scispace - formally typeset
Search or ask a question
JournalISSN: 2472-5552

Journal of Biomolecular Screening 

SAGE Publishing
About: Journal of Biomolecular Screening is an academic journal. The journal publishes majorly in the area(s): Receptor & High-content screening. It has an ISSN identifier of 2472-5552. Over the lifetime, 1846 publications have been published receiving 57453 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A screening window coefficient, called "Z- factor," is defined, which is reflective of both the assay signal dynamic range and the data variation associated with the signal measurements, and therefore is suitable for assay quality assessment.
Abstract: The ability to identify active compounds (³hits²) from large chemical libraries accurately and rapidly has been the ultimate goal in developing high-throughput screening (HTS) assays. The ability to identify hits from a particular HTS assay depends largely on the suitability or quality of the assay used in the screening. The criteria or parameters for evaluating the ³suitability² of an HTS assay for hit identification are not well defined and hence it still remains difficult to compare the quality of assays directly. In this report, a screening window coefficient, called ³Z-factor,² is defined. This coefficient is reflective of both the assay signal dynamic range and the data variation associated with the signal measurements, and therefore is suitable for assay quality assessment. The Z-factor is a dimensionless, simple statistical characteristic for each HTS assay. The Z-factor provides a useful tool for comparison and evaluation of the quality of assays, and can be utilized in assay optimization and validation.

6,474 citations

Journal ArticleDOI
TL;DR: The general applicability of the thermal shift screening strategy was found to be an important advantage because it circumvents the need to design and retool new assays with each new therapeutic target, making it ideally suited for the quantitative high throughput drug screening and evaluation of targets derived from genomics.
Abstract: More general and universally applicable drug discovery assay technologies are needed in order to keep pace with the recent advances in combinatorial chemistry and genomics-based target generation. Ligand-induced conformational stabilization of proteins is a well-understood phenomenon in which substrates, inhibitors, cofactors, and even other proteins provide enhanced stability to proteins on binding. This phenomenon is based on the energetic coupling of the ligand-binding and protein-melting reactions. In an attempt to harness these biophysical properties for drug discovery, fully automated instrumentation was designed and implemented to perform miniaturized fluorescence-based thermal shift assays in a microplate format for the high throughput screening of compound libraries. Validation of this process and instrumentation was achieved by investigating ligand binding to more than 100 protein targets. The general applicability of the thermal shift screening strategy was found to be an important advantage because it circumvents the need to design and retool new assays with each new therapeutic target. Moreover, the miniaturized thermal shift assay methodology does not require any prior knowledge of a therapeutic target's function, making it ideally suited for the quantitative high throughput drug screening and evaluation of targets derived from genomics.

825 citations

Journal ArticleDOI
TL;DR: 3-D in vitro systems for drug development, with a focus on screening for novel antitumor drugs, are addressed, and the advantages and limitations of these systems of intermediate complexity are discussed.
Abstract: Over the past few years, establishment and adaptation of cell-based assays for drug development and testing has become an important topic in high-throughput screening (HTS). Most new assays are designed to rapidly detect specific cellular effects reflecting action at various targets. However, although more complex than cell-free biochemical test systems, HTS assays using monolayer or suspension cultures still reflect a highly artificial cellular environment and may thus have limited predictive value for the clinical efficacy of a compound. Today's strategies for drug discovery and development, be they hypothesis free or mechanism based, require facile, HTS-amenable test systems that mimic the human tissue environment with increasing accuracy in order to optimize preclinical and preanimal selection of the most active molecules from a large pool of potential effectors, for example, against solid tumors. Indeed, it is recognized that 3-dimensional cell culture systems better reflect the in vivo behavior of most cell types. However, these 3-D test systems have not yet been incorporated into mainstream drug development operations. This article addresses the relevance and potential of 3-D in vitro systems for drug development, with a focus on screening for novel antitumor drugs. Examples of 3-D cell models used in cancer research are given, and the advantages and limitations of these systems of intermediate complexity are discussed in comparison with both 2-D culture and in vivo models. The most commonly used 3-D cell culture systems, multicellular spheroids, are emphasized due to their advantages and potential for rapid development as HTS systems. Thus, multicellular tumor spheroids are an ideal basis for the next step in creating HTS assays, which are predictive of in vivo antitumor efficacy.

753 citations

Journal ArticleDOI
TL;DR: The authors present a rapid method to generate single spheroids in suspension culture in individual wells with homogeneous sizes, morphologies, and stratification of proliferating cells in the rim and dying Cells in the core region in a true suspension culture.
Abstract: Spheroids are widely used in biology because they provide an in vitro 3-dimensional (3D) model to study proliferation, cell death, differentiation, and metabolism of cells in tumors and the response of tumors to radiotherapy and chemotherapy. The methods of generating spheroids are limited by size heterogeneity, long cultivation time, or mechanical accessibility for higher throughput fashion. The authors present a rapid method to generate single spheroids in suspension culture in individual wells. A defined number of cells ranging from 1000 to 20,000 were seeded into wells of poly-HEMA-coated, 96-well, round-or conical-bottom plates in standard medium and centrifuged for 10 min at 1000 g. This procedure generates single spheroids in each well within a 24-h culture time with homogeneous sizes, morphologies, and stratification of proliferating cells in the rim and dying cells in the core region. Because a large number of tumor cell lines form only loose aggregates when cultured in 3D, the authors also performed a screen for medium additives to achieve a switch from aggregate to spheroid morphology. Small quantities of the basement membrane extract Matrigel, added to the culture medium prior to centrifugation, most effectively induced compact spheroid formation. The compact spheroid morphology is evident as early as 24 h after centrifugation in a true suspension culture. Twenty tumor cell lines of different lineages have been used to successfully generate compact, single spheroids with homogenous size in 96-well plates and are easily accessible for subsequent functional analysis.

531 citations

Journal ArticleDOI
TL;DR: The authors describe and show numerous real examples from the biologist-friendly Stat Server® HTS application (SHS), a custom-developed software tool built on the commercially available S-PLUS and StatServer statistical analysis and server software that remotely processes HTS data using powerful and sophisticated statistical methodology.
Abstract: High-throughput screening (HTS) plays a central role in modern drug discovery, allowing the rapid screening of large compound collections against a variety of putative drug targets. HTS is an industrial-scale process, relying on sophisticated auto mation, control, and state-of-the art detection technologies to organize, test, and measure hundreds of thousands to millions of compounds in nano-to microliter volumes. Despite this high technology, hit selection for HTS is still typically done using simple data analysis and basic statistical methods. The authors discuss in this article some shortcomings of these methods and present alternatives based on modern methods of statistical data analysis. Most important, they describe and show numerous real examples from the biologist-friendly Stat Server® HTS application (SHS), a custom-developed software tool built on the commercially available S-PLUS® and StatServer® statistical analysis and server software. This system remotely processes HTS data using powerful an...

339 citations

Network Information
Related Journals (5)
Bioorganic & Medicinal Chemistry Letters
28.8K papers, 727.4K citations
86% related
Journal of Medicinal Chemistry
33.3K papers, 1.6M citations
86% related
Bioorganic & Medicinal Chemistry
16.2K papers, 503.6K citations
82% related
Methods of Molecular Biology
52.3K papers, 647.3K citations
82% related
Molecular Pharmacology
11.8K papers, 749.5K citations
82% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20181
201734
2016114
2015129
2014140
2013127