scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cell Biology in 1986"


Journal Article•DOI•
TL;DR: Double immunofluorescent studies carried out with anti-alpha sm-1 and anti- desmin antibodies in several organs revealed a heterogeneity of stromal cells.
Abstract: A monoclonal antibody (anti-alpha sm-1) recognizing exclusively alpha-smooth muscle actin was selected and characterized after immunization of BALB/c mice with the NH2-terminal synthetic decapeptide of alpha-smooth muscle actin coupled to keyhole limpet hemocyanin. Anti-alpha sm-1 helped in distinguishing smooth muscle cells from fibroblasts in mixed cultures such as rat dermal fibroblasts and chicken embryo fibroblasts. In the aortic media, it recognized a hitherto unknown population of cells negative for alpha-smooth muscle actin and for desmin. In 5-d-old rats, this population is about half of the medial cells and becomes only 8 +/- 5% in 6-wk-old animals. In cultures of rat aortic media SMCs, there is a progressive increase of this cell population together with a progressive decrease in the number of alpha-smooth muscle actin-containing stress fibers per cell. Double immunofluorescent studies carried out with anti-alpha sm-1 and anti-desmin antibodies in several organs revealed a heterogeneity of stromal cells. Desmin-negative, alpha-smooth muscle actin-positive cells were found in the rat intestinal muscularis mucosae and in the dermis around hair follicles. Moreover, desmin-positive, alpha-smooth muscle actin-negative cells were identified in the intestinal submucosa, rat testis interstitium, and uterine stroma. alpha-Smooth muscle actin was also found in myoepithelial cells of mammary and salivary glands, which are known to express cytokeratins. Finally, alpha-smooth muscle actin is present in stromal cells of mammary carcinomas, previously considered fibroblastic in nature. Thus, anti-alpha sm-1 antibody appears to be a powerful probe in the study of smooth muscle differentiation in normal and pathological conditions.

1,640 citations


Journal Article•DOI•
TL;DR: Immunoblot analysis of Madin-Darby canine kidney cells demonstrates the presence of a polypeptide similar in molecular weight to that detected in liver, suggesting that this protein is potentially a ubiquitous component of all mammalian tight junctions.
Abstract: A tight junction-enriched membrane fraction has been used as immunogen to generate a monoclonal antiserum specific for this intercellular junction. Hybridomas were screened for their ability to both react on an immunoblot and localize to the junctional complex region on frozen sections of unfixed mouse liver. A stable hybridoma line has been isolated that secretes an antibody (R26.4C) that localizes in thin section images of isolated mouse liver plasma membranes to the points of membrane contact at the tight junction. This antibody recognizes a polypeptide of approximately 225,000 D, detectable in whole liver homogenates as well as in the tight junction-enriched membrane fraction. R26.4C localizes to the junctional complex region of a number of other epithelia, including colon, kidney, and testis, and to arterial endothelium, as assayed by immunofluorescent staining of cryostat sections of whole tissue. This antibody also stains the junctional complex region in confluent monolayers of the Madin-Darby canine kidney epithelial cell line. Immunoblot analysis of Madin-Darby canine kidney cells demonstrates the presence of a polypeptide similar in molecular weight to that detected in liver, suggesting that this protein is potentially a ubiquitous component of all mammalian tight junctions. The 225-kD tight junction-associated polypeptide is termed "ZO-1."

1,594 citations


Journal Article•DOI•
TL;DR: Keratin expression data suggest that the acidic 55K and basic 64K keratins represent markers for an advanced stage of corneal epithelial differentiation.
Abstract: In this paper we present keratin expression data that lend strong support to a model of corneal epithelial maturation in which the stem cells are located in the limbus, the transitional zone between cornea and conjunctiva. Using a new monoclonal antibody, AE5, which is highly specific for a 64,000-mol-wt corneal keratin, designated RK3, we demonstrate that this keratin is localized in all cell layers of rabbit corneal epithelium, but only in the suprabasal layers of the limbal epithelium. Analysis of cultured corneal keratinocytes showed that they express sequentially three major keratin pairs. Early cultures consisting of a monolayer of "basal" cells express mainly the 50/58K keratins, exponentially growing cells synthesize additional 48/56K keratins, and postconfluent, heavily stratified cultures begin to express the 55/64K corneal keratins. Cell separation experiments showed that basal cells isolated from postconfluent cultures contain predominantly the 50/58K pair, whereas suprabasal cells contain additional 55/64K and 48/56K pairs. Basal cells of the older, postconfluent cultures, however, can become AE5 positive, indicating that suprabasal location is not a prerequisite for the expression of the 64K keratin. Taken together, these results suggest that the acidic 55K and basic 64K keratins represent markers for an advanced stage of corneal epithelial differentiation. The fact that epithelial basal cells of central cornea but not those of the limbus possess the 64K keratin therefore indicates that corneal basal cells are in a more differentiated state than limbal basal cells. These findings, coupled with the known centripetal migration of corneal epithelial cells, strongly suggest that corneal epithelial stem cells are located in the limbus, and that corneal basal cells correspond to "transient amplifying cells" in the scheme of "stem cells----transient amplifying cells----terminally differentiated cells."

1,393 citations


Journal Article•DOI•
TL;DR: Investigation of the connective tissue matrices of skin, lung, kidney, vasculature, cartilage, tendon, muscle, cornea, and ciliary zonule demonstrated its widespread distribution, and immunolocalization suggested that fibrillin is arrayed periodically along the individual microfibril and that individualmicrofibrils may be aligned within bundles.
Abstract: A new connective tissue protein, which we call fibrillin, has been isolated from the medium of human fibroblast cell cultures. Electrophoresis of the disulfide bond-reduced protein gave a single band with an estimated molecular mass of 350,000 D. This 350-kD protein appeared to possess intrachain disulfide bonds. It could be stained with periodic acid-Schiff reagent, and after metabolic labeling, it contained [3H]glucosamine. It could not be labeled with [35S]sulfate. It was resistant to digestion by bacterial collagenase. Using mAbs specific for fibrillin, we demonstrated its widespread distribution in the connective tissue matrices of skin, lung, kidney, vasculature, cartilage, tendon, muscle, cornea, and ciliary zonule. Electron microscopic immunolocalization with colloidal gold conjugates specified its location to a class of extracellular structural elements described as microfibrils. These microfibrils possessed a characteristic appearance and averaged 10 nm in diameter. Microfibrils around the amorphous cores of the elastic fiber system as well as bundles of microfibrils without elastin cores were labeled equally well with antibody. Immunolocalization suggested that fibrillin is arrayed periodically along the individual microfibril and that individual microfibrils may be aligned within bundles. The periodicity of the epitope appeared to match the interstitial collagen band periodicity. In contrast, type VI collagen, which has been proposed as a possible microfibrillar component, was immunolocalized with a specific mAb to small diameter microfilaments that interweave among the large, banded collagen fibers; it was not associated with the system of microfibrils identified by the presence of fibrillin.

1,063 citations


Journal Article•DOI•
TL;DR: I measured the rate of elongation at the barbed and pointed ends of actin filaments by electron microscopy with Limulus sperm acrosomal processes as nuclei to show that the nucleotide composition at or near the end of the growing filament is either the same over this range of growth rates or has no detectable effect on the rate constants.
Abstract: I measured the rate of elongation at the barbed and pointed ends of actin filaments by electron microscopy with Limulus sperm acrosomal processes as nuclei. With improvements in the mechanics of the assay, it was possible to measure growth rates from 0.05 to 280 s-1. At 22 degrees C in 1 mM MgCl2, 10 mM imidazole (pH 7), 0.2 mM ATP with 1 mM EGTA or 50 microM CaCl2 or with EGTA and 50 mM KCl, the elongation rates at both ends have a linear dependence on the ATP-actin concentration from the critical concentration to 20 microM. Consequently, over a wide range of subunit addition rates, the rate constants for association and dissociation of ATP-actin are constant. This shows that the nucleotide composition at or near the end of the growing filament is either the same over this range of growth rates or has no detectable effect on the rate constants. Under conditions where polymerization is fastest (MgCl2 + KCl + EGTA) the rate constants have these values: (table; see text) Compared with ATP-actin, ADP-actin associates slower at both ends, dissociates faster from the barbed end, but dissociates slower from the pointed end. Taking into account the events at both ends, these constants and a simple Oosawa-type model account for the complex three-phase dependence of the rate of polymerization in bulk samples on the concentration of ATP-actin monomers observed by Carlier, M.-F., D. Pantaloni, and E. D. Korn (1985, J. Biol. Chem., 260:6565-6571). These constants can also be used to predict the reactions at steady state in ATP. There will be slow subunit flux from the barbed end to the pointed end. There will also be minor fluctuations in length at the barbed end due to occasional rapid dissociation of strings of ADP subunits but the pointed end will be relatively stable.

839 citations


Journal Article•DOI•
TL;DR: It is proposed that the association of BiP with Ig heavy chain precursors is a novel posttranslational processing event occurring in the endoplasmic reticulum and may prevent the premature escape and eventual secretion of incompletely assembled Ig molecules.
Abstract: A rat monoclonal antibody specific for immunoglobulin (Ig) heavy chain binding protein (BiP) has allowed the examination of the association of BiP with assembling Ig precursors in mouse B lymphocyte-derived cell lines. The anti-BiP monoclonal antibody immunoprecipitates BiP along with noncovalently associated Ig heavy chains. BiP is a component of the endoplasmic reticulum and binds free intracellular heavy chains in nonsecreting pre-B (mu+, L-) cell lines or incompletely assembled Ig precursors in (H+, L+) secreting hybridomas and myelomas. In the absence of light chain synthesis, heavy chains remain associated with BiP and are not secreted. The association of BiP with assembling Ig molecules in secreting hybridomas is transient and is restricted to the incompletely assembled molecules which are found in the endoplasmic reticulum. BiP loses affinity and disassociates with Ig molecules when polymerization with light chain is complete. We propose that the association of BiP with Ig heavy chain precursors is a novel posttranslational processing event occurring in the endoplasmic reticulum. The Ig heavy chains associated with BiP are not efficiently transported from the endoplasmic reticulum to the Golgi apparatus. Therefore, BiP may prevent the premature escape and eventual secretion of incompletely assembled Ig molecules.

822 citations


Journal Article•DOI•
TL;DR: The results indicate that preganglionic neurons can survive in the absence of their target cells and that several aspects of their differentiation in the presence of target appear normal.
Abstract: A prerequisite for many studies of neurons in culture is a means of determining their original identity. We needed such a technique to study the interactions in vitro between a class of spinal cord neurons, sympathetic preganglionic neurons, and their normal target, neurons from the sympathetic chain. Here, we describe how we use two highly fluorescent carbocyanine dyes, which differ in color but are otherwise similar, to identify neurons in culture. The long carbon chain carbocyanine dyes we use are lipid-soluble and so become incorporated into the plasma membrane. Neurons can be labeled either retrogradely or during dissociation. Some of the labeled membrane gradually becomes internalized and retains its fluorescence, allowing identification of cells for several weeks in culture. These dyes do not affect the survival, development, or basic physiological properties of neurons and do not spread detectably from labeled to unlabeled neurons. It seems likely that cells become retrogradely labeled mainly by lateral diffusion of dye in the plane of the membrane. If so, carbocyanine dyes may be most useful for retrograde labeling over relatively short distances. An additional feature of carbocyanine labeling is that neuronal processes are brightly fluorescent for the first few days in culture, presumably because dye rapidly diffuses into newly inserted membrane. We have used carbocyanine dyes to identify sympathetic preganglionic neurons in culture. Our results indicate that preganglionic neurons can survive in the absence of their target cells and that several aspects of their differentiation in the absence of target appear normal.

802 citations


Journal Article•DOI•
TL;DR: Immunofluorescence shows that tau protein microinjected into fibroblast cells associates specifically with microtubules, and this increased polymerization does not, however, cause major changes in cell morphology or microtubule arrangement.
Abstract: Tau protein from mammalian brain promotes microtubule polymerization in vitro and is induced during nerve cell differentiation. However, the effects of tau or any other microtubule-associated protein on tubulin assembly within cells are presently unknown. We have tested tau protein activity in vivo by microinjection into a cell type that has no endogenous tau protein. Immunofluorescence shows that tau protein microinjected into fibroblast cells associates specifically with microtubules. The injected tau protein increases tubulin polymerization and stabilizes microtubules against depolymerization. This increased polymerization does not, however, cause major changes in cell morphology or microtubule arrangement. Thus, tau protein acts in vivo primarily to induce tubulin assembly and stabilize microtubules, activities that may be necessary, but not sufficient, for neuronal morphogenesis.

727 citations


Journal Article•DOI•
TL;DR: Northern blot analysis indicated that brain, kidney, and stomach express an mRNA with similar size and homology to that expressed in liver, but that heart and lens express differently sized, less homologous mRNA.
Abstract: An affinity-purified antibody directed against the 27-kD protein associated with isolated rat liver gap junctions was produced. Light and electron microscopic immunocytochemistry showed that this antigen was localized specifically to the cytoplasmic surfaces of gap junctions. The antibody was used to select cDNA from a rat liver library in the expression vector lambda gt11. The largest cDNA selected contained 1,494 bp and coded for a protein with a calculated molecular mass of 32,007 daltons. Northern blot analysis indicated that brain, kidney, and stomach express an mRNA with similar size and homology to that expressed in liver, but that heart and lens express differently sized, less homologous mRNA.

679 citations


Journal Article•DOI•
TL;DR: The finding that p38, like synapsin I, is a component of SSVs of virtually all neurons, but not of LDCVs, supports the idea that SSVs and LDCV are organelles of two distinct pathways for regulated neuronal secretion.
Abstract: An intrinsic membrane protein of brain synaptic vesicles with Mr 38,000 (p38, synaptophysin) has recently been partially characterized (Jahn, R., W. Schiebler, C. Ouimet, and P. Greengard, 1985, Proc. Natl. Acad. Sci. USA, 83:4137-4141; Wiedenmann, B., and W. W. Franke, 1985, Cell, 41:1017-1028). We have now studied the presence of p38 in a variety of tissues by light and electron microscopy immunocytochemistry and by immunochemistry. Our results indicate that, within the nervous system, p38, like the neuron-specific phosphoprotein synapsin I, is present in virtually all nerve terminals and is selectively associated with small synaptic vesicles (SSVs). No p38 was detectable on large dense-core vesicles (LDCVs). p38 and synapsin I were found to be present in similar concentrations throughout the brain. Outside the nervous system, p38 was found in a variety of neuroendocrine cells, but not in any other cell type. In neuroendocrine cells p38 was localized on a pleiomorphic population of small, smooth-surfaced vesicles, which were interspersed among secretory granules and concentrated in the Golgi area, but not on the secretory granules themselves. Immunoblot analysis of endocrine tissues and cell lines revealed a band with a mobility slightly different from that of neuronal p38. This difference was attributable to a difference in glycosylation. The finding that p38, like synapsin I, is a component of SSVs of virtually all neurons, but not of LDCVs, supports the idea that SSVs and LDCVs are organelles of two distinct pathways for regulated neuronal secretion. In addition, our results indicate the presence in a variety of neuroendocrine cells of an endomembrane system, which is related to SSVs of neurons but is distinct from secretory granules.

670 citations


Journal Article•DOI•
TL;DR: It is concluded that microtubules and the ER are highly interdependent in two ways: polymerization of individual micro Tubules and extension of individual ER tubules occur together at the level of resolution of the fluorescence microscope, and depolymerization of micro Tubule leads to a slow retraction of the ER network towards the cell center, indicating that over longer periods of time, the extended state of the entire ER network requires the microtubule system.
Abstract: The interrelationships of the endoplasmic reticulum (ER), microtubules, and intermediate filaments were studied in the peripheral regions of thin, spread fibroblasts, epithelial, and vascular endothelial cells in culture We combined a fluorescent dye staining technique to localize the ER with immunofluorescence to localize microtubules or intermediate filaments in the same cell Microtubules and the ER are sparse in the lamellipodia, but intermediate filaments are usually completely absent These relationships indicate that microtubules and the ER advance into the lamellipodia before intermediate filaments We observed that microtubules and tubules of the ER have nearly identical distributions in lamellipodia, where new extensions of both are taking place We perturbed microtubules by nocodazole, cold temperature, or hypotonic shock, and observed the effects on the ER distribution On the basis of our observations in untreated cells and our experiments with microtubule perturbation, we conclude that microtubules and the ER are highly interdependent in two ways: (a) polymerization of individual microtubules and extension of individual ER tubules occur together at the level of resolution of the fluorescence microscope, and (b) depolymerization of microtubules does not disrupt the ER network in the short term (15 min), but prolonged absence of microtubules (2 h) leads to a slow retraction of the ER network towards the cell center, indicating that over longer periods of time, the extended state of the entire ER network requires the microtubule system

Journal Article•DOI•
TL;DR: Two monoclonal antibodies are used to isolate cDNA clones of thrombospondin from a human endothelial cell cDNA library and the complete nucleotide sequence of the coding region is determined.
Abstract: Thrombospondin is one of a class of adhesive glycoproteins that mediate cell-to-cell and cell-to-matrix interactions. We have used two monoclonal antibodies to isolate cDNA clones of thrombospondin from a human endothelial cell cDNA library and have determined the complete nucleotide sequence of the coding region. Three regions of known amino acid sequence of human platelet thrombospondin confirm that the clones are authentic. Three types of repeating amino acid sequence are present in thrombospondin. The first is 57 amino acids long and shows homology with circumsporozoite protein from Plasmodium falciparum. The second is 50-60 amino acids long and shows homology with epidermal growth factor precursor. The third occurs as a continuous eightfold repeat of a 38-residue sequence; structural homology with parvalbumin and calmodulin indicates that these repeats constitute the multiple calcium-binding sites of thrombospondin. The amino acid sequence arg-gly-asp-ala is included in the last type 3 repeat. This sequence is probably the site for the association of thrombospondin with cells. In addition, localized homologies with procollagen, fibronectin, and von Willebrand factor are present in one region of the thrombospondin molecule.

Journal Article•DOI•
TL;DR: The construction and characterization of a murine monoclonal antibody specific for type VII collagen is reported, which demonstrates metal deposition upon anchoring fibrils at both ends of these structures, as predicted by the location of the epitope ontype VII collagen.
Abstract: Anchoring fibrils are specialized fibrous structures found in the subbasal lamina underlying epithelia of several external tissues. Based upon their sensitivity to collagenase and the similarity in banding pattern to artificially created segment-long spacing crystallites (SLS) of collagens, several authors have suggested that anchoring fibrils are lateral aggregates of collagenous macromolecules. We recently reported the similarity in length and banding pattern of anchoring fibrils to type VII collagen SLS crystallites. We now report the construction and characterization of a murine monoclonal antibody specific for type VII collagen. The epitope identified by this antibody has been mapped to the carboxyl terminus of the major helical domain of this molecule. The presence of type VII collagen as detected by indirect immunofluorescence in a variety of tissues corresponds exactly with ultrastructural observations of anchoring fibrils. Ultrastructural immunolocalization of type VII collagen using a 5-nm colloidal gold-conjugated second antibody demonstrates metal deposition upon anchoring fibrils at both ends of these structures, as predicted by the location of the epitope on type VII collagen. Type VII collagen is synthesized by primary cultures of amniotic epithelial cells. It is also produced by KB cells (an epidermoid carcinoma cell line) and WISH (a transformed amniotic cell line).

Journal Article•DOI•
TL;DR: The data suggest that platelet-mediated proliferation of aortic smooth muscle cells in vivo may not result solely from the stimulatory effect of Platelet-derived growth factor (PDGF), but rather from an interaction of platelet factors which has the intrinsic ability to limit as well as stimulate mitosis.
Abstract: A specific radioimmunoassay for type beta transforming growth factor (TGF-beta) was developed and used to show that human platelets treated with thrombin release TGF-beta as a consequence of degranulation. The thrombin concentrations required to induce release of TGF-beta parallel those concentrations that release the alpha-granule marker, beta-thromboglobulin. Related studies showed that TGF-beta acts on early passage, explant cultures of bovine aortic smooth muscle cells by inhibiting the effect of mitogens on proliferation of subconfluent cell monolayers yet synergizing with mitogens to stimulate growth of the same cells when cultured in soft agar. The results show that primary cultures of bovine aortic smooth muscle cells and established normal rat kidney cells behave similarly with regard to TGF-beta action. Moreover, the data suggest that platelet-mediated proliferation of aortic smooth muscle cells in vivo may not result solely from the stimulatory effect of platelet-derived growth factor (PDGF), but rather from an interaction of platelet factors which has the intrinsic ability to limit as well as stimulate mitosis.

Journal Article•DOI•
TL;DR: It is shown, using double-label indirect immunofluorescence analysis, that much of the perinuclear and cell perimeter-distributed 72-kD protein coincides with the distribution of the cytoplasmic ribosomes.
Abstract: We have examined and compared a number of cellular and biochemical events associated with the recovery process of rat fibroblasts placed under stress by different agents. Metabolic pulse-labeling studies of cells recovering from either heat-shock treatment, exposure to sodium arsenite, or exposure to an amino acid analogue of proline, L-azetidine 2-carboxylic acid, revealed interesting differences with respect to the individual stress proteins produced, their kinetics of induction, as well as the decay in their synthesis during the recovery period. In the initial periods of recovery, the major stress-induced 72-kD protein accumulates within the altered nucleoli in close association with the pre-ribosomal-containing granular region. During the later times of recovery from stress, the nucleoli begin to regain a normal morphology, show a corresponding loss of the 72-kD protein, and the majority of the protein now begins to accumulate within the cytoplasm in three distinct locales: the perinuclear region, along the perimeter of the cells, and finally in association with large phase-dense structures. These latter structures appear to consist of large aggregates of phase-dense material with no obvious encapsulating membrane. More interestingly we show, using double-label indirect immunofluorescence analysis, that much of the perinuclear and cell perimeter-distributed 72-kD protein coincides with the distribution of the cytoplasmic ribosomes. We discuss the possible implications of the presence of the 72-kD stress proteins within the pre-ribosomal-containing granular region of the nucleolus as well as its subsequent colocalization with cytoplasmic ribosomes in terms of the translational changes which occur in cells both during and after recovery from physiological stress.

Journal Article•DOI•
TL;DR: A functional assay has been developed to identify cell surface proteins involved in the formation of epithelial tight junctions and the role of uvomorulin-like and liver cell adhesion molecule (L-CAM)-like polypeptides in the establishment of the epithelial occluding barrier is discussed.
Abstract: A functional assay has been developed to identify cell surface proteins involved in the formation of epithelial tight junctions. Transepithelial electrical resistance was used to measure the presence of intact tight junctions in monolayers of Madin-Darby canine kidney (MDCK) cells cultured on nitrocellulose filters. The strain I MDCK cells used have a transmonolayer resistance greater than 2,000 ohm . cm2. When the monolayers were incubated at 37 degrees C without Ca2+, the intercellular junctions opened and the transmonolayer resistance dropped to the value of a bare filter, i.e., less than 40 ohm . cm2. When Ca2+ was restored, the cell junctions resealed and the resistance recovered rapidly. Polyclonal antibodies raised against intact MDCK cells inhibited the Ca2+-dependent recovery of electrical resistance when applied to monolayers that had been opened by Ca2+ removal. Cross-linking of cell surface molecules was not required because monovalent Fab' fragments also inhibited. In contrast, a variety of other antibodies that recognize specific proteins on the MDCK cell surface failed to inhibit the recovery of resistance. Monoclonal antibodies have been raised and screened for their ability to inhibit resistance recovery. One such monoclonal antibody has been obtained that stained the lateral surface of MDCK cells. This antibody, rr1, recognized a 118-kD polypeptide in MDCK cell extracts and an 81-kD fragment released from the cell surface by trypsinization in the presence of Ca2+. Sequential immunoprecipitation with antibody rr1 and a monoclonal antibody to uvomorulin showed that this polypeptide is related to uvomorulin. The role of uvomorulin-like and liver cell adhesion molecule (L-CAM)-like polypeptides in the establishment of the epithelial occluding barrier is discussed.

Journal Article•DOI•
TL;DR: These studies show that axon-Schwann cell interactions are characterized by the sequential appearance of cell adhesion molecules and MBP apparently coordinated in time and space.
Abstract: The cellular and subcellular localization of the neural cell adhesion molecules L1, N-CAM, and myelin-associated glycoprotein (MAG), their shared carbohydrate epitope L2/HNK-1, and the myelin basic protein (MBP) were studied by pre- and post-embedding immunoelectron microscopic labeling procedures in developing mouse sciatic nerve. L1 and N-CAM showed a similar staining pattern. Both were localized on small, non-myelinated, fasciculating axons and axons ensheathed by non-myelinating Schwann cells. Schwann cells were also positive for L1 and N-CAM in their non-myelinating state and at the onset of myelination, when the Schwann cell processes had turned approximately 1.5 loops. Thereafter, neither axon nor Schwann cell could be detected to express the L1 antigen, whereas N-CAM was found in the periaxonal area and, more weakly, in compact myelin of myelinated fibers. Compact myelin, Schmidt-Lanterman incisures, paranodal loops, and finger-like processes of Schwann cells at nodes of Ranvier were L1-negative. At the nodes of Ranvier, the axolemma was also always L1- and N-CAM-negative. The L2/HNK-1 carbohydrate epitope coincided in its cellular and subcellular localization most closely to that observed for L1. MAG appeared on Schwann cells at the time L1 expression ceased. MAG was then expressed at sites of axon-myelinating Schwann cell apposition and non-compacted loops of developing myelin. When compaction of myelin occurred, MAG remained present only at the axon-Schwann cell interface; Schmidt-Lanterman incisures, inner and outer mesaxons, and paranodal loops, but not at finger-like processes of Schwann cells at nodes of Ranvier or compacted myelin. All three adhesion molecules and the L2/HNK-1 epitope could be detected in a non-uniform staining pattern in basement membrane of Schwann cells and collagen fibrils of the endoneurium. MBP was detectable in compacted myelin, but not in Schmidt-Lanterman incisures, inner and outer mesaxon, paranodal loops, and finger-like processes at nodes of Ranvier, nor in the periaxonal regions of myelinated fibers, thus showing a complementary distribution to MAG. These studies show that axon-Schwann cell interactions are characterized by the sequential appearance of cell adhesion molecules and MBP apparently coordinated in time and space. From this sequence it may be deduced that L1 and N-CAM are involved in fasciculation, initial axon-Schwann cell interaction, and onset of myelination, with MAG to follow and MBP to appear only in compacted myelin. In contrast to L1, N-CAM may be further involved in the maintenance of compact myelin and axon-myelin apposition of larger diameter axons.

Journal Article•DOI•
TL;DR: The results indicate that the two cell lines possess specific binding sites for plasminogen and urokinase, and a family of widely distributed cellular receptors for these components may be considered.
Abstract: The capacity of cells to interact with the plasminogen activator, urokinase, and the zymogen, plasminogen, was assessed using the promyeloid leukemic U937 cell line and the diploid fetal lung GM1380 fibroblast cell line. Urokinase bound to both cell lines in a time-dependent, specific, and saturable manner (Kd = 0.8-2.0 nM). An active catalytic site was not required for urokinase binding to the cells, and 55,000-mol-wt urokinase was selectively recognized. Plasminogen also bound to the two cell lines in a specific and saturable manner. This interaction occurred with a Kd of 0.8-0.9 microM and was of very high capacity (1.6-3.1 X 10(7) molecules bound/cell). The interaction of plasminogen with both cell types was partially sensitive to trypsinization of the cells and required an unoccupied high affinity lysine-binding site in the ligand. When plasminogen was added to the GM1380 cells, a line with high intrinsic plasminogen activator activity, the bound ligand was comprised of both plasminogen and plasmin. Urokinase, in catalytically active or inactive form, enhanced plasminogen binding to the two cell lines by 1.4-3.3-fold. Plasmin was the predominant form of the bound ligand when active urokinase was added, and preformed plasmin can also bind directly to the cells. Plasmin on the cell surface was also protected from its primary inhibitor, alpha 2-antiplasmin. These results indicate that the two cell lines possess specific binding sites for plasminogen and urokinase, and a family of widely distributed cellular receptors for these components may be considered. Endogenous or exogenous plasminogen activators can generate plasmin on cell surfaces, and such activation may provide a mechanism for arming cell surfaces with the broad proteolytic activity of this enzyme.

Journal Article•DOI•
TL;DR: The results suggested that differential expression of multiple classes of cadherins play a role in implantation and morphogenesis of embryos by providing cells with heterogenous adhesive specificity.
Abstract: The Ca2+-dependent cell adhesion molecules, termed cadherins, were previously divided into two subclasses, E- and N-types, with different adhesive specificity. In this study, we identified a novel class of cadherin, termed P-cadherin, using a visceral endoderm cell line PSA5-E. This cadherin was a 118,000-D glycoprotein and distinct from E- and N-cadherins in immunological specificity and molecular mass. In accord with these findings, cells with P-cadherin did not cross-adhere with cells with E-cadherin. P-Cadherin first appeared in developing mouse embryos in the extraembryonic ectoderm and the visceral endoderm at the egg cylinder stage and later was expressed in various tissues. The placenta and the uterine decidua most abundantly expressed this cadherin. The expression of P-cadherin was transient in many tissues, and its permanent expression was limited to certain tissues such as the epidermis, the mesothelium, and the corneal endothelium. When the tissue distribution of P-cadherin was compared with that of E-cadherin, we found that: each cadherin displayed a unique spatio-temporal pattern of expression; P-cadherin was co-expressed with E-cadherin in local regions of various tissues; and onset or termination of expression of P-cadherin was closely associated with connection or segregation of cell layers, as found with other cadherins. These results suggested that differential expression of multiple classes of cadherins play a role in implantation and morphogenesis of embryos by providing cells with heterogenous adhesive specificity.

Journal Article•DOI•
TL;DR: The results indicate that growth factors modulate the proteolytic balance of cultured cells by altering the amounts of PAs and their inhibitors.
Abstract: Cultured human embryonic lung fibroblasts were used as a model to study the effects of transforming growth factor-beta (TGF beta) on the plasminogen activator (PA) activity released by nontumorigenic cells into the culture medium. The cells were exposed to TGF beta under serum-free conditions, and the changes in PA activity and protein metabolism were analyzed by caseinolysis-in-agar assays, zymography, and polypeptide analysis. Treatment of the cells with TGF beta caused a significant decrease in the PA activity of the culture medium as analyzed by the caseinolysis-in-agar assays. The quantitatively most prominent effect of TGF beta on confluent cultures of cells was the induction of an Mr 47,000 protein, as detected by metabolic labeling. The Mr 47,000 protein was a PA inhibitor as judged by reverse zymography. It was antigenically related to a PA inhibitor secreted by HT-1080 tumor cells as demonstrated with monoclonal antibodies. The induced Mr 47,000 inhibitor was deposited into the growth substratum of the cells, as detected by metabolic labeling, immunoblotting analysis, and reverse zymography assays of extracellular matrix preparations. TGF beta also decreased the amounts of urokinase-type and tissue-type PAs accumulated in the conditioned medium, as detected by zymography. Epidermal growth factor antagonized the inhibitory effects of TGF beta by enhancing the amounts of the PAs. These results indicate that growth factors modulate the proteolytic balance of cultured cells by altering the amounts of PAs and their inhibitors.

Journal Article•DOI•
TL;DR: Southern blot analysis indicates that the gap junction gene is present as a single copy, and that it can be detected in a variety of organisms using the human liver cDNA as a probe.
Abstract: An extended synthetic oligonucleotide (58-mer) has been used to identify and characterize a human liver gap junction cDNA. The cDNA is 1,574 bases long and contains the entire coding region for a gap junction protein. In vitro translation of the RNA products of this cDNA is consistent with it coding for a 32,022-D protein. Southern blot analysis indicates that the gap junction gene is present as a single copy, and that it can be detected in a variety of organisms using the human liver cDNA as a probe. The human cDNA has been used to screen a rat liver cDNA library, and a rat liver junction cDNA clone has been isolated. The rat liver clone is 1,127 bases in length, and it has strong sequence homology to the human cDNA in the protein-coding region, but less extensive homology in the 3'-untranslated region.

Journal Article•DOI•
TL;DR: It is demonstrated that cultured vascular SMCs undergo differential expression of isoactins in relation to their growth state and indicate that growth arrest promotes cytodifferentiation in these cells.
Abstract: The relationship between growth and cytodifferentiation was studied in cultured rat aortic smooth muscle cells (SMCs) using expression of the smooth muscle (SM)-specific isoactins (Vanderkerckhove, J., and K. Weber, 1979, Differentiation, 14:123-133) as a marker for differentiation in these cells. Isoactin expression was evaluated by: (a) measurements of fractional isoactin content and synthesis ([35S]methionine incorporation) by densitometric evaluation of two-dimensional isoelectric focusing sodium dodecyl sulfate gels, and (b) immunocytological examination using SM-specific isoactin antibodies. Results showed the following: (a) Loss of alpha-SM isoactin was not a prerequisite for initiation of cellular proliferation in primary cultures of rat aortic SMCs. (b) alpha-SM isoactin synthesis and content were low in subconfluent log phase growth cells but increased nearly threefold in density-arrested postconfluent cells. Conversely, beta-nonmuscle actin synthesis and content were higher in rapidly dividing subconfluent cultures than in quiescent postconfluent cultures. These changes were observed in primary and subpassaged cultures. (c) alpha-SM actin synthesis was increased by growth arrest of sparse cultures in serum-free medium (SFM; Libby, P., and K. V. O'Brien, 1983, J. Cell. Physiol., 115:217-223) but reached levels equivalent to density-arrested cells only after extended periods in SFM (i.e., greater than 5 d). (d) SFM did not further augment alpha-SM actin synthesis in postconfluent SMC cultures. (e) Serum stimulation of cells that had been growth-arrested in SFM resulted in a dramatic decrease in alpha-SM actin synthesis that preceded the onset of cellular proliferation. These findings demonstrate that cultured vascular SMCs undergo differential expression of isoactins in relation to their growth state and indicate that growth arrest promotes cytodifferentiation in these cells.

Journal Article•DOI•
TL;DR: Results suggest that, for some cell types, regulation of the adhesion-promoting activity of fibronectin may occur by alternative mRNA splicing.
Abstract: We have compared the molecular specificities of the adhesive interactions of melanoma and fibroblastic cells with fibronectin. Several striking differences were found in the sensitivity of the two cell types to inhibition by a series of synthetic peptides modeled on the Arg-Gly-Asp-Ser (RGDS) tetrapeptide adhesion signal. Further evidence for differences between the melanoma and fibroblastic cell adhesion systems was obtained by examining adhesion to proteolytic fragments of fibronectin. Fibroblastic BHK cells spread readily on fl3, a 75-kD fragment representing the RGDS-containing, "cell-binding" domain of fibronectin, but B16-F10 melanoma cells could not. The melanoma cells were able to spread instead on f9, a 113-kD fragment derived from the large subunit of fibronectin that contains at least part of the type III connecting segment difference region (or "V" region); f7, a fragment from the small fibronectin subunit that lacks this alternatively spliced polypeptide was inactive. Monoclonal antibody and fl3 inhibition experiments confirmed the inability of the melanoma cells to use the RGDS sequence; neither molecule affected melanoma cell spreading, but both completely abrogated fibroblast adhesion. By systematic analysis of a series of six overlapping synthetic peptides spanning the entire type III connecting segment, a novel attachment site was identified in a peptide near the COOH-terminus of this region. The tetrapeptide sequence Arg-Glu-Asp-Val (REDV), which is somewhat related to RGDS, was present in this peptide in a highly hydrophilic region of the type III connecting segment. REDV appeared to be functionally important, since this synthetic tetrapeptide was inhibitory for melanoma cell adhesion to fibronectin but was inactive for fibroblastic cell adhesion. REDV therefore represents a novel adhesive recognition signal in fibronectin that possesses cell type specificity. These results suggest that, for some cell types, regulation of the adhesion-promoting activity of fibronectin may occur by alternative mRNA splicing.

Journal Article•DOI•
TL;DR: Assessment of the effects of cytochalasin D on occluding junction function and structure in guinea pig ileum shows that CD-induced perturbation of the absorptive cell cytoskeleton results in production of a transepithelial shunt which is fully explained by a defect in the transjunctional pathway.
Abstract: Intestinal absorptive cells may modulate both the structure and function of occluding junctions by a cytoskeleton dependent mechanism (Madara, J. L., 1983, J. Cell Biol., 97:125-136). To further examine the putative relationship between absorptive cell occluding junctions and the cytoskeleton, we assessed the effects of cytochalasin D (CD) on occluding junction function and structure in guinea pig ileum using ultrastructural and Ussing chamber techniques. Maximal decrements in transepithelial resistance and junctional charge selectivity were obtained with 10 micrograms/ml CD and the dose-response curves for these two functional parameters were highly similar. Analysis of simultaneous flux studies of sodium and the nonabsorbable extracellular tracer mannitol suggested that CD opened a transjunctional shunt and that this shunt could fully account for the increase in sodium permeability and thus the decrease in resistance. Structural studies including electron microscopy of detergent-extracted cytoskeletal preparations revealed that 10 micrograms/ml CD produced condensation of filamentous elements of the peri-junctional contractile ring and that this was associated with brush border contraction as assessed by scanning electron microscopy. Quantitative freeze-fracture studies revealed marked aberrations in absorptive cell occluding junction structure including diminished strand number, reduced strand-strand cross-linking, and failure of strands to impede the movement of intramembrane particles across them. In aggregate these studies show that CD-induced perturbation of the absorptive cell cytoskeleton results in production of a transepithelial shunt which is fully explained by a defect in the transjunctional pathway. Furthermore, substantial structural abnormalities in occluding junction structure accompany this response. Lastly, the abnormalities in occluding junction structure and function coincide with structural changes in and contraction of the peri-junctional actin-myosin ring. These data suggest that a functionally relevant association may exist between the cytoskeleton and the occluding junction of absorptive cells. We speculate that such an association may serve as a mechanism by which absorptive cells regulate paracellular transport.

Journal Article•DOI•
TL;DR: The results suggest that topoisomerase II is not required for transcription in higher eukaryotes, but that it may function during DNA replication, and that it is a sensitive and specific marker for proliferating cells.
Abstract: We have used an antibody probe to measure the levels of topoisomerase II in several transformed and developmentally regulated normal cell types. Transformed cells contain roughly 1 X 10(6) copies of the enzyme. During erythropoiesis in chicken embryos the enzyme level drops from 7.8 X 10(4) copies per erythroblast to less than 300 copies per erythrocyte concomitant with the cessation of mitosis in the blood. Cultured myoblasts also lose topoisomerase II upon fusion into nonproliferating myotubes. When peripheral blood lymphocytes (which lack detectable topoisomerase II) commence proliferation, they express topoisomerase II de novo. Appearance of the enzyme exactly parallels the onset of DNA replication. These results suggest that topoisomerase II is not required for transcription in higher eukaryotes, but that it may function during DNA replication. Furthermore, topoisomerase II is a sensitive and specific marker for proliferating cells.

Journal Article•DOI•
TL;DR: Visualizing the nuclear matrix using resinless sections shows that nuclear RNA plays an important role in matrix organization.
Abstract: The nonchromatin structure or matrix of the nucleus has been studied using an improved fractionation in concert with resinless section electron microscopy. The resinless sections show the nucleus of the intact cell to be filled with a dense network or lattice composed of soluble proteins and chromatin in addition to the structural nuclear constituents. In the first fractionation step, soluble proteins are removed by extraction with Triton X-100, and the dense nuclear lattice largely disappears. Chromatin and nonchromatin nuclear fibers are now sharply imaged. Nuclear constituents are further separated into three well-defined, distinct protein fractions. Chromatin proteins are those that require intact DNA for their association with the nucleus and are released by 0.25 M ammonium sulfate after internucleosomal DNA is cut with DNAase I. The resulting structure retains most heterogeneous nuclear ribonucleoprotein (hnRNP) and is designated the RNP-containing nuclear matrix. The proteins of hnRNP are those associated with the nucleus only if RNA is intact. These are released when nuclear RNA is briefly digested with RNAase A. Ribonuclease digestion releases 97% of the hnRNA and its associated proteins. These proteins correspond to the hnRNP described by Pederson (Pederson, T., 1974, J. Mol. Biol., 83:163-184) and are distinct from the proteins that remain in the ribonucleoprotein (RNP)-depleted nuclear matrix. The RNP-depleted nuclear matrix is a core structure that retains lamins A and C, the intermediate filaments, and a unique set of nuclear matrix proteins (Fey, E. G., K. M. Wan, and S. Penman, 1984, J. Cell Biol. 98:1973-1984). This core had been previously designated the nuclear matrix-intermediate filament scaffold and its proteins are a third, distinct, and nonoverlapping subset of the nuclear nonhistone proteins. Visualizing the nuclear matrix using resinless sections shows that nuclear RNA plays an important role in matrix organization. Conventional Epon-embedded electron microscopy sections show comparatively little of the RNP-containing and RNP-depleted nuclear matrix structure. In contrast, resinless sections show matrix interior to be a three-dimensional network of thick filaments bounded by the nuclear lamina. The filaments are covered with 20-30-nm electron dense particles which may contain the hnRNA. The large electron dense bodies, enmeshed in the interior matrix fibers, have the characteristic morphology of nucleoli. Treatment of the nuclear matrix with RNAase results in the aggregation of the interior fibers and the extensive loss of the 20-30-nm particles.(ABSTRACT TRUNCATED AT 400 WORDS)

Journal Article•DOI•
TL;DR: Investigation of the kinetics and cellular location of the assembly reaction that results in HA0 trimerization suggested that formation of correctly folded quaternary structure constitutes a key event regulating the transport of the protein out of the endoplasmic reticulum.
Abstract: The hemagglutinin (HA) of influenza virus is a homotrimeric integral membrane glycoprotein. It is cotranslationally inserted into the endoplasmic reticulum as a precursor called HA0 and transported to the cell surface via the Golgi complex. We have, in this study, investigated the kinetics and cellular location of the assembly reaction that results in HA0 trimerization. Three independent criteria were used for determining the formation of quaternary structure: the appearance of an epitope recognized by trimer-specific monoclonal antibodies; the acquisition of trypsin resistance, a characteristic of trimers; and the formation of stable complexes which cosedimented with the mature HA0 trimer (9S20,w) in sucrose gradients containing Triton X-100. The results showed that oligomer formation is a posttranslational event, occurring with a half time of approximately 7.5 min after completion of synthesis. Assembly occurs in the endoplasmic reticulum, followed almost immediately by transport to the Golgi complex. A stabilization event in trimer structure occurs when HA0 leaves the Golgi complex or reaches the plasma membrane. Approximately 10% of the newly synthesized HA0 formed aberrant trimers which were not transported from the endoplasmic reticulum to the Golgi complex or the plasma membrane. Taken together the results suggested that formation of correctly folded quaternary structure constitutes a key event regulating the transport of the protein out of the endoplasmic reticulum. Further changes in subunit interactions occur as the trimers move along the secretory pathway.

Journal Article•DOI•
TL;DR: The first demonstration that TGF beta is a potent regulator of myogenic differentiation is provided and it is suggested that T GF beta may play an important role in the control of tissue-specific gene expression during development.
Abstract: Type beta transforming growth factor (TGF beta) has been shown to be both a positive and negative regulator of cellular proliferation and differentiation. The effects of TGF beta also are cell-type specific and appear to be modulated by other growth factors. In the present study, we examined the potential of TGF beta for control of myogenic differentiation. In mouse C-2 myoblasts, TGF beta inhibited fusion and prevented expression of the muscle-specific gene products, creatine kinase and acetylcholine receptor. Differentiation of the nonfusing muscle cell line, BC2Hl, was also inhibited by TGF beta in a dose-dependent manner (ID50 approximately 0.5 ng/ml). TGF beta was not mitogenic for either muscle cell line, indicating that its inhibitory effects do not require cell proliferation. Inhibition of differentiation required the continual presence of TGF beta in the culture media. Removal of TGF beta led to rapid appearance of muscle proteins, which indicates that intracellular signals generated by TGF beta are highly transient and require continuous occupancy of the TGF beta receptor. Northern blot hybridization analysis using a muscle creatine kinase cDNA probe indicated that TGF beta inhibited differentiation at the level of muscle-specific mRNA accumulation. These results provide the first demonstration that TGF beta is a potent regulator of myogenic differentiation and suggest that TGF beta may play an important role in the control of tissue-specific gene expression during development.

Journal Article•DOI•
TL;DR: The major HSPs have been strongly conserved in structure through evolution, clearly indicating that they play a vital role in survival of the organism.
Abstract: Not so long ago, in the olden (golden ?) days, scientists interested in the biochemistry and cell biology of proteins attempted to explain an enzyme's catalytic and regulatory functions and the cytoskeleton's properties in terms of protein structure. But SDS PAGE, monoclonal antibodies, and cDNA libraries (nucleic acid sequences reverse transcribed from mRNAs and inserted into the genomes of bacteriophage or plasmids) changed things, and many of us now study proteins the other way around. We know structure, in the form of subunit molecular weights, isoelectric points, modifications by phosphate, sugars, methylations, etc., and in some cases, even primary sequences and the precise localization in the cell or tissue. What we search for is function. Such a search has been in progress over the past several years to discover what heat shock proteins (HSPs) l do. Here, I define an HSP by two criteria: (a) its synthesis is strongly stimulated by an environmental stress, in particular, that resulting from a change in temperature a few degrees centigrade above the normal physiological one, and (b) its gene contains a conserved sequence of 14 base pairs in the 5' noncoding region, the Pelham box (62). This sequence serves as the promoter for HSP mRNA transcription. The response of cells to a heat shock was first described about 25 years ago during a study of temperature effects on Drosophila embryos (65). A dramatic change was seen in the puffing pattern of polytene chromosomes in salivary glands, and this was later shown to be the result of very active gene transcription that led to the synthesis of a small set of proteins. For about 15 years, this selective induction of proteins by a heat shock was thought to be unique to the fly. In 1978, however, an analogous response in avian and mammalian tissue culture cells to heat shock was discovered in my laboratory (33), and others reported a similar activity in E. coli (39, 78) and Tetrahymena (21). Reports of proteins induced after heat shocking a variety of species quickly followed and we now recognize that virtually all organisms-from E, coli to man-have HSPs (see reference 68 for a more complete history). The major HSPs have been strongly conserved in structure through evolution, clearly indicating that they play a vital role in survival of the organism. Their presence appears to enhance the cell's ability to recover from stress but

Journal Article•DOI•
TL;DR: Results suggest that on the capillary endothelia examined, the Alb-Au is adsorbed on specific binding sites restricted to uncoated pits and plasmalemmal vesicles, suggesting a specific mechanism for the transport of albumin and other molecules carried by this protein.
Abstract: The interaction of homologous and heterologous albumin-gold complex (Alb-Au) with capillary endothelium was investigated in the mouse lung, heart, and diaphragm. Perfusion of the tracer in situ for from 3 to 35 min was followed by washing with phosphate-buffered saline, fixation by perfusion, and processing for electron microscopy. From the earliest time examined, one and sometimes two rows of densely packed particles bound to some restricted plasma membrane microdomains that appeared as uncoated pits, and to plasmalemmal vesicles open on the luminal front. Morphometric analysis, using various albumin-gold concentrations, showed that the binding is saturable at a very low concentration of the ligand and short exposure. After 5 min, tracer-carrying vesicles appeared on the abluminal front, discharging their content into the subendothelial space. As a function of tracer concentration 1-10% of plasmalemmal vesicles contained Alb-Au particles in fluid phase; from 5 min on, multivesicular bodies were labeled by the tracer. Plasma membrane, coated pits, and coated vesicles were not significantly marked at any time interval. Heparin or high ionic strength did not displace the bound Alb-Au from vesicle membrane. No binding was obtained when Alb-Au was competed in situ with albumin or was injected in vivo. Gold complexes with fibrinogen, fibronectin, glucose oxidase, or polyethyleneglycol did not give a labeling comparable to that of albumin. These results suggest that on the capillary endothelia examined, the Alb-Au is adsorbed on specific binding sites restricted to uncoated pits and plasmalemmal vesicles. The tracer is transported in transcytotic vesicles across endothelium by receptor-mediated transcytosis, and to a lesser extent is taken up by pinocytotic vesicles. The existence of albumin receptors on these continuous capillary endothelia may provide a specific mechanism for the transport of albumin and other molecules carried by this protein.