scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cell Biology in 1985"


Journal Article•DOI•
TL;DR: The dye nile red, 9-diethylamino-5H- benzo[alpha]phenoxazine-5-one, is an excellent vital stain for the detection of intracellular lipid droplets by fluorescence microscopy and flow cytofluorometry and it exhibits properties of a near-ideal lysochrome.
Abstract: We report that the dye nile red, 9-diethylamino-5H-benzo[alpha]phenoxazine-5-one, is an excellent vital stain for the detection of intracellular lipid droplets by fluorescence microscopy and flow cytofluorometry. The specificity of the dye for lipid droplets was assessed on cultured aortic smooth muscle cells and on cultured peritoneal macrophages that were incubated with acetylated low density lipoprotein to induce cytoplasmic lipid overloading. Better selectivity for cytoplasmic lipid droplets was obtained when the cells were viewed for yellow-gold fluorescence (excitation, 450-500 nm; emission, greater than 528 nm) rather than red fluorescence (excitation, 515-560 nm; emission, greater than 590 nm). Nile red-stained, lipid droplet-filled macrophages exhibited greater fluorescence intensity than did nile red-stained control macrophages, and the two cell populations could be differentiated and analyzed by flow cytofluorometry. Such analyses could be performed with either yellow-gold or red fluorescence, but when few lipid droplets per cell were present, the yellow-gold fluorescence was more discriminating. Nile red exhibits properties of a near-ideal lysochrome. It is strongly fluorescent, but only in the presence of a hydrophobic environment. The dye is very soluble in the lipids it is intended to show, and it does not interact with any tissue constituent except by solution. Nile red can be applied to cells in an aqueous medium, and it does not dissolve the lipids it is supposed to reveal.

2,272 citations


Journal Article•DOI•
TL;DR: Observations indicate that tau may help define a subpopulation of microtubules that is restricted to axons, and the monoclonal antibody described in this report should prove very useful to investigators studying axonal sprouting and growth because it is an exclusive axonal marker.
Abstract: We have determined the biochemical and immunocytochemical localization of the heterogeneous microtubule-associated protein tau using a monoclonal antibody that binds to all of the tau polypeptides in both bovine and rat brain. Using immunoblot assays and competitive enzyme-linked immunosorbent assays, we have shown tau to be more abundant in bovine white matter extracts and microtubules than in extracts and microtubules from an enriched gray matter region of the brain. On a per mole basis, twice-cycled microtubules from white matter contained three times more tau than did twice-cycled microtubules from gray matter. Immunohistochemical studies that compared the localization of tau with that of MAP2 and tubulin demonstrated that tau was restricted to axons, extending the results of the biochemical studies. Tau localization was not observed in glia, which indicated that, at least in brain, tau is neuron specific. These observations indicate that tau may help define a subpopulation of microtubules that is restricted to axons. Furthermore, the monoclonal antibody described in this report should prove very useful to investigators studying axonal sprouting and growth because it is an exclusive axonal marker.

1,497 citations


Journal Article•DOI•
TL;DR: It is proposed that the exocytosis of the approximately 50-nm bodies represents the mechanism by which the transferrin receptor is shed during reticulocyte maturation.
Abstract: Using ferritin-labeled protein A and colloidal gold-labeled anti-rabbit IgG, the fate of the sheep transferrin receptor has been followed microscopically during reticulocyte maturation in vitro. After a few minutes of incubation at 37 degrees C, the receptor is found on the cell surface or in simple vesicles of 100-200 nm, in which the receptor appears to line the limiting membrane of the vesicles. With time (60 min or longer), large multivesicular elements (MVEs) appear whose diameter may reach 1-1.5 micron. Inside these large MVEs are round bodies of approximately 50-nm diam that bear the receptor at their external surfaces. The limiting membrane of the large MVEs is relatively free from receptor. When the large MVEs fuse with the plasma membrane, their contents, the 50-nm bodies, are released into the medium. The 50-nm bodies appear to arise by budding from the limiting membrane of the intracellular vesicles. Removal of surface receptor with pronase does not prevent exocytosis of internalized receptor. It is proposed that the exocytosis of the approximately 50-nm bodies represents the mechanism by which the transferrin receptor is shed during reticulocyte maturation.

1,056 citations


Journal Article•DOI•
TL;DR: It is demonstrated that GMP-140 is an alpha-granule membrane protein that is expressed on the platelet plasma membrane during degranulation.
Abstract: We have previously characterized a monoclonal antibody, S12, that binds only to activated platelets (McEver, RP, and MN Martin, 1984, J Biol Chem, 259:9799-9804) It identifies a platelet membrane protein of Mr 140,000, which we have designated as GMP-140 Using immunocytochemical techniques we have now localized this protein in unstimulated and thrombin-stimulated platelets Polyclonal antibodies to purified GMP-140 were used to enhance the sensitivity of detection Nonpermeabilized, unstimulated platelets, incubated with anti-GMP-140 antibodies, and then with IgG-gold probes, showed very little label for GMP-140 along their plasma membranes In contrast, thrombin-stimulated platelets exhibited at least a 50-fold increase in the amount of label along the plasma membrane On frozen thin sections of unstimulated platelets we observed immunogold label along the alpha-granule membranes We also employed the more sensitive technique of permeabilizing with saponin unstimulated platelets in suspension, and then incubating the cells with polyclonal anti-GMP-140 antibodies and Fab-peroxidase conjugate Alpha-granule membranes showed heavy reaction product, but no other intracellular organelles were specifically labeled These results demonstrate that GMP-140 is an alpha-granule membrane protein that is expressed on the platelet plasma membrane during degranulation

914 citations


Journal Article•DOI•
TL;DR: Seven monoclonal antibodies raised against tubulin from the axonemes of sea urchin sperm flagella recognize an acetylated form of alpha-tubulin present in theAxoneme of a variety of organisms, and may allow us to deduce the role of tubulin acetylation in the structure and function of microtubules in vivo.
Abstract: Seven monoclonal antibodies raised against tubulin from the axonemes of sea urchin sperm flagella recognize an acetylated form of alpha-tubulin present in the axoneme of a variety of organisms. The antigen was not detected among soluble, cytoplasmic alpha-tubulin isoforms from a variety of cells. The specificity of the antibodies was determined by in vitro acetylation of sea urchin and Chlamydomonas cytoplasmic tubulins in crude extracts. Of all the acetylated polypeptides in the extracts, only alpha-tubulin became antigenic. Among Chlamydomonas tubulin isoforms, the antibodies recognize only the axonemal alpha-tubulin isoform acetylated in vivo on the epsilon-amino group of lysine(s) (L'Hernault, S.W., and J.L. Rosenbaum, 1985, Biochemistry, 24:473-478). The antibodies do not recognize unmodified axonemal alpha-tubulin, unassembled alpha-tubulin present in a flagellar matrix-plus-membrane fraction, or soluble, cytoplasmic alpha-tubulin from Chlamydomonas cell bodies. The antigen was found in protein fractions that contained axonemal microtubules from a variety of sources, including cilia from sea urchin blastulae and Tetrahymena, sperm and testis from Drosophila, and human sperm. In contrast, the antigen was not detected in preparations of soluble, cytoplasmic tubulin, which would not have contained tubulin from stable microtubule arrays such as centrioles, from unfertilized sea urchin eggs, Drosophila embryos, and HeLa cells. Although the acetylated alpha-tubulin recognized by the antibodies is present in axonemes from a variety of sources and may be necessary for axoneme formation, it is not found exclusively in any one subset of morphologically distinct axonemal microtubules. The antigen was found in similar proportions in fractions from sea urchin sperm axonemes enriched for central pair or outer doublet B or outer doublet A microtubules. Therefore the acetylation of alpha-tubulin does not provide the mechanism that specifies the structure of any one class of axonemal microtubules. Preliminary evidence indicates that acetylated alpha-tubulin is not restricted to the axoneme. The antibodies described in this report may allow us to deduce the role of tubulin acetylation in the structure and function of microtubules in vivo.

750 citations


Journal Article•DOI•
TL;DR: The results demonstrate the presence of a membrane receptor for Uk on monocytes and show a hitherto unknown function for the A chain of Uk: binding of secreted enzyme to its receptor results in Uk acting as a membrane protease.
Abstract: The secretion of plasminogen activators has been implicated in the controlled extracellular proteolysis that accompanies cell migration and tissue remodeling. We found that the human plasminogen activator urokinase (Uk) (Mr 55,000 form) binds rapidly, specifically, and with high affinity to fresh human blood monocytes and to cells of the monocyte line U937. Upon binding Mr 55,000 Uk was observed to confer high plasminogen activator activity to the cells. Binding of the enzyme did not require a functional catalytic site (located on the B chain of the protein) but did require the noncatalytic A chain of Mr 55,000 Uk, since Mr 33,000 Uk did not bind. These results demonstrate the presence of a membrane receptor for Uk on monocytes and show a hitherto unknown function for the A chain of Uk: binding of secreted enzyme to its receptor results in Uk acting as a membrane protease. This localizes plasminogen activation near the cell surface, an optimal site to facilitate cell migration.

742 citations


Journal Article•DOI•
TL;DR: Lysosomal enzymes are also directionally secreted by the osteoclast into the acidified extracellular compartment which can therefore be considered as the functional equivalent of a secondary lysosome with a low pH, acid hydrolases, the substrate, and a limiting membrane containing the 100-kD antigen.
Abstract: The extracellular compartment where bone resorption occurs, between the osteoclast and bone matrix, is shown in this report to be actively acidified. The weak base acridine orange accumulates within this compartment but dissipates after incubation with ammonium chloride. Upon removal of ammonium chloride, the cells are able to rapidly reacidify this compartment. The highly convoluted plasma membrane of the osteoclast facing this acidic compartment (ruffled border) is shown to contain a 100-kD integral membrane protein otherwise present in limiting membranes of lysosomes and other related acidified organelles (Reggio, H., D. Bainton, E. Harms, E. Coudrier, and D. Louvard, 1984, J. Cell Biol., 99:1511-1526; Tougard, C., D. Louvard, R. Picart, and A. Tixier-Vidal, 1985, J. Cell Biol. 100:786-793). Antibodies recognizing this 100-kD lysosomal membrane protein cross-react with a proton-pump ATPase from pig gastric mucosae (Reggio, H., D. Bainton, E. Harms, E. Coudrier, and D. Louvard, 1984, J. Cell Biol., 99:1511-1526), therefore raising the possibility that it plays a role in the acidification of both intracellular organelles and extracellular compartments. Lysosomal enzymes are also directionally secreted by the osteoclast into the acidified extracellular compartment which can therefore be considered as the functional equivalent of a secondary lysosome with a low pH, acid hydrolases, the substrate, and a limiting membrane containing the 100-kD antigen.

738 citations


Journal Article•DOI•
TL;DR: The results suggest that topoisomerase II may be an enzyme that is also a structural protein of interphase nuclei and mitotic chromosomes, and an abundant nuclear enzyme that controls DNA topological states.
Abstract: We have obtained a polyclonal antibody that recognizes a major polypeptide component of chicken mitotic chromosome scaffolds. This polypeptide migrates in SDS PAGE with Mr 170,000. Indirect immunofluorescence and subcellular fractionation experiments confirm that it is present in both mitotic chromosomes and interphase nuclei. Two lines of evidence suggest that this protein is DNA topoisomerase II, an abundant nuclear enzyme that controls DNA topological states: anti-scaffold antibody inhibits the strand-passing activity of DNA topoisomerase II; and both anti-scaffold antibody and an independent antibody raised against purified bovine topoisomerase II recognize identical partial proteolysis fragments of the 170,000-mol-wt scaffold protein in immunoblots. Our results suggest that topoisomerase II may be an enzyme that is also a structural protein of interphase nuclei and mitotic chromosomes.

708 citations


Journal Article•DOI•
TL;DR: A transmembrane glycoprotein (Mr approximately 100,000) is described that is present in secretory vesicles in all neurons and endocrine cells studied, in species from elasmobranch fish to mammals, and in neural andendocrine cell lines.
Abstract: Several types of cells store proteins in secretory vesicles from which they are released by an appropriate stimulus. It might be expected that the secretory vesicles in different cell types use similar molecular machinery. Here we describe a transmembrane glycoprotein (Mr approximately 100,000) that is present in secretory vesicles in all neurons and endocrine cells studied, in species from elasmobranch fish to mammals, and in neural and endocrine cell lines. It was detected by cross-reactivity with monoclonal antibodies raised to highly purified cholinergic synaptic vesicles from the electric organ of fish. By immunoprecipitation of intact synaptic vesicles and electron microscopic immunoperoxidase labeling, we have shown that the antigenic determinant is on the cytoplasmic face of the synaptic vesicles. However, the electrophoretic mobility of the antigen synthesized in the presence of tunicamycin is reduced to Mr approximately 62,000, which suggests that the antigen is glycosylated and must therefore span the vesicle membrane.

701 citations


Journal Article•DOI•
TL;DR: It is suggested that treadmilling, possibly in combination with other molecular interactions, may provide an effective mechanism for the movement of actin subunits and the protrusion of cytoplasm in the lamellipodium of fibroblasts.
Abstract: Previous observations indicated that the lamellipodium ("leading edge") of fibroblasts contains a dense meshwork, as well as numerous bundles (microspikes) of actin filaments. Most, if not all, of the filaments have a uniform polarity, with the "barbed" end associated with the membrane. I investigated whether and how actin subunits exchange in this region by microinjecting living gerbil fibroma cells (IMR-33) with actin that had been labeled with iodoacetamidotetramethylrhodamine. After incorporation of the labeled actin into the lamellipodium, I used a laser microbeam to photobleach a 3-4-micron region at and surrounding a microspike, without disrupting the integrity of the structure. I then recorded the pattern of fluorescence recovery and analyzed it using a combination of TV image intensification and digital image processing techniques. Fluorescence recovery was first detected near the edge of the cell and then moved toward the cell's center at a constant rate of 0.79 +/- 0.31 micron/min. When only part of the lamellipodium near the edge of the cell was photobleached, the bleached spot also moved toward the cell's center and through an area unbleached by the laser beam. These results indicated that steady state incorporation of actin subunits occurred predominantly at the membrane-associated end of actin filaments, and that actin subunits in the lamellipodium underwent a constant movement toward the center of the cell. I suggest that treadmilling, possibly in combination with other molecular interactions, may provide an effective mechanism for the movement of actin subunits and the protrusion of cytoplasm in the lamellipodium of fibroblasts.

638 citations


Journal Article•DOI•
TL;DR: It is suggested that neurons influence the differentiation of astroglia through the influence of neurons on astroglial shape and proliferation.
Abstract: To analyze the interdependence of neurons and astroglia during central nervous system development, a rapid method for purifying early postnatal cerebellar neurons and astroglia, and recombining them in vitro, has been developed. The influence of neurons on astroglial shape and proliferation has been evaluated with an in vitro model system previously used to describe the role of cerebellar astroglia in neuronal migration and positioning (Hatten, M. E., and R. K. H. Liem, 1981, J. Cell Biol., 90:622-630; and Hatten, M. E., R. K. H. Liem, and C. A. Mason, 1984, J. Cell Biol., 98:193-204. Cerebellar tissue harvested from C57Bl/6J mouse cerebellum on the third or fourth day postnatal was dissociated into a single cell suspension with trypsin, and enriched glial and neuronal fractions were separated with a step gradient of Percoll. Highly purified astroglial and neuronal fractions resulted from subsequently preplanting the cells on a polylysine-coated culture surface. In the absence of neurons, astroglia, identified by staining with antisera raised against purified glial filament protein, assumed a flattened shape and proliferated rapidly. In the absence of astroglia, cerebellar neurons, identified by staining with antisera raised against the nerve growth factor-inducible large external (NILE) glycoprotein and by electron microscopy, formed cellular reaggregates, had markedly impaired neurite outgrowth, and survived poorly. When purified neurons and isolated astroglia were recombined, astroglial proliferation slowed markedly and the flattened shape expressed in the absence of neurons transformed into highly elongated profiles that resembled embryonic forms of cerebellar astroglia. After longer periods (48-72 h) in the presence of neurons, astroglia had "Bergmann-like" or "astrocyte-like" shapes and neurons commonly associated with them. These results suggest that neurons influence the differentiation of astroglia.

Journal Article•DOI•
TL;DR: Sertoli cells cultured on top of extracellular matrix components assume a phenotype and morphology more characteristic of the in vivo, differentiated cells, which induces a morphogenesis of the cells into cords, which closely resemble the organ from which the cells were dissociated and which provide an environment permissive for germ cell differentiation.
Abstract: Sertoli cell preparations isolated from 10-day-old rats were cultured on three different substrates: plastic, a matrix deposited by co-culture of Sertoli and peritubular myoid cells, and a reconstituted basement membrane gel from the EHS tumor. When grown on plastic, Sertoli cells formed a squamous monolayer that did not retain contaminating germ cells. Grown on the matrix deposited by Sertoli-myoid cell co-cultures, Sertoli cells were more cuboidal and supported some germ cells but did not allow them to differentiate. After 3 wk however, the Sertoli cells flattened to resemble those grown on plastic. In contrast, the Sertoli cells grown on top of the reconstituted basement membrane formed polarized monolayers virtually identical to Sertoli cells in vivo. They were columnar with an elaborate cytoskeleton. In addition, they had characteristic basally located tight junctions and maintained germ cells for at least 5 wk in the basal aspect of the monolayer. However, germ cells did not differentiate. Total protein, androgen binding protein, transferrin, and type I collagen secretion were markedly greater when Sertoli cells were grown on the extracellular matrices than when they were grown on plastic. When Sertoli cells were cultured within rather than on top of reconstituted basement membrane gels they reorganized into cords. After one week, tight junctional complexes formed between adjacent Sertoli cells, functionally compartmentalizing the cords into central (adluminal) and peripheral (basal) compartments. Germ cells within the cords continued to differentiate. Thus, Sertoli cells cultured on top of extracellular matrix components assume a phenotype and morphology more characteristic of the in vivo, differentiated cells. Growing Sertoli cells within reconstituted basement membrane gels induces a morphogenesis of the cells into cords, which closely resemble the organ from which the cells were dissociated and which provide an environment permissive for germ cell differentiation.

Journal Article•DOI•
TL;DR: It is shown that one effect of NGF is to promote microtubule assembly during neurite outgrowth in PC12 cells, and that the induction of tau and MAP1 in response to NGF promotes microtubules assembly and that these factors are therefore key regulators of neuriteOutgrowth.
Abstract: Nerve growth factor (NGF) regulates the microtubule-dependent extension and maintenance of axons by some peripheral neurons. We show here that one effect of NGF is to promote microtubule assembly during neurite outgrowth in PC12 cells. Though NGF causes an increase in total tubulin levels, the formation of neurites and the assembly of microtubules follow a time course completely distinct from that of the tubulin induction. The increases in microtubule mass and neurite extension closely parallel 10- and 20-fold inductions of tau and MAP1, proteins shown previously to promote microtubule assembly in vitro. When NGF is removed from PC12 cells, neurites disappear, microtubule mass decreases, and both microtubule-associated proteins return to undifferentiated levels. These data suggest that the induction of tau and MAP1 in response to NGF promotes microtubule assembly and that these factors are therefore key regulators of neurite outgrowth.

Journal Article•DOI•
TL;DR: It is concluded that cells dispersed as single cells from newborn rat liver conserve in part the necessary information to reconstruct a proper three-dimensional cyto-architecture and that the microenvironment so generated most likely represents a basic requirement for the optimal functioning of these differentiated cells.
Abstract: Liver cells isolated from newborn rats and seeded on a non-adherent plastic substratum were found to spontaneously re-aggregate and to form, within a few days, spheroidal aggregates that eventually reached a plateaued diameter of 150-175 micron. Analyses on frozen sections from these spheroids by immunofluorescence microscopy using antibodies to various cytoskeletal elements and extracellular matrix components revealed a sorting out and a histotypic reorganization of three major cell types. A first type consisted of cells that segregated out on the aggregate surface forming a monolayer cell lining; a second type was identified as hepatocytes that regrouped in small islands often defining a central lumen; and a third group of cells reorganized into bile duct-like structures. This intercellular organization in the aggregates was paralleled by the accumulation of extracellular matrix components (laminin, fibronectin, and collagen) and their deposition following a specific pattern around each cell population structure. Determinations of albumin secretion and tyrosine aminotransferase induction by dexamethasone and glucagon at various times after the initiation of the cultures revealed a maintenance of the hepatocyte-differentiated functions for at least up to 2 mo at the levels measured at 3-5 d. It is concluded that cells dispersed as single cells from newborn rat liver conserve in part the necessary information to reconstruct a proper three-dimensional cyto-architecture and that the microenvironment so generated most likely represents a basic requirement for the optimal functioning of these differentiated cells.

Journal Article•DOI•
TL;DR: It is postulated that these glycoproteins, as major protein constituents of the lysosomal membrane, have important roles in lysOSomal structure and function.
Abstract: Two murine lysosome-associated membrane proteins, LAMP-1 of 105,000-115,000 D and LAMP-2 of 100,000-110,000 D, have been identified by monoclonal antibodies that bind specifically to lysosomal membranes. Both glycoproteins were distinguished as integral membrane components solubilized by detergent solutions but not by various chaotropic agents. The lysosome localization was demonstrated by indirect immunofluorescent staining, co-localization of the antigen to sites of acridine orange uptake, and immunoelectron microscopy. Antibody binding was predominantly located at the limiting lysosomal membrane, distinctly separated from colloidal gold-labeled alpha-2-macroglobulin accumulated in the lumen during prolonged incubation. LAMP-1 and LAMP-2 also appeared to be present in low concentrations on Golgi trans-elements but were not detected in receptosomes marked by the presence of newly endocytosed alpha-2-macroglobulin, or in other cellular structures. LAMP-1 and LAMP-2 were distinguished as different molecules by two-dimensional gel analysis, 125I-tryptic peptide mapping, and sequential immunoprecipitations of 125I-labeled cell extracts. Both glycoproteins were synthesized as a precursor protein of approximately 90,000 D, and showed a marked heterogeneity of apparent molecular weight expression in different cell lines. LAMP-2 was closely related or identical to the macrophage antigen, MAC-3, as indicated by antibody adsorption and tryptic peptide mapping. It is postulated that these glycoproteins, as major protein constituents of the lysosomal membrane, have important roles in lysosomal structure and function.

Journal Article•DOI•
TL;DR: The inhibition of adhesion by the CSAT monoclonal antibody and the association of the purified antigen with extracellular ligands are interpreted as strongly implicating theCSAT antigen as a receptor for both fibronectin and laminin and perhaps for other extrace cellular molecules as well.
Abstract: The cell substrate attachment (CSAT) antigen is an integral membrane glycoprotein complex that participates in the adhesion of cells to extracellular molecules. The CSAT monoclonal antibody, directed against this complex, inhibited adhesion of cardiac and tendon fibroblasts and skeletal myoblasts to both laminin and fibronectin, thus implicating the CSAT antigen in adhesion to these extracellular molecules. Equilibrium gel filtration was used to explore the hypothesis that the CSAT antigen functions as a cell surface receptor for both laminin and fibronectin. In this technique, designed for rapidly exchanging equilibria, the gel filtration column is pre-equilibrated with extracellular ligand to ensure receptor occupancy during its journey through the column. Both laminin and fibronectin formed complexes with the CSAT antigen. The association with laminin was inhibited by the CSAT monoclonal antibody; the associations with both fibronectin and laminin were inhibited by synthetic peptides containing the fibronectin cell-binding sequence. Estimates of the dissociation constants by equilibrium gel filtration agree well with those available from other measurements. This suggests that these associations are biologically significant. SDS PAGE showed that all three glycoproteins comprising the CSAT antigen were present in the antigen-ligand complexes. Gel filtration and velocity sedimentation were used to show that the three bands comprise and oligomeric complex, which provides an explanation for their functional association. The inhibition of adhesion by the CSAT monoclonal antibody and the association of the purified antigen with extracellular ligands are interpreted as strongly implicating the CSAT antigen as a receptor for both fibronectin and laminin and perhaps for other extracellular molecules as well.

Journal Article•DOI•
TL;DR: Results suggest that the major disaccharidases share a common biosynthetic mechanism that differs from that for peptidases, and indicate that the transport of microvillus membrane proteins to and through the Golgi apparatus is a selective process that may be mediated by transport receptors.
Abstract: A panel of monoclonal antibodies was produced against purified microvillus membranes of human small intestinal enterocytes. By means of these probes three disaccharidases (sucrase-isomaltase, lactase-phlorizin hydrolase, and maltase-glucoamylase) and four peptidases (aminopeptidase N, dipeptidylpeptidase IV, angiotension I-converting enzyme, and p-aminobenzoic acid peptide hydrolase) were successfully identified as individual entities by SDS PAGE and localized in the microvillus border of the enterocytes by immunofluorescence microscopy. The antibodies were used to study the expression of small intestinal hydrolases in the colonic adenocarcinoma cell line Caco 2. This cell line was found to express sucrase-isomaltase, lactase-phlorizin hydrolase, aminopeptidase N, and dipeptidylpeptidase IV, but not the other three enzymes. Pulse-chase studies with [35S]methionine and analysis by subunit-specific monoclonal antibodies revealed that sucrase-isomaltase was synthesized and persisted as a single-chain protein comprising both subunits. Similarly, lactase-phlorizin hydrolase was synthesized as a large precursor about twice the size of the lactase subunits found in the human intestine. Aminopeptidase N and dipeptidylpeptidase IV, known to be dimeric enzymes in most mammals, were synthesized as monomers. Transport from the rough endoplasmic reticulum to the trans-Golgi apparatus was considerably faster for the peptidases than for the disaccharidases, as probed by endoglycosidase H sensitivity. These results suggest that the major disaccharidases share a common biosynthetic mechanism that differs from that for peptidases. Furthermore, the data indicate that the transport of microvillus membrane proteins to and through the Golgi apparatus is a selective process that may be mediated by transport receptors.

Journal Article•DOI•
TL;DR: The experiments indicate that the distribution of the enzyme appears to be independent of the bulk chromatin, and data suggest that topoisomerase II is bound to the bases of the radial loop domains of mitotic chromosomes.
Abstract: In the preceding article we described a polyclonal antibody that recognizes cSc-1, a major polypeptide component of the chicken mitotic chromosome scaffold. This polypeptide was shown to be chicken topoisomerase II. In the experiments described in the present article we use indirect immunofluorescence and immunoelectron microscopy to examine the distribution of topoisomerase II within intact chromosomes. We also describe a simple experimental protocol that differentiates antigens that are interspersed along the chromatin fiber from those that occupy restricted domains within the chromosome. These experiments indicate that the distribution of the enzyme appears to be independent of the bulk chromatin. Our data suggest that topoisomerase II is bound to the bases of the radial loop domains of mitotic chromosomes.

Journal Article•DOI•
TL;DR: Using both electron microscopy and immunological methods, a number of changes occurring in rat fibroblasts after heat-shock treatment are characterized, including changes in both the number and size of the granular ribonucleoprotein components and a reorganization of the nucleolar fibrillar reticulum.
Abstract: Using both electron microscopy and immunological methods, we have characterized a number of changes occurring in rat fibroblasts after heat-shock treatment. Incubation of the cells for 3 h at 42 degrees-43 degrees C resulted in a number of changes within the cytoplasm including: a disruption and fragmentation of the Golgi complex; a modest swelling of the mitochondria and subtle alterations in the packing of the cristae; and alterations in cytoskeletal elements, specifically a collapse and aggregation of the vimentin-containing intermediate filaments around the nucleus. A number of striking changes were also found within the nuclei of the heat-treated cells: (a) We observed the appearance of rod-shaped bodies consisting of densely packed filaments. Using biochemical and immunological methods, these nuclear inclusion bodies were shown to be comprised of actin filaments. (b) Considerable alterations in the integrity of the nucleoli were observed after the heat-shock treatment. Specifically, there appeared to be a general relaxation in the condensation state of the nucleoli, changes in both the number and size of the granular ribonucleoprotein components, and finally a reorganization of the nucleolar fibrillar reticulum. These morphological changes in the integrity of the nucleoli are of significant interest since previous work as well as studies presented here show that two of the mammalian stress proteins, the major stress-induced 72-kD protein and the 110-kD protein, localize within the nucleoli of the cells after heat-shock treatment. We discuss these morphological changes with regards to the known biological and biochemical events that occur in cells after induction of the stress response.

Journal Article•DOI•
TL;DR: Results are consistent with earlier biochemical analyses, which showed type X collagen to be a product of that subpopulation of chondrocytes that have undergone hypertrophy, and either it or an immunologically cross- reactive molecule is also present in bone, and exhibits a diminished fluorescent intensity as compared with hypertrophic cartilage.
Abstract: Monoclonal antibodies were produced against the recently described short chain cartilage collagen (type X collagen), and one (AC9) was extensively characterized and used for immunohistochemical localization studies on chick tissues. By competition enzyme-linked immunosorbent assay, antibody AC9 was observed to bind to an epitope within the helical domain of type X collagen and did not react with the other collagen types tested, including the minor cartilage collagens 1 alpha, 2 alpha, 3 alpha, and HMW-LMW. Indirect immunofluorescence analyses with this antibody were performed on unfixed cryostat sections from various skeletal and nonskeletal tissues. Only those of skeletal origin showed detectable reactivity. Within the cartilage portion of the 13-d-old embryonic tibiotarsus (a developing long bone) fluorescence was observed only in that region of the diaphysis containing hypertrophic chondrocytes. None was detectable in adjacent regions or in the epiphysis. Slight fluorescence was also present within the surrounding sleeve of periosteal bone. Consistent with these results, the antibody did not react with the cartilages of the trachea and sclera, which do not undergo hypertrophy during the stages examined. It did, however, lightly react with the parietal bones of the head, which form by intramembranous ossification. These results are consistent with our earlier biochemical analyses, which showed type X collagen to be a product of that subpopulation of chondrocytes that have undergone hypertrophy. In addition, either it or an immunologically cross-reactive molecule is also present in bone, and exhibits a diminished fluorescent intensity as compared with hypertrophic cartilage.

Journal Article•DOI•
TL;DR: The significance of these recent results is increased by the finding that several cell types that normally migrate or grow long distances in embryos respond directionally to surprisingly small fields, and by the concurrent finding that developing embryos produce substantial endogenous currents.
Abstract: The application of DC electric fields to cells has a long and contentious history. The interpretation of the response of cells to such fields was hampered by lack of adequate recording technique, contamination of cultures by electrode products, uncertainty about the magnitude of fields, and sometimes by the complexity of the biological system under study. Nevertheless, when Jaffe and Nuccitelli (12) reviewed the literature in 1977, they found eight reliable reports of the response of plant cells to applied fields and four of animal cells. Since then, several laboratories have applied electrical fields to isolated cells in culture and recorded the responses on film or video tape so that responses could be characterized carefully and the threshold field strengths established. In these later studies, the size and direction of the fields are known unambiguously and possible artifacts such as electrode products, nutrient gradients, flow effects, and temperature changes are controlled. The significance of these recent results is increased by the finding that several cell types that normally migrate or grow long distances in embryos respond directionally to surprisingly small fields (Table I), and by the concurrent finding that developing embryos produce substantial endogenous currents. These two facts raise the possibility that endogenous electrical fields are involved in long-range signalling during embryonic development and during certain responses to injury. I review here the recent literature on the responses of isolated cells to small electrical fields, discuss possible mechanisms by which cells might sense these small fields and, finally, consider the physiological relevance of these responses.

Journal Article•DOI•
TL;DR: This article proposes two models that might explain the observed phenomena and, by extension, the process of fast axoplasmic transport itself and has potential applications across the spectrum of microtubule-based motility processes.
Abstract: Native microtubules prepared from extruded and dissociated axoplasm have been observed to transport organelles and vesicles unidirectionally in fresh preparations and more slowly and bidirectionally in older preparations. Both endogenous and exogenous (fluorescent polystyrene) particles in rapid Brownian motion alight on and adhere to microtubules and are transported along them. Particles can switch from one intersecting microtubule to another and move in either direction. Microtubular segments 1 to 30 microns long, produced by gentle homogenization, glide over glass surfaces for hundreds of micrometers in straight lines unless acted upon by obstacles. While gliding they transport particles either in the same (forward) direction and/or in the backward direction. Particle movement and gliding of microtubule segments require ATP and are insensitive to taxol (30 microM). It appears, therefore, that the mechanisms producing the motive force are very closely associated with the native microtubule itself or with its associated proteins. Although these movements appear irreconcilable with several current theories of fast axoplasmic transport, in this article we propose two models that might explain the observed phenomena and, by extension, the process of fast axoplasmic transport itself. The findings presented and the possible mechanisms proposed for fast axoplasmic transport have potential applications across the spectrum of microtubule-based motility processes.

Journal Article•DOI•
TL;DR: It is indicated that pericytes in culture and in situ possess both muscle and nonmuscle isoactins and support the hypothesis that the pericyte may represent the capillary and venular correlate of the SMC.
Abstract: We have affinity-fractionated rabbit antiactin immunoglobulins (IgG) into classes that bind preferentially to either muscle or nonmuscle actins. The pools of muscle- and nonmuscle-specific actin antibodies were used in conjunction with fluorescence microscopy to characterize the actin in vascular pericytes, endothelial cells (EC), and smooth muscle cells (SMC) in vitro and in situ. Nonmuscle-specific antiactin IgG stained the stress fibers of cultured EC and pericytes but did not stain the stress fibers of cultured SMC, although the cortical cytoplasm associated with the plasma membrane of SMC did react with nonmuscle-specific antiactin. Whereas the muscle-specific antiactin IgG failed to stain EC stress fibers and only faintly stained their cortical cytoplasm, these antibodies reacted strongly with the fiber bundles of cultured SMC and pericytes. Similar results were obtained in situ. The muscle-specific antiactin reacted strongly with the vascular SMC of arteries and arterioles as well as with the perivascular cells (pericytes) associated with capillaries and post-capillary venules. The non-muscle-specific antiactin stained the endothelium and the pericytes but did not react with SMC. These findings indicate that pericytes in culture and in situ possess both muscle and nonmuscle isoactins and support the hypothesis that the pericyte may represent the capillary and venular correlate of the SMC.

Journal Article•DOI•
TL;DR: The localization of uvomorulin on adult intestinal epithelial cells using electron microscopic analyses was shown to exhibit a highly restricted localization in the intermediate junctions of these cells.
Abstract: Uvomorulin is a cell-adhesion molecule implicated in the compaction process of mouse preimplantation embryos and the aggregation of embryonal carcinoma cells. A rabbit antiserum against purified uvomorulin also reacts with epithelial cells of various adult tissues. In this study, we investigated the localization of uvomorulin on adult intestinal epithelial cells using electron microscopic analyses. Uvomorulin was shown to exhibit a highly restricted localization in the intermediate junctions of these cells. The results are discussed with respect to a possible adhesive function of uvomorulin on intestinal epithelial cells.

Journal Article•DOI•
TL;DR: Investigation of the distribution of this cofactor for protein C activation in human tissues found thrombomodulin antigen was found in all organs studied, with the notable exception of brain.
Abstract: We have used antibodies to human thrombomodulin isolated from placenta to investigate the distribution of this cofactor for protein C activation in human tissues. Thrombomodulin was found on endothelial cells of arteries, veins, capillaries, and lymphatics by immunocytochemical staining using an avidin-biotin peroxidase method. Thrombomodulin was not detected on sinusoidal lining cells of liver or on postcapillary high-endothelial venules of lymph node, although the latter contained another endothelial antigen, von Willebrand factor. Other cells noted to contain thrombomodulin antigen are those of the syncytiotrophoblast in placenta. The thrombomodulin in syncytiotrophoblast was primarily on the plasma membrane surface that forms the maternal blood sinus. Syncytiotrophoblast also stained with antibodies to von Willebrand factor, which implies that these cells have multiple endothelial functions. Thrombomodulin antigen was found in all organs studied, with the notable exception of brain.

Journal Article•DOI•
TL;DR: The results suggest that the trans cisterna was distinct from the endosome compartment and that the latter was not an obligatory station in the route taken by G protein to the cell surface.
Abstract: The intracellular location at which the G protein of vesicular stomatitis virus accumulated when transport was blocked at 20 degrees C has been studied by biochemical, cytochemical, and immunocytochemical methods. Our results indicated that the viral G protein was blocked in that cisterna of the Golgi stack which stained for acid phosphatase. At 20 degrees C this trans cisterna became structurally altered by the accumulation of G protein. This alteration was characterized by extensive areas of membrane buds which were covered by a cytoplasmic coat. These coated structures were of two kinds--those that labeled with anti-clathrin antibodies and those that did not. The clathrin-coated pits consistently did not label with anti-G antibodies. Upon warming infected cells to 32 degrees C, G protein appeared on the surface within minutes. Concomitantly, the trans cisterna lost its characteristic structural organization. Double-labeling experiments were performed in which G protein localization was combined with staining for horseradish peroxidase, which had been taken up from the extracellular medium by endocytosis. The results suggest that the trans cisterna was distinct from the endosome compartment and that the latter was not an obligatory station in the route taken by G protein to the cell surface.

Journal Article•DOI•
TL;DR: The results suggest that general correlates between OJ structure and OJ ability to resist passive ion flow do exist in T84 monolayers and that such correlates can be obtained only if OJ structural data are analyzed as an electrical circuit composed of parallel resistors.
Abstract: Electrical circuit analysis was used to study the structural development of occluding junctions (OJs) in cultured monolayers composed to T84 cells. The magnitude of the increments in transepithelial resistance predicted by such analysis was compared with the magnitude of the measured increments in resistance. Confluent sheets of epithelial cells were formed after cells were plated at high density on collagen-coated filters. Using Claude's OJ strand count-resistance hypothesis (1978, J. Membr. Biol. 39:219-232), electrical circuit analysis of histograms describing OJ strand count distribution at different time points after plating predicted that junctional resistance should rise in a proportion of 1:21:50 from 18 h to 2 d to 5 d. This reasonably paralleled the degree of rise in transepithelial resistance over this period, which was 1:29:59. The ability to predict the observed resistance rise was eliminated if only mean strand counts were analyzed or if electrical circuit analysis of OJ strand counts were performed using an OJ strand count-resistance relationship substantially different from that proposed by Claude. Measurements of unidirectional fluxes of inulin, mannitol, and sodium indicated that restriction of transjunctional permeability accounted for the observed resistance rise, and that T84 junctional strands have finite permeability to molecules with radii less than or equal to 3.6 A but are essentially impermeable to molecules with radii greater than or equal to 15 A. The results suggest that general correlates between OJ structure and OJ ability to resist passive ion flow do exist in T84 monolayers. The study also suggests that such correlates can be obtained only if OJ structural data are analyzed as an electrical circuit composed of parallel resistors.

Journal Article•DOI•
TL;DR: The results indicate that nuclear envelope breakdown, chromosome condensation, and spindle assembly, as well as the regulation of these processes by Ca2+-sensitive cytoplasmic components, can be studied in vitro using extracts of amphibian eggs.
Abstract: Incubation of demembranated sperm chromatin in cytoplasmic extracts of unfertilized Xenopus laevis eggs resulted in nuclear envelope assembly, chromosome decondensation, and sperm pronuclear formation. In contrast, egg extracts made with EGTA-containing buffers induced the sperm chromatin to form chromosomes or irregularly shaped clumps of chromatin that were incorporated into bipolar or multipolar spindles. The 150,000 g supernatants of the EGTA extracts could not alone support these changes in incubated nuclei. However, these supernatants induced not only chromosome condensation and spindle formation, but also nuclear envelope breakdown when added to sperm pronuclei or isolated Xenopus liver or brain nuclei that were incubated in extracts made without EGTA. Similar changes were induced by partially purified preparations of maturation-promoting factor. The addition of calcium chloride to extracts containing condensed chromosomes and spindles caused dissolution of the spindles, decondensation of the chromosomes, and re-formation of interphase nuclei. These results indicate that nuclear envelope breakdown, chromosome condensation, and spindle assembly, as well as the regulation of these processes by Ca2+-sensitive cytoplasmic components, can be studied in vitro using extracts of amphibian eggs.

Journal Article•DOI•
TL;DR: A remarkable feature of this protein class is a very acidic pI, brought about by a high content of acidic amino acids as well as by phosphorylation on serine and sulfation on tyrosine and O-linked carbohydrate, which has a high net negative charge even at the acidic pH of the trans Golgi cisternae.
Abstract: We report on the biochemical and immunological properties as well as on the cellular and subcellular distribution of two proteins, called secretogranins I and II. These proteins specifically occur in a wide variety of endocrine and neuronal cells that package and sort regulatory peptides into secretory granules. Both secretogranins take the same intracellular route as the peptides and are also sorted into secretory granules. Secretogranins I and II are biochemically and immunologically distinct proteins and differ from chromogranin A. Yet, these three proteins are similar to each other in many respects and therefore constitute one class of proteins. A remarkable feature of this protein class is a very acidic pI, brought about by a high content of acidic amino acids as well as by phosphorylation on serine and sulfation on tyrosine and O-linked carbohydrate. As a result, this class of proteins has a high net negative charge even at the acidic pH of the trans Golgi cisternae. We discuss the possibility that this property of the proteins may point to a role in the packaging of regulatory peptides into secretory granules.

Journal Article•DOI•
TL;DR: The results indicate that the receptor is a transmembrane protein which has a restricted spatial distribution on the postsynaptic neuronal surface.
Abstract: The distribution of receptors for a neurotransmitter was investigated cytochemically for the first time in the central nervous system, at synapses established on cells of the ventral horn of the rat cervical spinal cord. Three monoclonal antibodies (mAb's) raised against glycine receptors were used. Immunofluorescent staining already showed discontinuous labeling at the surface of neurons, and immunoenzymatic electron microscopy further revealed that the antigenic determinants were confined to the postsynaptic membrane and concentrated at the level of the synaptic complex. More specifically, one mAb directed against the receptive subunit of the oligomeric receptor recognized an epitope on the extracellular side of the plasma membrane, whereas two other mAb's bound to the cytoplasmic face. Epitopes for the last two mAb's were more accurately localized with protein A-colloidal gold, using an intermediate rabbit anti-mouse immunoglobulin serum. (a) In addition to the presence of gold particles in areas facing the presynaptic active zone (visualized with ethanolic phosphotungstic acid), the labeling extended beyond this zone for approximately 50-60 nm, which corresponds to the width of one presynaptic dense projection. (b) The distances between the mid membrane and the gold particles were different for the two mAb's (with means of 21.7 +/- 8.5 nm and 29.8 +/- 10.4 nm, respectively). The data suggest that one of the recognized epitopes is close to the plasma membrane, whereas the second protrudes into the cytoplasm. Our results indicate that the receptor is a transmembrane protein which has a restricted spatial distribution on the postsynaptic neuronal surface.