Our algorithm has been implemented as a software package RAPTOR-RApid Protein Threading by Operation Research technique. Large scale benchmark test for fold recognition shows that RAPTOR significantly outperforms other programs at the fold similarity level. The CAFASP3 evaluation, a blind and public test by the protein structure prediction community, ranks RAPTOR as top 1, among individual prediction servers, in terms of the recognition capability and alignment accuracy for Fold Recognition (FR) family targets. RAPTOR also performs very well in recognizing the hard Homology Modeling (HM) targets. RAPTOR was implemented at the University of Waterloo and it can be accessed at http://www.cs.uwaterloo.ca/~j3xu/RAPTOR_form.htm.

273 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202323
202235
202135
202054
201958
201859