scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Biomechanical Engineering-transactions of The Asme in 2005"


Journal ArticleDOI
TL;DR: The methods developed and validated in this study will be useful for creating and analyzing patient-specific FE models to better understand the biomechanics of the pelvis.
Abstract: A better understanding of the three-dimensional mechanics of the pelvis, at the patientspecific level, may lead to improved treatment modalities. Although finite element (FE) models of the pelvis have been developed, validation by direct comparison with subjectspecific strains has not been performed, and previous models used simplifying assumptions regarding geometry and material properties. The objectives of this study were to develop and validate a realistic FE model of the pelvis using subject-specific estimates of bone geometry, location-dependent cortical thickness and trabecular bone elastic modulus, and to assess the sensitivity of FE strain predictions to assumptions regarding cortical bone thickness as well as bone and cartilage material properties. A FE model of a cadaveric pelvis was created using subject-specific computed tomography image data. Acetabular loading was applied to the same pelvis using a prosthetic femoral stem in a fashion that could be easily duplicated in the computational model. Cortical bone strains were monitored with rosette strain gauges in ten locations on the left hemipelvis. FE strain predictions were compared directly with experimental results for validation. Overall, baseline FE predictions were strongly correlated with experimental resultssr 2 5 0.824d, with a best-fit line that was not statistically different than the line y 5 x sexperimental strains5 FE predicted strainsd. Changes to cortical bone thickness and elastic modulus had the largest effect on cortical bone strains. The FE model was less sensitive to changes in all other parameters. The methods developed and validated in this study will be useful for creating and analyzing patient-specific FE models to better understand the biomechanics of the pelvis.fDOI: 10.1115/1.1894148g

350 citations


Journal ArticleDOI
TL;DR: A methodology that allows a set of stent parameters to be varied, with the aim of evaluating the difference in the mechanical environment within the wall before and after angioplasty with stenting, has the potential to provide a scientific basis for optimizing treatment procedures and stent geometries and materials.
Abstract: Clinical studies have identified factors such as the stent design and the deployment technique that are one cause for the success or failure of angioplasty treatments. In addition, the success rate may also depend on the stenosis type. Hence, for a particular stenotic artery, the optimal intervention can only be identified by studying the influence of factors such as stent type, strut thickness, geometry of the stent cell, and stent-artery radial mismatch with the wall. We propose a methodology that allows a set of stent parameters to be varied, with the aim of evaluating the difference in the mechanical environment within the wall before and after angioplasty with stenting. Novel scalar quantities attempt to characterize the wall changes in form of the contact pressure caused by the stent struts, and the stresses within the individual components of the wall caused by the stent. These quantities are derived numerically and serve as indicators, which allow the determination of the correct size and type of the stent for each individual stenosis. In addition, the luminal change due to angioplasty may be computed as well. The methodology is demonstrated by using a full three-dimensional geometrical model of a postmortem specimen of a human iliac artery with a stenosis using imaging data. To describe the material behavior of the artery, we considered mechanical data of eight different vascular tissues, winch formed the stenosis. The constitutive models for the tissue components capture the typical anisotropic, nonlinear and dissipative characteristics under supra-physiological loading conditions. Three-dimensional stent models were parametrized in such a way as to enable new designs to be generated simply with regard to variations in their geometric structure. For the three-dimensional stent-artery interaction we use a contact algorithm based on smooth contact surfaces of at least C 1 -continuity, which prevents numerical problems known from standard facet-based contact algorithm. The proposed methodology has the potential to provide a scientific basis for optimizing treatment procedures and stent geometries and materials, to help stent designers examine new stent designs "virtually," and to assist clinicians in choosing the most suitable stent for a particular stenosis.

220 citations


Journal ArticleDOI
TL;DR: An experimental study has been conducted on the penetration of silicone rubbers and human skin in vivo by sharp-tipped and flat-bottomed cylindrical punches, revealing that the penetration mechanism of a soft solid depends upon the punch tip geometry.
Abstract: An experimental study has been conducted on the penetration of silicone rubbers and human skin in vivo by sharp-tipped and flat-bottomed cylindrical punches. A penetrometer was developed to measure the penetration of human skin in vivo, while a conventional screw-driven testing machine was used to penetrate the silicone rubbers. The experiments reveal that the penetration mechanism of a soft solid depends upon the punch tip geometry: a sharp tipped punch penetrates by the formation and wedging open of a mode I planar crack, while a flat-bottomed punch penetrates by the growth of a mode II ring crack. The planar crack advances with the punch, and friction along the flanks of the punch leads to a rising load versus displacement response. In contrast, the flat-bottomed punch penetrates by jerky crack advance and the load on the punch is unsteady. The average penetration pressure on the shank cross section of a flat-bottomed punch exceeds that for a sharp-tipped punch of the same diameter In addition, the penetration pressure decreases as the diameter of the sharp-tipped punch increases. These findings are in broad agreement with the predictions of Shergold and Fleck [Proc. R. Soc. London, Ser. A (in press)] who proposed models for the penetration of a soft solid by a sharp-tipped and flat-bottomed punch.

203 citations


Journal ArticleDOI
TL;DR: The preliminary results indicated that interstitial bone tissue has significantly higher modulus and hardness than osteonal bone tissue and a significant correlation between hardness and elastic modulus was observed.
Abstract: Measuring the microscopic mechanical properties of bone tissue is important in support of understanding the etiology and pathogenesis of many bone diseases. Knowledge about these properties provides a context for estimating the local mechanical environment of bone related cells thait coordinate the adaptation to loads experienced at the whole organ level. The objective of this study was to determine the effects of experimental testing parameters on nanoindentation measures of lamellar-level bone mechanical properties. Specifically, we examined the effect of specimen preparation condition, indentation depth, repetitive loading, time delay, and displacement rate. The nanoindentation experiments produced measures of lamellar elastic moduli for human cortical bone (average value of 17.7 +/- 4.0 GPa for osteons and 19.3 +/- 4.7 GPa for interstitial bone tissue). In addition, the hardness measurements produced results consistent with data in the literature (average 0.52 +/- 0.15 GPa for osteons and 0.59 +/- 0.20 GPa for interstitial bone tissue). Consistent modulus values can be obtained from a 500-nm-deep indent. The results also indicated that the moduli and hardnesses of the dry specimens are significantly greater (22.6% and 56.9%, respectively) than those of the wet and wet and embedded specimens. The latter two groups were not different. The moduli obtained at a 5-nm/s loading rate were significantly lower than the values at the 10- and 20-nm/s loading rates while the 10- and 20-nm/s rates were not significantly different. The hardness measurements showed similar rate-dependent results. The preliminary results indicated that interstitial bone tissue has significantly higher modulus and hardness than osteonal bone tissue. In addition, a significant correlation between hardness and elastic modulus was observed.

199 citations


Journal ArticleDOI
TL;DR: Results give mechanical support to previous biochemical data that tendons likely are uniquely tailored to their specific location and function and need to be further characterized and taken into account when designing therapies or replacements.
Abstract: Evaluations of tendon mechanical behavior based on biochemical and structural arrangement have implications for designing tendon specific treatment modalities or replacement strategies. In addition to the well studied type 1 collagen, other important constituents of tendon are the small proteoglycans (PGs), PGs have been shown to vary in concentration within differently loaded areas of tendon, implicating them in specific tendon function. This study measured the mechanical properties of multiple tendon tissues from normal mice and from mice with knock-outs of the PGs decorin or biglycan. Tail tendon fascicles, patellar tendons (PT), and flexor digitorum logus tendons (FDL), three tissues representing different in vivo loading environments, were characterized from the three groups of mice. It was hypothesized that the absence of decorin or biglycan would have individual effects on each type of tendon tissue. Surprisingly, no change in mechanical properties was observed for the tail tendon fascicles due to the PG knockouts, The loss of decorin affected the PT, causing an increase in modulus and stress relaxation, but had little effect on the FDL. Conversely, the loss of biglycan did not significantly affect the PT, but caused a reduction in bothe the maximum stress and modulus of the FDL. These results give mechanical support to previous biochemical data that tendons likely are uniquely tailored to their specific location and function. Variances such as those presented here need to be further characterized and taken into account when designing therapies or replacements for any one particular tendon.

177 citations


Journal ArticleDOI
TL;DR: A computational study of RBC aggregation that takes into account the rheology of the cells as well as cell-cell adhesion kinetics is presented, showing that a stable aggregate is formed at higher cytoplasmic viscosity and membrane rigidity.
Abstract: We present computational fluid dynamic (CFD) simulation of aggregation of two deformable cells in a shear flow. This work is motivated by an attempt to develop computational models of aggregation of red blood cells (RBCs). Aggregation of RBCs is a major determinant of blood viscosity in microcirculation under physiological and pathological conditions. Deformability of the RBCs plays a major role in determining their aggregability. Deformability depends on the viscosity of the cytoplasmic fluid and on the rigidity of the cell membrane, in a macroscopic sense. This paper presents a computational study of RBC aggregation that takes into account the rheology of the cells as well as cell-cell adhesion kinetics. The simulation technique considered here is two dimensional and based on the front tracking/immersed boundary method for multiple fluids. Results presented here are on the dynamic events of aggregate formation between two cells, and its subsequent motion, rolling, deformation, and breakage. We show that the rheological properties of the cells have significant effects on the dynamics of the aggregate. A stable aggregate is formed at higher cytoplasmic viscosity and membrane rigidity. We also show that the bonds formed between the cells change in a cyclic manner as the aggregate rolls in a shear flow. The cyclic behavior is related to the rolling orientation of the aggregate. The frequency and amplitude of oscillation in the number of bonds also depend on the rheological properties.

176 citations


Journal ArticleDOI
TL;DR: The identification of the stiffening-stress-cell-death injury spiral developing during the initial 30 min of motionless sitting provides new mechanistic insight into deep PS formation and calls for reevaluation of the 1 h repositioning cycle recommended by the U.S. Department of Health.
Abstract: Pressure sores (PS) in deep muscles are potentially fatal and are considered one of the most costly complications in spinal cord injury patients. We hypothesize that continuous compression of the longissimus and gluteus muscles by the sacral and ischial bones during wheelchair sitting increases muscle stiffness around the bone-muscle interface over time, thereby causing muscles to bear intensified stresses in relentlessly widening regions, in a positive-feedback injury spiral. In this study, we measured long-term shear moduli of muscle tissue in vivo in rats after applying compression (35 KPa or 70 KPa for 1/4-2 h, N = 32), and evaluated tissue viability in matched groups (using phosphotungstic acid hematoxylin histology, N = 10). We found significant (1.8-fold to 3.3-fold, p < 0.05) stiffening of muscle tissue in vivo in muscles subjected to 35 KPa for 30 min or over, and in muscles subjected to 70 KPa for 15 min or over. By incorporating this effect into a finite element (FE) model of the buttocks of a wheelchair user we identified a mechanical stress wave which spreads from the bone-muscle interface outward through longissimus muscle tissue. After 4 h of FE simulated motionlessness, 50%-60% of the cross section of the longissimus was exposed to compressive stresses of 35 KPa or over (shown to induce cell death in rat muscle within 15 min). During these 4 h, the mean compressive stress across the transverse cross section of the longissimus increased by 30%-40%. The identification of the stiffening-stress-cell-death injury spiral developing during the initial 30 min of motionless sitting provides new mechanistic insight into deep PS formation and calls for reevaluation of the 1 h repositioning cycle recommended by the U.S. Department of Health.

168 citations


Journal ArticleDOI
TL;DR: A physiologic constitutive expression is presented in algorithmic format for the nonlinear elastic response of wavy collagen fibrils found in soft connective tissues and is in good agreement with experimental observations for mitral-valve chordae tendinece.
Abstract: A physiologic constitutive expression is presented in algorithmic format for the nonlinear elastic response of wavy collagen fibrils found in soft connective tissues. The model is based on the observation that crimped fibrils in a fascicle have a three-dimensional structure at the micron scale that we approximate as a helical spring. The symmetry of this wave form allows the force/displacement relationship derived from Castigliano's theorem to be solved in closed form: all integrals become analytic. Model predictions are in good agreement with experimental observations for mitral-valve chordae tendinece.

166 citations


Journal ArticleDOI
TL;DR: This study simulated quasi-static BHV leaflet deformation under 40, 80, and 120 mm Hg quasi- static transvalvular pressures and suggested that utilization of actual leaflet material properties is essential for accurate BHv FE simulations.
Abstract: For more than 40 years, the replacement of diseased natural heart valves with prosthetic devices has dramatically extended the quality and length of the lives of millions of patients worldwide. However, bioprosthetic heart valves (BHV) continue to fail due to structural failure resulting from poor tissue durability and faulty design. Clearly, an in-depth understanding of the biomechanical behavior of BHV at both the tissue and functional prosthesis levels is essential to improving BHV design and to reduce rates of failure. In this study, we simulated quasi-static BHV leaflet deformation under 40, 80, and 120 mm Hg quasi-static transvalvular pressures. A Fung-elastic material model was used that incorporated material parameters and axes derived from actual leaflet biaxial tests and measured leaflet collagen fiber structure. Rigorous experimental validation of predicted leaflet strain field was used to validate the model results. An overall maximum discrepancy of 2.36% strain between the finite element (FE) results and experiment measurements was obtained, indicating good agreement between computed and measured major principal strains. Parametric studies utilizing the material parameter set from one leaflet for all three leaflets resulted in substantial variations in leaflet stress and strain distributions. This result suggests that utilization of actual leaflet material properties is essential for accurate BHV FE simulations. The present study also underscores the need for rigorous experimentation and accurate constitutive models in simulating BHV function and design.

165 citations


Journal ArticleDOI
TL;DR: Bias disappeared and precision improved by a factor of two when the synthetic images were regenerated using flat shading instead of ray tracing, suggesting that biased edge detection is the primary factor limiting the theoretical accuracy of this single-plane shape matching procedure.
Abstract: Quantification of knee motion under dynamic, in vivo loaded conditions is necessary to understand how knee kinematics influence joint injury, disease, and rehabilitation. Though recent studies have measured three-dimensional knee kinematics by matching geometric bone models to single-plane fluoroscopic images, factors limiting the accuracy of this approach have not been thoroughly investigated. This study used a three-step computational approach to evaluate theoretical accuracy limitations due to the shape matching process alone. First, cortical bone models of the femur, tibia/fibula, and patella were created from CT data. Next, synthetic (i.e., computer generated) fluoroscopic images were created by ray tracing the bone models in known poses. Finally, an automated matching algorithm utilizing edge detection methods was developed to align flat-shaded bone models to the synthetic images. Accuracy of the recovered pose parameters was assessed in terms of measurement bias and precision. Under these ideal conditions where other sources of error were eliminated, tibiofemoral poses were within 2 mm for sagittal plane translations and 1.5 deg for all rotations while patellofemoral poses were within 2 mm and 3 deg. However, statistically significant bias was found in most relative pose parameters. Bias disappeared and precision improved by a factor of two when the synthetic images were regenerated using flat shading (i.e., sharp bone edges) instead of ray tracing (i.e., attenuated bone edges). Analysis of absolute pose parameter errors revealed that the automated matching algorithm systematically pushed the flat-shaded bone models too far into the image plane to match the attenuated edges of the synthetic ray-traced images. These results suggest that biased edge detection is the primary factor limiting the theoretical accuracy of this single-plane shape matching procedure.

155 citations


Journal ArticleDOI
TL;DR: In this paper, a structural constitutive framework for cardiovascular tissues is introduced that accounts for the angular distribution of collagen fibers, and the model is applied to study the biaxial behavior of the arterial wall and the aortic valve.
Abstract: Accurate constitutive models are required to gain further insight into the mechanical behavior of cardiovascular tissues. In this study, a structural constitutive framework for cardiovascular tissues is introduced that accounts for the angular distribution of collagen fibers. To demonstrate its capabilities, the model is applied to study the biaxial behavior of the arterial wall and the aortic valve. The pressure-radius relationships of the arterial wall accurately describe experimentally observed sigma-shaped curves. In addition, the nonlinear and anisotropic mechanical properties of the aortic valve can be analyzed with the proposed model. We expect that the current model offers strong possibilities to further investigate the complex mechanical behavior of cardiovascular tissues, including their response to mechanical stimuli.

Journal ArticleDOI
TL;DR: A nonlinear Fung-elastic constitutive model, which fully incorporated the effects of in-plane shear, was used to simulate soft tissue mechanical behavior and demonstrated strong boundary effects with the clamped methods, while suture attachment methods demonstrated minimal boundary effects.
Abstract: Evaluation and simulation of the multiaxial mechanical behavior of native and engineered soft tissues is becoming more prevalent. In spite of this growing use, testing methods have not been standardized and methodologies vary widely. The strong influence of boundary conditions were recently underscored by Waldman et al. [2002, J. Materials Science: Materials in Medicine 13, pp. 933-938] wherein substantially different experimental results were obtained using different sample gripping methods on the same specimens. As it is not possible to experimentally evaluate the effects of different biaxial test boundary conditions on specimen internal stress distributions, we conducted numerical simulations to explore these effects. A nonlinear Fung-elastic constitutive model (Sun et al., 2003, JBME 125, pp. 372-380, which fully incorporated the effects of in-plane shear, was used to simulate soft tissue mechanical behavior. Effects of boundary conditions, including varying the number of suture attachments, different gripping methods, specimen shapes, and material axes orientations were examined. Results demonstrated strong boundary effects with the clamped methods, while suture attachment methods demonstrated minimal boundary effects. Suture-based methods appeared to be best suited for biaxial mechanical tests of biological materials. Moreover, the simulations demonstrated that Saint-Venant's effects depended significantly on the material axes orientation. While not exhaustive, these comprehensive simulations provide experimentalists with additional insight into the stress-strain fields associated with different biaxial testing boundary conditions, and may be used as a rational basis for the design of biaxial testing experiments.

Journal ArticleDOI
TL;DR: Effects caused by atherosclerotic plaque structure, cap thickness and erosion, material properties, and pulsating pressure conditions on stress/strain distributions in the plaque are quantified by extensive computational case studies and parameter evaluations.
Abstract: Background Atherosclerotic plaques may rupture without warning and cause acute cardiovascular syndromes such as heart attack and stroke. Methods to assess plaque vulnerability noninvasively and predict possible plaque rupture are urgently needed.

Journal ArticleDOI
TL;DR: In this article, a biphasic swelling model was developed to test Lanir's hypothesis for a range of material properties, and the deformation behavior was compared with a full mechano-electrochemical model for confined compression and 1D swelling.
Abstract: Biological tissues like intervertebral discs and articular cartilage primarily consist of interstitial fluid, collagen fibrils and negatively charged proteoglycans. Due to the fixed charges of the proteoglycans, the total ion concentration inside the tissue is higher than in the surrounding synovial fluid (cation concentration is higher and the anion concentration is lower). This excess of ion particles leads to an osmotic pressure difference, which causes swelling of the tissue. In the last decade several mechano-electrochemical models, which include this mechanism, have been developed. As these models are complex and computationally expensive, it is only possible to analyze geometrically relatively small problems. Furthermore, there is still no commercial finite element tool that includes such a mechano-electrochemical theory. Lanir (Biorheology, 24, pp. 173-187, 1987) hypothesized that electrolyte flux in articular cartilage can be neglected in mechanical studies. Lanir's hypothesis implies that the swelling behavior of cartilage is only determined by deformation of the solid and by fluid flow. Hence, the response could be described by adding a deformation-dependent pressure term to the standard biphasic equations. Based on this theory we developed a biphasic swelling model. The goal of the study was to test Lanir's hypothesis for a range of material properties. We compared the deformation behavior predicted by the biphasic swelling model and a full mechano-electrochemical model for confined compression and 1D swelling. It was shown that, depending on the material properties, the biphasic swelling model behaves largely the same as the mechano-electrochemical model, with regard to stresses and strains in the tissue following either mechanical or chemical perturbations. Hence, the biphasic swelling model could be an alternative for the more complex mechano-electrochemical model, in those cases where the ion flux itself is not the subject of the study. We propose thumbrules to estimate the correlation between the two models for specific problems.

Journal ArticleDOI
TL;DR: Flow patterns obtained from transient 3-D computational fluid dynamics are influenced by different reconstruction methods and the pulsatility of the flow, and caution is required when analyzing models based on CT scans.
Abstract: A Spiral Computerized Tomography (CT) scan of the aorta were obtained from a single subject and three model variations were examined. Computational fluid dynamics modeling of all three models showed variations in the velocity contours along the aortic arch with differences in the boundary layer growth and recirculation regions. Further down-stream, all three models showed very similar velocity profiles during maximum velocity with differences occurring in the decelerating part of the pulse. Flow patterns obtained from transient 3-D computational fluid dynamics are influenced by different reconstruction methods and the pulsatility of the flow. Caution is required when analyzing models based on CT scans.

Journal ArticleDOI
TL;DR: This study demonstrates the ability to control and measure the development of structural and mechanical anisotropy due to imposed mechanical constraints in a fibroblast-populated collagen gel model system and shows that active remodeling of the gel by fibroblasts was not required.
Abstract: An in vitro model system was developed to study structure-function relationships and the development of structural and mechanical anisotropy in collagenous tissues. Fibroblast-populated collagen gels were constrained either biaxially or uniaxially. Gel remodeling, biaxial mechanical properties, and collagen orientation were determined after 72 h of culture. Collagen gels contracted spontaneously in the unconstrained direction, uniaxial mechanical constraints produced structural anisotropy, and this structural anisotropy was associated with mechanical anisotropy. Cardiac and tendon fibroblasts were compared to test the hypothesis that tendon fibroblasts should generate greater anisotropy in vitro. However, no differences were seen in either structure or mechanics of collagen gels populated with these two cell types, or between fibroblast populated gels and acellular gels. This study demonstrates our ability to control and measure the development of structural and mechanical anisotropy due to imposed mechanical constraints in a fibroblast-populated collagen gel model system. While imposed constraints were required for the development of anisotropy in this system, active remodeling of the gel by fibroblasts was not. This model system will provide a basis for investigating structure-function relationships in engineered constructs and for studying mechanisms underlying the development of anisotropy in collagenous tissues.

Journal ArticleDOI
TL;DR: The objectives of the current study were to develop rigid EF and deformable FE models of tibiofemoral contact, and to compare predicted kinematics and contact mechanics from both representations during gait loading conditions with three different implant designs.
Abstract: Rigid body total knee replacement (TKR) models with tibiofemoral contact based on elastic foundation (EF) theory utilize simple contact pressure-surface overclosure relationships to estimate joint mechanics, and require significantly less computational time than corresponding deformable finite element (FE) methods. However, potential differences in predicted kinematics between these representations are currently not well understood, and it is unclear if the estimates of contact area and pressure are acceptable. Therefore, the objectives of the current study were to develop rigid EF and deformable FE models of tibiofemoral contact, and to compare predicted kinematics and contact mechanics from both representations during gait loading conditions with three different implant designs. Linear and nonlinear contact pressure-surface overclosure relationships based on polyethylene material properties were developed using EF theory. All other variables being equal, rigid body FE models accurately estimated kinematics predicted by fully deformable FE models and required only 2% of the analysis time. As expected, the linear EF contact model sufficiently approximated trends for peak contact pressures, but overestimated the deformable results by up to 30%. The nonlinear EF contact model more accurately reproduced trends and magnitudes of the deformable analysis, with maximum differences of approximately 15% at the peak pressures during the gait cycle. All contact area predictions agreed in trend and magnitude. Using rigid models, edge-loading conditions resulted in substantial overestimation of peak pressure. Optimal nonlinear EF contact relationships were developed for specific TKR designs for use in parametric or repetitive analyses where computational time is paramount. The explicit FE analysis method utilized here provides a unique approach in that both rigid and deformable analyses can be run from the same input file, thus enabling simple selection of the most appropriate representation for the analysis of interest.

Journal ArticleDOI
TL;DR: The paper provides an overview of design synthesis methods developed at the Compliant Systems Design Laboratory and focuses specifically on surgical applications, highlighting the design and construction of an organ (kidney) manipulator for use in minimally invasive procedures.
Abstract: This paper introduces the benefits of exploiting elasticity in the engineering design of surgical tools, in general, and of minimally invasive procedures, in particular. Compliant mechanisms are jointless mechanisms that rely on elastic deformation to transmit forces and motion. The lack of traditional joints in these single-piece flexible structures offers many benefits, including the absence of wear debris, pinch points, crevices, and lubrication. Such systems are particularly amenable to embedded sensing for haptic feedback and embedded actuation with active-material actuators. The paper provides an overview of design synthesis methods developed at the Compliant Systems Design Laboratory and focuses specifically on surgical applications. Compliant systems have potential to integrate. well within the constraints of laparoscopic procedures and telerobotic surgery. A load-path representation is used within a genetic algorithm to solve two gripper example problems. In addition, the paper illustrates the design and construction of an organ (kidney) manipulator for use in minimally invasive procedures.

Journal ArticleDOI
TL;DR: Simulation results indicate that, even without the presence of endoleaks (blood flowing into the cavity), elevated sac pressure can occur due to complex fluid-structure interactions between the luminal blood flow, EVG wall, intra-sac stagnant blood, including an intra-luminal thrombus, and the aneurysm wall.
Abstract: An aneurysm is a local artery ballooning greater than 50% of its nominal diameter with a risk of sudden rupture. Minimally invasive repair can be achieved by inserting surgically a stent-graft, called an endovascular graft (EVG), which is either straight tubular curved tubular or bifurcating. However post-procedural complications may arise because of elevated stagnant blood pressure in the cavity, i.e., the sac formed by the EVG and the weakened aneurysm wall In order to investigate the underlying mechanisms leading to elevated sac-pressures and hence to potentially dangerous wall stress levels and aneurysm rupture, a transient 3-D stented abdominal aortic aneurysm model and a coupled fluid-structure interaction solver were employed. Simulation results indicate that, even without the presence of endoleaks (blood flowing into the cavity), elevated sac pressure can occur due to complex fluid-structure interactions between the luminal blood flow, EVG wall, intra-sac stagnant blood, including an intra-luminal thrombus, and the aneurysm wall. Nevertheless, the impact of sac-blood volume changes due to leakage on the sac pressure and aneurysm wall stress was analyzed as well. While blood flow conditions, EVG and aneurysm geometries as well as wall mechanical properties play important roles in both sac pressure and wall stress generation, it is always the maximum wall stress that is one of the most critical parameters in aneurysm rupture prediction. All simulation results are in agreement with experimental data and clinical observations.

Journal ArticleDOI
TL;DR: Hyperelastic warping in conjunction with cine-MRI imaging can be used to determine local ventricular strains during diastole and was demonstrated to be unaffected by simulated noise down to a signal-to-noise ratio of 4.0.
Abstract: The assessment of regional heart wall motion (local strain) can localize ischemic myocardial disease, evaluate myocardial viability, and identify impaired cardiac function due to hypertrophic or dilated cardiomyopathies. The objectives of this research were to develop and validate a technique known as hyperelastic warping for the measurement of local strains in the left ventricle from clinical cine-magnetic resonance imaging (MRI) image datasets. The technique uses differences in image intensities between template (reference) and target (loaded) image datasets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target image. To validate the technique, MRI image datasets representing two deformation states of a left ventricle were created such that the deformation map between the states represented in the images was known. A beginning diastolic cine-MRI image dataset from a normal human subject was defined as the template. A second image dataset (target) was created by mapping the template image using the deformation results obtained from a forward FE model of diastolic filling. Fiber stretch and strain predictions from hyperelastic warping showed good agreement with those of the forward solution (R 2 = 0.67 stretch, R 2 = 0.76 circumferential strain, R 2 = 0.75 radial strain, and R 2 = 0.70 in-plane shear). The technique had low sensitivity to changes in material parameters (R 2 = �0.023 fiber stretch, R 2 = �0.020 circumferential strain, R 2 = �0.005 radial strain, and R 2 = 0.0125 shear strain with little or no change in rms error), with the exception of changes in bulk modulus of the material. The use of an isotropic hyperelastic constitutive model in the warping analyses degraded the predictions of fiber stretch. Results were unaffected by simulated noise down to a signal-to-noise ratio (SNR) of 4.0 (R 2 = �0.032 fiber stretch, R 2 = �0.023 circumferential strain, R 2 = �0.04 radial strain, and R 2 = 0.0211 shear strain with little or no increase in rms error). This study demonstrates that warping in conjunction with cine-MRI imaging can be used to determine local ventricular strains during diastole. DOI: 10.1115/1.2073677

Journal ArticleDOI
TL;DR: The design and working concept of a robotic gait trainer (RGT), an ankle rehabilitation device for assisting stroke patients during gait, is presented and experimental gait data from an able-bodied person wearing the working RGT prototype are presented.
Abstract: Repetitive task training is an effective form of rehabilitation for people suffering from debilitating injuries of stroke. We present the design and working concept of a robotic gait trainer (RGT), an ankle rehabilitation device for assisting stroke patients during gait. Structurally based on a tripod mechanism, the device is a parallel robot that incorporates two pneumatically powered, double-acting, compliant, spring over muscle actuators as actuation links which move the ankle in dorsiflex ion/plantarflexion and inversion/eversion. A unique feature in the tripod design is that the human anatomy is part of the robot, the first fixed link being the patient's leg. The kinematics and workspace of the tripod device have been analyzed determining its range of motion. Experimental gait data from an able-bodied person wearing the working RGT prototype are presented.

Journal ArticleDOI
TL;DR: The results of these studies provide a clearer understanding of the complex interaction between the laser machining process and terminal sterilization on the primary mechanical properties of PLLa and PLLA plasticized with TEC.
Abstract: Background The development of endoluminal stents from polymeric materials requires an understanding of the basic mechanical properties of the polymer and the effects of manufacturing and sterilization on those properties. Methods Pure poly(L-lactide) (PLLA) and PLLA containing varying amounts of triethylcitrate (TEC) as a plasticizer (5-10-15%) were studied. The specimens were solution-cast and CO2 laser-cut. Specimen dimensions were adapted to the strut size of polymeric vascular stents. The properties of the PLLA micro-specimens were assessed before and after sterilization (EtO cold gas, H2O2-plasma, beta- and gamma-irradiation). Tensile tests, and creep and recovery tests were carried out at 37 degrees C. Additionally the thermal and thermo-mechanical characteristics were investigated using dynamic-mechanical analysis (DMA) and differential scanning calorimetry (DSC). Results The results showed the dramatic influence of the plasticizer content and sterilization procedure on the mechanical properties of the material. Laser cutting had a lesser effect. Hence the effects of processing and sterilization must not be overlooked in the material selection and design phases of the development process leading to clinical use. Altogether, the results of these studies provide a clearer understanding of the complex interaction between the laser machining process and terminal sterilization on the primary mechanical properties of PLLA and PLLA plasticized with TEC.

Journal ArticleDOI
TL;DR: Comparisons with the measurements demonstrate clearly the superiority of the DES approach and underscore its potential as a powerful modeling tool of cardiovascular flows at physiological conditions.
Abstract: Time-accurate, fully 3D numerical simulations and particle image velocity laboratory experiments are carried out for flow through a fully open bileaflet mechanical heart valve under steady (nonpulsatile) inflow conditions. Flows at two different Reynolds numbers, one in the laminar regime and the other turbulent (near-peak systole flow rate), are investigated. A direct numerical simulation is carried out for the laminar flow case while the turbulent flow is investigated with two different unsteady statistical turbulence modeling approaches, unsteady Reynolds-averaged Navier-Stokes (URANS) and detached-eddy simulation (DES) approach. For both the laminar and turbulent cases the computed mean velocity profiles are in good overall agreement with the measurements. For the turbulent simulations, however, the comparisons with the measurements demonstrate clearly the superiority of the DES approach and underscore its potential as a powerful modeling tool of cardiovascular flows at physiological conditions. The study reveals numerous previously unknown features of the flow.

Journal ArticleDOI
TL;DR: The sagittal-plane model of the knee simulator was developed both to predict the loading at the knee from arbitrary inputs and to generate the necessary inputs required to duplicate specified joint loading.
Abstract: This work describes the design and capabilities of the Purdue Knee Simulator: Mark II anti a sagittal-plane model of the machine. This five-axis simulator was designed and constructed to simulate dynamic loading activities on either cadaveric knee specimens or total knee prostheses mounted on fixtures. The purpose of the machine was to provide a consistent, realistic loading of the knee joint, allowing the kinematics and specific loading of the structures of the knee to he determined based on condition, articular geometry, and simulated activity. The sagittal-plane model of the knee simulator was developed both to predict the loading at the knee from arbitrary inputs and to generate the necessary inputs required to duplicate specified joint loading. Measured tibio-femoral compressive force and quadriceps tension were shown to he in good agreement with the predicted loads from the model. A controlled moment about the ankle-flexion axis was also shown to change the loading on the quadriceps.

Journal ArticleDOI
TL;DR: Mechanically induced remodeling of the collagen architecture in the aortic valve was investigated and the predicted fiber architecture represented a branching network and resembled the macroscopically visible collagen bundles in the native leaflet.
Abstract: Living tissues show an adaptive response to mechanical loading by changing their internal structure and morphology. Understanding this response is essential for successful tissue engineering of load-bearing structures, such as the aortic valve. In this study, mechanically induced remodeling of the collagen architecture in the aortic valve was investigated. It was hypothesized that, in uniaxially loaded regions, the fibers aligned with the tensile principal stretch direction. For biaxial loading conditions, on the other hand, it was assumed that the collagen fibers aligned with directions situated between the principal stretch directions. This hypothesis has already been applied successfully to study collagen remodeling in arteries. The predicted fiber architecture represented a branching network and resembled the macroscopically visible collagen bundles in the native leaflet. In addition, the complex biaxial mechanical behavior of the native valve could be simulated qualitatively with the predicted fiber directions. The results of the present model might be used to gain further insight into the response of tissue engineered constructs during mechanical conditioning.fDOI: 10.1115/1.1865187g

Journal ArticleDOI
TL;DR: Stent design is crucial in determining the fluid mechanical environment in an artery, and the sensitivity of flow characteristics to strut configuration could be partially responsible for the dependence of restenosis on stent design.
Abstract: Background: Restenosis after stent implantation varies with stent design. Alterations in secondary flow patterns and wall shear stress (WSS) can modulate intimal hyperplasia via their effects on platelet and inflammatory cell transport toward the wall, as well as direct effects on the endothelium. Method of Approach: Detailed flow characteristics were compared by estimating the WSS in the near-strut region of realistic stent designs using three-dimensional computational fluid dynamics (CFD), under pulsatile high and low flow conditions. The stent geometry employed was characterized by three geometric parameters (axial strut pitch, strut amplitude, and radius of curvature), and by the presence or lack of the longitudinal connector. Results: Stagnation regions were localized around stent struts. The regions of low WSS are larger distal to the strut. Under low flow conditions, the percentage restoration of mean axial WSS between struts was lower than that for the high flow by 10-12%. The largest mean transverse shear stresses were 30-50% of the largest mean axial shear stresses. The percentage restoration in WSS in the models without the longitudinal connector was as much as 11% larger than with the connector. The mean axial WSS restoration between the struts was larger for the stent model with larger interstrut spacing. Conclusion: The results indicate that stent design is crucial in determining the fluid mechanical environment in an artery. The sensitivity of flow characteristics to strut configuration could be partially responsible for the dependence of restenosis on stent design. From a fluid dynamics point of view, interstrut spacing should be larger in order to restore the disturbed flow; struts should be oriented to the flow direction in order to reduce the area of flow recirculation. longitudinal connectors should be used only as necessary, and should be parallel to the axis. These results could guide future stent designs toward reducing restenosis.

Journal ArticleDOI
TL;DR: Determining the fractional order can provide a new and sensitive quantitative measure for tissue comparison, and can provide valuable new insights into tissue viscoelastic behavior.
Abstract: BACKGROUND Quasilinear viscoelasticity (QLV) theory has been widely and successfully used to describe the time-dependent response of connective tissues. Difficulties remain, however, particularly in material parameter estimation and sensitivities. In this study, we introduce a new alternative: the fractional order viscoelasticity (FOV) theory, which uses a fractional order integral to describe the relaxation response. FOV implies a fractal-like tissue structure, reflecting the hierarchical arrangement of collagenous tissues. METHOD OF APPROACH A one-dimensional (I-D) FOV reduced relaxation function was developed, replacing the QLV "box-spectrum" function with a fractional relaxation function. A direct-fit, global optimization method was used to estimate material parameters from stress relaxation tests on aortic valve tissue. RESULTS We found that for the aortic heart valve, FOV had similar accuracy and better parameter sensitivity than QLV, particularly for the long time constant (tau2). The mean (n = 5) fractional order was 0.29, indicating that the viscoelastic response of the tissue was strongly fractal-like. RESULTS SUMMARY: mean QLV parameters were C = 0.079, tau1 = 0.004, tau2 = 76, and mean FOV parameters were beta = 0.29, tau = 0.076, and rho = 1.84. CONCLUSIONS FOV can provide valuable new insights into tissue viscoelastic behavior Determining the fractional order can provide a new and sensitive quantitative measure for tissue comparison.

Journal ArticleDOI
TL;DR: The model reasonably reflected the rotation distributions among the motion segments under static moments and basic responses of head and neck under dynamic loadings and may offer potentials to effectively reflect the behavior of human cervical spine suitable for further biomechanics and traumatic studies.
Abstract: In this study, the digitized geometrical data of the embalmed skull and vertebrae (C0-C7) of a 68-year old male cadaver were processed to develop a comprehensive, geometrically accurate, nonlinear C0-C7 FE model. The biomechanical response of human neck under physiological static loadings, near vertex drop impact and rear-end impact (whiplash) conditions were investigated and compared with published experimental results. Under static loading conditions, the predicted moment-rotation relationships of each motion segment under moments in midsagittal plane and horizontal plane agreed well with experimental data. In addition, the respective predicted head impact force history and the S-shaped kinematics responses of head-neck complex under near-vertex drop impact and rear-end conditions were close to those observed in reported experiments. Although the predicted responses of the head-neck complex under any specific condition cannot perfectly match the experimental observations, the model reasonably reflected the rotation distributions among the motion segments under static moments and basic responses of head and neck under dynamic loadings. The current model may offer potentials to effectively reflect the behavior of human cervical spine suitable for further biomechanics and traumatic studies.

Journal ArticleDOI
TL;DR: The results presented show the importance of computational studies in designing and optimizing new biomedical devices.
Abstract: Background: Nowadays, shape memory alloys (SMAs) and in particular Ni-Ti alloys are commonly used in bioengineering applications as they join important qualities as resistance to corrosion, biocompatibility, fatigue resistance, MR compatibility, kink resistance with two unique thermo-mechanical behaviors: the shape memory effect and the pseudoelastic effect. They allow Ni-Ti devices to undergo large mechanically induced deformations and then to recover the original shape by thermal loading or simply by mechanical unloading. Method of approach: A numerical model is developed to catch the most significant SMA macroscopic thermo-mechanical properties and is implemented into a commercial finite element code to simulate the behavior of biomedical devices. Results: The comparison between experimental and numerical response of an intravascular coronary stent allows to verify the model suitability to describe pseudo-elasticity. The numerical study of a spinal vertebrae spacer, where the effects of different geometries and material characteristic temperatures are investigated, allows to verify the model suitability to describe shape memory effect. Conclusion: the results presented show the importance of computational studies in designing and optimizing new biomedical devices.

Journal ArticleDOI
TL;DR: In this paper, a recently developed version of the particle swarm optimization (PSO) algorithm was evaluated using a suite of difficult analytical test problems, while its scale independent nature was proven mathematically and verified using a biomechanical test problem.
Abstract: : Optimization is frequently employed in biomechanics research to solve system identification problems, predict human movement, or estimate muscle or other internal forces that cannot be measured directly. Unfortunately, biomechanical optimization problems often possess multiple local minima, making it difficult to find the best solution. Furthermore, convergence in gradient based algorithms can be affected by scaling to account for design variables with different length scales or units. This study evaluates a recently developed version of the particle swarm optimization (PSO) algorithm to address these problems. The algorithm's global search capabilities were investigated using a suite of difficult analytical test problems, while its scale independent nature was proven mathematically and verified using a biomechanical test problem. For comparison, all test problems were also solved with three off-the-shelf optimization algorithms a global genetic algorithm (GA) and multi-start gradient-based sequential quadratic programming (SQP) and quasi-Newton (BFGS) algorithms. For the analytical test problems, only the PSO algorithm was successful on the majority of the problems. When compared to previously published results for the same problems, PSO was more robust than a global simulated annealing algorithm but less robust than a different, more complex genetic algorithm. For the biomechanical test problem, only the PSO algorithm was insensitive to design variable scaling, with the GA algorithm being mildly sensitive and the SQP and BFGS algorithms being highly sensitive. The proposed PSO algorithm (freely available with this article) provides a new off-the-shelf global optimization option for difficult biomechanical problems, especially those utilizing design variables with different length scales or units.