scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cell Biology in 1999"


Journal ArticleDOI
TL;DR: The results offer direct visual confirmation that γ-H2AX forms en masse at chromosomal sites of DNA double-strand breaks and suggest the possible existence of units of higher order chromatin structure involved in monitoring DNA integrity.
Abstract: The loss of chromosomal integrity from DNA double-strand breaks introduced into mammalian cells by ionizing radiation results in the specific phosphorylation of histone H2AX on serine residue 139, yielding a specific modified form named γ-H2AX. An antibody prepared to the unique region of human γ-H2AX shows that H2AX homologues are phosphorylated not only in irradiated mammalian cells but also in irradiated cells from other species, including Xenopus laevis, Drosophila melanogaster, and Saccharomyces cerevisiae. The antibody reveals that γ-H2AX appears as discrete nuclear foci within 1 min after exposure of cells to ionizing radiation. The numbers of these foci are comparable to the numbers of induced DNA double-strand breaks. When DNA double-strand breaks are introduced into specific partial nuclear volumes of cells by means of a pulsed microbeam laser, γ-H2AX foci form at these sites. In mitotic cells from cultures exposed to nonlethal amounts of ionizing radiation, γ-H2AX foci form band-like structures on chromosome arms and on the end of broken arms. These results offer direct visual confirmation that γ-H2AX forms en masse at chromosomal sites of DNA double-strand breaks. The results further suggest the possible existence of units of higher order chromatin structure involved in monitoring DNA integrity.

2,451 citations


Journal ArticleDOI
TL;DR: Six additional caspases (caspases-2, -3, -6, -7, -8, and -10) are processed in cell-free extracts in response to cytochrome c, and that three others failed to be activated under the same conditions.
Abstract: Exit of cytochrome c from mitochondria into the cytosol has been implicated as an important step in apoptosis. In the cytosol, cytochrome c binds to the CED-4 homologue, Apaf-1, thereby triggering Apaf-1–mediated activation of caspase-9. Caspase-9 is thought to propagate the death signal by triggering other caspase activation events, the details of which remain obscure. Here, we report that six additional caspases (caspases-2, -3, -6, -7, -8, and -10) are processed in cell-free extracts in response to cytochrome c, and that three others (caspases-1, -4, and -5) failed to be activated under the same conditions. In vitro association assays confirmed that caspase-9 selectively bound to Apaf-1, whereas caspases-1, -2, -3, -6, -7, -8, and -10 did not. Depletion of caspase-9 from cell extracts abrogated cytochrome c–inducible activation of caspases-2, -3, -6, -7, -8, and -10, suggesting that caspase-9 is required for all of these downstream caspase activation events. Immunodepletion of caspases-3, -6, and -7 from cell extracts enabled us to order the sequence of caspase activation events downstream of caspase-9 and reveal the presence of a branched caspase cascade. Caspase-3 is required for the activation of four other caspases (-2, -6, -8, and -10) in this pathway and also participates in a feedback amplification loop involving caspase-9.

1,950 citations


Journal ArticleDOI
TL;DR: LYVE-1 is the first lymph-specific HA receptor to be characterized and is a uniquely powerful marker for lymph vessels themselves.
Abstract: The extracellular matrix glycosaminoglycan hyaluronan (HA) is an abundant component of skin and mesenchymal tissues where it facilitates cell migration during wound healing, inflammation, and em- bryonic morphogenesis. Both during normal tissue homeostasis and particularly after tissue injury, HA is mobilized from these sites through lymphatic vessels to the lymph nodes where it is degraded before entering the circulation for rapid uptake by the liver. Currently, however, the identities of HA binding molecules which control this pathway are unknown. Here we describe the first such molecule, LYVE-1, which we have identified as a major receptor for HA on the lymph vessel wall. The deduced amino acid sequence of LYVE-1 predicts a 322-residue type I integral membrane polypeptide 41% similar to the CD44 HA receptor with a 212-residue extracellular domain containing a single Link module the prototypic HA binding domain of the Link protein superfamily. Like CD44, the LYVE-1 molecule binds both soluble and immobilized HA. However, unlike CD44, the LYVE-1 molecule colocalizes with HA on the luminal face of the lymph vessel wall and is completely absent from blood vessels. Hence, LYVE-1 is the first lymph-specific HA receptor to be characterized and is a uniquely powerful marker for lymph vessels themselves.

1,479 citations


Journal ArticleDOI
TL;DR: It is concluded that the signal transduction pathways controlled by the four small GTPases, Rho, Rac, Cdc42, and Ras, cooperate to promote cell movement.
Abstract: Cell movement is essential during embryogenesis to establish tissue patterns and to drive morphogenetic pathways and in the adult for tissue repair and to direct cells to sites of infection. Animal cells move by crawling and the driving force is derived primarily from the coordinated assembly and disassembly of actin filaments. The small GTPases, Rho, Rac, and Cdc42, regulate the organization of actin filaments and we have analyzed their contributions to the movement of primary embryo fibroblasts in an in vitro wound healing assay. Rac is essential for the protrusion of lamellipodia and for forward movement. Cdc42 is required to maintain cell polarity, which includes the localization of lamellipodial activity to the leading edge and the reorientation of the Golgi apparatus in the direction of movement. Rho is required to maintain cell adhesion during movement, but stress fibers and focal adhesions are not required. Finally, Ras regulates focal adhesion and stress fiber turnover and this is essential for cell movement. We conclude that the signal transduction pathways controlled by the four small GTPases, Rho, Rac, Cdc42, and Ras, cooperate to promote cell movement.

1,477 citations


Journal ArticleDOI
TL;DR: The results suggest that, during certain types of apoptosis, Bid translocates to mitochondria and binds to Bax, leading to a change in conformation of Bax and to cytochrome c release from mitochondria.
Abstract: Here we report that in staurosporine-induced apoptosis of HeLa cells, Bid, a BH3 domain containing protein, translocates from the cytosol to mitochondria. This event is associated with a change in conformation of Bax which leads to the unmasking of its NH2-terminal domain and is accompanied by the release of cytochrome c from mitochondria. A similar finding is reported for cerebellar granule cells undergoing apoptosis induced by serum and potassium deprivation. The Bax-conformational change is prevented by Bcl-2 and Bcl-xL but not by caspase inhibitors. Using isolated mitochondria and various BH3 mutants of Bid, we demonstrate that direct binding of Bid to Bax is a prerequisite for Bax structural change and cytochrome c release. Bcl-xL can inhibit the effect of Bid by interacting directly with Bax. Moreover, using mitochondria from Bax-deficient tumor cell lines, we show that Bid- induced release of cytochrome c is negligible when Bid is added alone, but dramatically increased when Bid and Bax are added together. Taken together, our results suggest that, during certain types of apoptosis, Bid translocates to mitochondria and binds to Bax, leading to a change in conformation of Bax and to cytochrome c release from mitochondria.

1,308 citations


Journal ArticleDOI
TL;DR: The leading edge of lamellipodia in Xenopus laevis keratocytes and fibroblasts was shown to have an extensively branched organization of actin filaments, which is supported by a dendritic brush, suggesting that ADF/cofilin, per se, is not sufficient for actin brush depolymerization and a regulatory step is required.
Abstract: The leading edge (approximately 1 microgram) of lamellipodia in Xenopus laevis keratocytes and fibroblasts was shown to have an extensively branched organization of actin filaments, which we term the dendritic brush. Pointed ends of individual filaments were located at Y-junctions, where the Arp2/3 complex was also localized, suggesting a role of the Arp2/3 complex in branch formation. Differential depolymerization experiments suggested that the Arp2/3 complex also provided protection of pointed ends from depolymerization. Actin depolymerizing factor (ADF)/cofilin was excluded from the distal 0.4 micrometer++ of the lamellipodial network of keratocytes and in fibroblasts it was located within the depolymerization-resistant zone. These results suggest that ADF/cofilin, per se, is not sufficient for actin brush depolymerization and a regulatory step is required. Our evidence supports a dendritic nucleation model (Mullins, R.D., J.A. Heuser, and T.D. Pollard. 1998. Proc. Natl. Acad. Sci. USA. 95:6181-6186) for lamellipodial protrusion, which involves treadmilling of a branched actin array instead of treadmilling of individual filaments. In this model, Arp2/3 complex and ADF/cofilin have antagonistic activities. Arp2/3 complex is responsible for integration of nascent actin filaments into the actin network at the cell front and stabilizing pointed ends from depolymerization, while ADF/cofilin promotes filament disassembly at the rear of the brush, presumably by pointed end depolymerization after dissociation of the Arp2/3 complex.

1,175 citations


Journal ArticleDOI
TL;DR: It is shown that mice lacking A-type lamins develop to term with no overt abnormalities, however, their postnatal growth is severely retarded and is characterized by the appearance of muscular dystrophy.
Abstract: The nuclear lamina is a protein meshwork lining the nucleoplasmic face of the inner nuclear membrane and represents an important determinant of interphase nuclear architecture. Its major components are the A- and B-type lamins. Whereas B-type lamins are found in all mammalian cells, A-type lamin expression is developmentally regulated. In the mouse, A-type lamins do not appear until midway through embryonic development, suggesting that these proteins may be involved in the regulation of terminal differentiation. Here we show that mice lacking A-type lamins develop to term with no overt abnormalities. However, their postnatal growth is severely retarded and is characterized by the appearance of muscular dystrophy. This phenotype is associated with ultrastructural perturbations to the nuclear envelope. These include the mislocalization of emerin, an inner nuclear membrane protein, defects in which are implicated in Emery-Dreifuss muscular dystrophy (EDMD), one of the three major X-linked dystrophies. Mice lacking the A-type lamins exhibit tissue-specific alterations to their nuclear envelope integrity and emerin distribution. In skeletal and cardiac muscles, this is manifest as a dystrophic condition related to EDMD.

1,168 citations


Journal ArticleDOI
TL;DR: The ability of a TIA-1 mutant lacking its RNA-binding domains to function as a transdominant inhibitor of SG formation suggests that this RNA- binding protein acts downstream of the phosphorylation of eIF-2α to promote the sequestration of untranslated mRNAs at SGs.
Abstract: In response to environmental stress, the related RNA-binding proteins TIA-1 and TIAR colocalize with poly(A)+ RNA at cytoplasmic foci that resemble the stress granules (SGs) that harbor untranslated mRNAs in heat shocked plant cells ([Nover et al. 1989][1]; [Nover et al. 1983][2]; [Scharf et al. 1998][3]). The accumulation of untranslated mRNA at SGs is reversible in cells that recover from a sublethal stress, but irreversible in cells subjected to a lethal stress. We have found that the assembly of TIA-1/R+ SGs is initiated by the phosphorylation of eIF-2α. A phosphomimetic eIF-2α mutant (S51D) induces the assembly of SGs, whereas a nonphosphorylatable eIF-2α mutant (S51A) prevents the assembly of SGs. The ability of a TIA-1 mutant lacking its RNA-binding domains to function as a transdominant inhibitor of SG formation suggests that this RNA-binding protein acts downstream of the phosphorylation of eIF-2α to promote the sequestration of untranslated mRNAs at SGs. The assembly and disassembly of SGs could regulate the duration of stress- induced translational arrest in cells recovering from environmental stress. [1]: #ref-31 [2]: #ref-30 [3]: #ref-38

1,139 citations


Journal ArticleDOI
TL;DR: Detailed analyses showed that ZO-2 andZO-3 are recruited to the claudin-based networks through PDZ1 and PDZ2 domains of Z o-1/Zo-2/Z o-3 were also recruited to claudIn-based TJs, when introduced into cultured epithelial cells.
Abstract: ZO-1, ZO-2, and ZO-3, which contain three PDZ domains (PDZ1 to -3), are concentrated at tight junctions (TJs) in epithelial cells. TJ strands are mainly composed of two distinct types of four-transmembrane proteins, occludin, and claudins, between which occludin was reported to directly bind to ZO-1/ZO-2/ZO-3. However, in occludin-deficient intestinal epithelial cells, ZO-1/ZO-2/ZO-3 were still recruited to TJs. We then examined the possible interactions between ZO-1/ZO-2/ZO-3 and claudins. ZO-1, ZO-2, and ZO-3 bound to the COOH-terminal YV sequence of claudin-1 to -8 through their PDZ1 domains in vitro. Then, claudin-1 or -2 was transfected into L fibroblasts, which express ZO-1 but not ZO-2 or ZO-3. Claudin-1 and -2 were concentrated at cell–cell borders in an elaborate network pattern, to which endogenous ZO-1 was recruited. When ZO-2 or ZO-3 were further transfected, both were recruited to the claudin-based networks together with endogenous ZO-1. Detailed analyses showed that ZO-2 and ZO-3 are recruited to the claudin-based networks through PDZ2 (ZO-2 or ZO-3)/PDZ2 (endogenous ZO-1) and PDZ1 (ZO-2 or ZO-3)/COOH-terminal YV (claudins) interactions. In good agreement, PDZ1 and PDZ2 domains of ZO-1/ZO-2/ZO-3 were also recruited to claudin-based TJs, when introduced into cultured epithelial cells. The possible molecular architecture of TJ plaque structures is discussed.

1,107 citations


Journal ArticleDOI
TL;DR: DC-derived exosomes accumulate a defined subset of cellular proteins reflecting their endosomal biogenesis and accounting for their biological function, and exosome production is downregulated upon DC maturation, indicating that in vivo,Exosomes are produced by immature DCs in peripheral tissues.
Abstract: Exosomes are membrane vesicles secreted by hematopoietic cells upon fusion of late multivesicular endosomes with the plasma membrane. Dendritic cell (DC)-derived exosomes induce potent antitumor immune responses in mice, resulting in the regression of established tumors (Zitvogel, L., A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1998. Nat. Med. 4:594–600). To unravel the molecular basis of exosome-induced immune stimulation, we now analyze the regulation of their production during DC maturation and characterize extensively their protein composition by peptide mass mapping. Exosomes contain several cytosolic proteins (including annexin II, heat shock cognate protein hsc73, and heteromeric G protein Gi2α), as well as different integral or peripherally associated membrane proteins (major histocompatiblity complex class II, Mac-1 integrin, CD9, milk fat globule-EGF-factor VIII [MFG-E8]). MFG-E8, the major exosomal component, binds integrins expressed by DCs and macrophages, suggesting that it may be involved in exosome targeting to these professional antigen-presenting cells. Another exosome component is hsc73, a cytosolic heat shock protein (hsp) also present in DC endocytic compartments. hsc73 was shown to induce antitumor immune responses in vivo, and therefore could be involved in the exosome's potent antitumor effects. Finally, exosome production is downregulated upon DC maturation, indicating that in vivo, exosomes are produced by immature DCs in peripheral tissues. Thus, DC-derived exosomes accumulate a defined subset of cellular proteins reflecting their endosomal biogenesis and accounting for their biological function.

1,006 citations


Journal ArticleDOI
TL;DR: It is found that apoptosis can be induced in the yeast Saccharomyces cerevisiae by depletion of glutathione or by low external doses of H2O2, and oxygen radicals to accumulate in the cell, whereas radical depletion or hypoxia prevents apoptosis.
Abstract: Oxygen radicals are important components of metazoan apoptosis. We have found that apoptosis can be induced in the yeast Saccharomyces cerevisiae by depletion of glutathione or by low external doses of H2O2. Cycloheximide prevents apoptotic death revealing active participation of the cell. Yeast can also be triggered into apoptosis by a mutation in CDC48 or by expression of mammalian bax. In both cases, we show oxygen radicals to accumulate in the cell, whereas radical depletion or hypoxia prevents apoptosis. These results suggest that the generation of oxygen radicals is a key event in the ancestral apoptotic pathway and offer an explanation for the mechanism of bax-induced apoptosis in the absence of any established apoptotic gene in yeast.

Journal ArticleDOI
TL;DR: It is demonstrated that the distribution of genomic sequences between chromosomes has implications for nuclear structure and the findings are discussed in relation to a model of the human nucleus that is functionally compartmentalized.
Abstract: Using fluorescence in situ hybridization we show striking differences in nuclear position, chromosome morphology, and interactions with nuclear substructure for human chromosomes 18 and 19. Human chromosome 19 is shown to adopt a more internal position in the nucleus than chromosome 18 and to be more extensively associated with the nuclear matrix. The more peripheral localization of chromosome 18 is established early in the cell cycle and is maintained thereafter. We show that the preferential localization of chromosomes 18 and 19 in the nucleus is reflected in the orientation of translocation chromosomes in the nucleus. Lastly, we show that the inhibition of transcription can have gross, but reversible, effects on chromosome architecture. Our data demonstrate that the distribution of genomic sequences between chromosomes has implications for nuclear structure and we discuss our findings in relation to a model of the human nucleus that is functionally compartmentalized.

Journal ArticleDOI
TL;DR: It is concluded that Rac signaling is able to antagonize Rho activity directly at the GTPase level, and that the reciprocal balance between Rac and Rhoactivity determines cellular morphology and migratory behavior in NIH3T3 fibroblasts.
Abstract: Using biochemical assays to determine the activation state of Rho-like GTPases, we show that the guanine nucleotide exchange factor Tiam1 functions as a specific activator of Rac but not Cdc42 or Rho in NIH3T3 fibroblasts. Activation of Rac by Tiam1 induces an epithelial-like morphology with functional cadherin-based adhesions and inhibits migration of fibroblasts. This epithelial phenotype is characterized by Rac-mediated effects on Rho activity. Transient PDGF-induced as well as sustained Rac activation by Tiam1 or V12Rac downregulate Rho activity. We found that Cdc42 also downregulates Rho activity. Neither V14Rho or N19Rho affects Rac activity, suggesting unidirectional signaling from Rac towards Rho. Downregulation of Rho activity occurs independently of Rac- induced cytoskeletal changes and cell spreading. Moreover, Rac effector mutants that are defective in mediating cytoskeleton changes or Jun kinase activation both downregulate Rho activity, suggesting that neither of these Rac signaling pathways are involved in the regulation of Rho. Restoration of Rho activity in Tiam1-expressing cells by expression of V14Rho results in reversion of the epithelioid phenotype towards a migratory, fibroblastoid morphology. We conclude that Rac signaling is able to antagonize Rho activity directly at the GTPase level, and that the reciprocal balance between Rac and Rho activity determines cellular morphology and migratory behavior in NIH3T3 fibroblasts.

Journal ArticleDOI
TL;DR: It is revealed that autophagosome formation is severely impaired in the apg8 null mutant, and it is shown that microtubule does not play an essential role in the autophagy in yeast.
Abstract: We characterized Apg8/Aut7p essential for autophagy in yeast. Apg8p was transcriptionally upregulated in response to starvation and mostly existed as a protein bound to membrane under both growing and starvation conditions. Immunofluorescence microscopy revealed that the intracellular localization of Apg8p changed drastically after shift to starvation. Apg8p resided on unidentified tiny dot structures dispersed in the cytoplasm at growing phase. During starvation, it was localized on large punctate structures, some of which were confirmed to be autophagosomes and autophagic bodies by immuno-EM. Besides these structures, we found that Apg8p was enriched on isolation membranes and in electron less-dense regions, which should contain Apg8p-localized membrane- or lipid-containing structures. These structures would represent intermediate structures during autophagosome formation. Here, we also showed that microtubule does not play an essential role in the autophagy in yeast. The result does not match with the previously proposed role of Apg8/Aut7p, delivery of autophagosome to the vacuole along microtubule. Moreover, it is revealed that autophagosome formation is severely impaired in the apg8 null mutant. Apg8p would play an important role in the autophagosome formation.

Journal ArticleDOI
TL;DR: Results indicate a mechanism whereby TCR engagement promotes aggregation of lipid rafts, which facilitates colocalization of LCK, LAT, and the TCR whilst excluding CD45, thereby triggering protein tyrosine phosphorylation.
Abstract: The role of lipid rafts in T cell antigen receptor (TCR) signaling was investigated using fluorescence microscopy. Lipid rafts labeled with cholera toxin B subunit (CT-B) and cross-linked into patches displayed characteristics of rafts isolated biochemically, including detergent resistance and colocalization with raft-associated proteins. LCK, LAT, and the TCR all colocalized with lipid patches, although TCR association was sensitive to nonionic detergent. Aggregation of the TCR by anti-CD3 mAb cross-linking also caused coaggregation of raft-associated proteins. However, the protein tyrosine phosphatase CD45 did not colocalize to either CT-B or CD3 patches. Cross-linking of either CD3 or CT-B strongly induced tyrosine phosphorylation and recruitment of a ZAP-70(SH2)2–green fluorescent protein (GFP) fusion protein to the lipid patches. Also, CT-B patching induced signaling events analagous to TCR stimulation, with the same dependence on expression of key TCR signaling molecules. Targeting of LCK to rafts was necessary for these events, as a nonraft- associated transmembrane LCK chimera, which did not colocalize with TCR patches, could not reconstitute CT-B–induced signaling. Thus, our results indicate a mechanism whereby TCR engagement promotes aggregation of lipid rafts, which facilitates colocalization of LCK, LAT, and the TCR whilst excluding CD45, thereby triggering protein tyrosine phosphorylation.

Journal ArticleDOI
TL;DR: Findings indicated that claudin-5/TMVCF is an endothelial cell–specific component of TJ strands, which are thought to determine vascular permeability.
Abstract: Tight junctions (TJs) in endothelial cells are thought to determine vascular permeability. Recently, claudin-1 to -15 were identified as major components of TJ strands. Among these, claudin-5 (also called transmembrane protein deleted in velo-cardio-facial syndrome [TMVCF]) was expressed ubiquitously, even in organs lacking epithelial tissues, suggesting the possible involvement of this claudin species in endothelial TJs. We then obtained a claudin-6–specific polyclonal antibody and a polyclonal antibody that recognized both claudin-5/TMVCF and claudin-6. In the brain and lung, immunofluorescence microscopy with these polyclonal antibodies showed that claudin-5/TMVCF was exclusively concentrated at cell–cell borders of endothelial cells of all segments of blood vessels, but not at those of epithelial cells. Immunoreplica electron microscopy revealed that claudin-5/TMVCF was a component of TJ strands. In contrast, in the kidney, the claudin-5/TMVCF signal was restricted to endothelial cells of arteries, but was undetectable in those of veins and capillaries. In addition, in all other tissues we examined, claudin-5/TMVCF was specifically detected in endothelial cells of some segments of blood vessels, but not in epithelial cells. Furthermore, when claudin-5/TMVCF cDNA was introduced into mouse L fibroblasts, TJ strands were reconstituted that resembled those in endothelial cells in vivo, i.e., the extracellular face–associated TJs. These findings indicated that claudin-5/TMVCF is an endothelial cell–specific component of TJ strands.

Journal ArticleDOI
TL;DR: The findings identify the basic requirements for ND10 formation and suggest a dynamic mechanism for protein recruitment to these nuclear domains controlled by the SUMO-1 modification state of PML.
Abstract: Nuclear domain 10 (ND10), also referred to as nuclear bodies, are discrete interchromosomal accumulations of several proteins including promyelocytic leukemia protein (PML) and Sp100. In this study, we investigated the mechanism of ND10 assembly by identifying proteins that are essential for this process using cells lines that lack individual ND10-associated proteins. We identified the adapter protein Daxx and BML, the RecQ helicase missing in Bloom syndrome, as new ND10-associated proteins. PML, but not BLM or Sp100, was found to be responsible for the proper localization of all other ND10-associated proteins since they are dispersed in PML−/− cells. Introducing PML into this cell line by transient expression or fusion with PML-producing cells recruited ND10-associated proteins into de novo formed ND10 attesting to PMLs essential nature in ND10 formation. In the absence of PML, Daxx is highly enriched in condensed chromatin. Its recruitment to ND10 from condensed chromatin requires a small ubiquitin-related modifier (SUMO-1) modification of PML and reflects the interaction between the COOH-terminal domain of Daxx and PML. The segregation of Daxx from condensed chromatin in the absence of PML to ND10 by increased accumulation of SUMO-1–modified PML suggests the presence of a variable equilibrium between these two nuclear sites. Our findings identify the basic requirements for ND10 formation and suggest a dynamic mechanism for protein recruitment to these nuclear domains controlled by the SUMO-1 modification state of PML.

Journal ArticleDOI
TL;DR: It is shown that N-cadherin promotes motility and invasion, and likely plays a direct role in promoting motility; that forced expression of E-cADherin in invasive, N- cadher in–positive cells does not reduce their motility or invasive capacity; and that cadherin-11 promotes epithelial cell motility in a manner similar to N-Cadhersin.
Abstract: E-cadherin is a transmembrane glycoprotein that mediates calcium-dependent, homotypic cell–cell adhesion and plays a role in maintaining the normal phenotype of epithelial cells. Decreased expression of E-cadherin has been correlated with increased invasiveness of breast cancer. In other systems, inappropriate expression of a nonepithelial cadherin, such as N-cadherin, by an epithelial cell has been shown to downregulate E-cadherin expression and to contribute to a scattered phenotype. In this study, we explored the possibility that expression of nonepithelial cadherins may be correlated with increased motility and invasion in breast cancer cells. We show that N-cadherin promotes motility and invasion; that decreased expression of E-cadherin does not necessarily correlate with motility or invasion; that N-cadherin expression correlates both with invasion and motility, and likely plays a direct role in promoting motility; that forced expression of E-cadherin in invasive, N-cadherin–positive cells does not reduce their motility or invasive capacity; that forced expression of N-cadherin in noninvasive, E-cadherin–positive cells produces an invasive cell, even though these cells continue to express high levels of E-cadherin; that N-cadherin–dependent motility may be mediated by FGF receptor signaling; and that cadherin-11 promotes epithelial cell motility in a manner similar to N-cadherin.

Journal ArticleDOI
TL;DR: It is concluded that distinct species of claudins can interact within and between TJ strands, except in some combinations, which could increase the diversity of the structure and functions of TJ strands.
Abstract: In tight junctions (TJs), TJ strands are associated laterally with those of adjacent cells to form paired strands to eliminate the extracellular space. Claudin-1 and -2, integral membrane proteins of TJs, reconstitute paired TJ strands when transfected into L fibroblasts. Claudins comprise a multigene family and more than two distinct claudins are coexpressed in single cells, raising the questions of whether heterogeneous claudins form heteromeric TJ strands and whether claudins interact between each of the paired strands in a heterophilic manner. To answer these questions, we cotransfected two of claudin-1, -2, and -3 into L cells, and detected their coconcentration at cell–cell borders as elaborate networks. Immunoreplica EM confirmed that distinct claudins were coincorporated into individual TJ strands. Next, two L transfectants singly expressing claudin-1, -2, or -3 were cocultured and we found that claudin-3 strands laterally associated with claudin-1 and -2 strands to form paired strands, whereas claudin-1 strands did not interact with claudin-2 strands. We concluded that distinct species of claudins can interact within and between TJ strands, except in some combinations. This mode of assembly of claudins could increase the diversity of the structure and functions of TJ strands.

Journal ArticleDOI
TL;DR: Findings indicate that, in addition to their effects on OC precursors, OPGL and OPG have profound and direct effects on mature OCs and indicate that the OC receptor, RANK, mediates OPGl's effects.
Abstract: Osteoprotegerin (OPG) and OPG-ligand (OPGL) potently inhibit and stimulate, respectively, osteoclast differentiation (Simonet, W.S., D.L. Lacey, C.R. Dunstan, M. Kelley, M.-S. Chang, R. Luethy, H.Q. Nguyen, S. Wooden, L. Bennett, T. Boone, et al. 1997. Cell. 89:309–319; Lacey, D.L., E. Timms, H.-L. Tan, M.J. Kelley, C.R. Dunstan, T. Burgess, R. Elliott, A. Colombero, G. Elliott, S. Scully, et al. 1998. Cell. 93: 165–176), but their effects on mature osteoclasts are not well understood. Using primary cultures of rat osteoclasts on bone slices, we find that OPGL causes approximately sevenfold increase in total bone surface erosion. By scanning electron microscopy, OPGL-treated osteoclasts generate more clusters of lacunae on bone suggesting that multiple, spatially associated cycles of resorption have occurred. However, the size of individual resorption events are unchanged by OPGL treatment. Mechanistically, OPGL binds specifically to mature OCs and rapidly (within 30 min) induces actin ring formation; a marked cytoskeletal rearrangement that necessarily precedes bone resorption. Furthermore, we show that antibodies raised against the OPGL receptor, RANK, also induce actin ring formation. OPGL-treated mice exhibit increases in blood ionized Ca++ within 1 h after injections, consistent with immediate OC activation in vivo. Finally, we find that OPG blocks OPGL's effects on both actin ring formation and bone resorption. Together, these findings indicate that, in addition to their effects on OC precursors, OPGL and OPG have profound and direct effects on mature OCs and indicate that the OC receptor, RANK, mediates OPGL's effects.

Journal ArticleDOI
TL;DR: It is found that conjunctival keratinocytes with high proliferative capacity give rise to goblet cells at least twice in their life and, more importantly, at rather precise times of their life history, namely at 45–50 cell doublings and at ∼15 cellDoublings before senescence.
Abstract: We have analyzed the proliferative and differentiation potential of human ocular keratinocytes. Holoclones, meroclones, and paraclones, previously identified in skin, constitute also the proliferative compartment of the ocular epithelium. Ocular holoclones have the expected properties of stem cells, while transient amplifying cells have variable proliferative potential. Corneal stem cells are segregated in the limbus, while conjunctival stem cells are uniformly distributed in bulbar and forniceal conjunctiva. Conjunctival keratinocytes and goblet cells derive from a common bipotent progenitor. Goblet cells were found in cultures of transient amplifying cells, suggesting that commitment for goblet cell differentiation can occur late in the life of a single conjunctival clone. We found that conjunctival keratinocytes with high proliferative capacity give rise to goblet cells at least twice in their life and, more importantly, at rather precise times of their life history, namely at 45–50 cell doublings and at ∼15 cell doublings before senescence. Thus, the decision of conjunctival keratinocytes to differentiate into goblet cells appears to be dependent upon an intrinsic “cell doubling clock.” These data open new perspectives in the surgical treatment of severe defects of the anterior ocular surface with autologous cultured conjunctival epithelium.

Journal ArticleDOI
TL;DR: The chondrodysplasia is characterized by a reduction of the fibrillar collagen network, shortened collagen fibers, and elevated expression of cartilage extracellular matrix genes, suggesting that perlecan protects cartilageextracllular matrix from degradation.
Abstract: Perlecan is a heparan sulfate proteoglycan that is expressed in all basement membranes (BMs), in cartilage, and several other mesenchymal tissues during development. Perlecan binds growth factors and interacts with various extracellular matrix proteins and cell adhesion molecules. Homozygous mice with a null mutation in the perlecan gene exhibit normal formation of BMs. However, BMs deteriorate in regions with increased mechanical stress such as the contracting myocardium and the expanding brain vesicles showing that perlecan is crucial for maintaining BM integrity. As a consequence, small clefts are formed in the cardiac muscle leading to blood leakage into the pericardial cavity and an arrest of heart function. The defects in the BM separating the brain from the adjacent mesenchyme caused invasion of brain tissue into the overlaying ectoderm leading to abnormal expansion of neuroepithelium, neuronal ectopias, and exencephaly. Finally, homozygotes developed a severe defect in cartilage, a tissue that lacks BMs. The chondrodysplasia is characterized by a reduction of the fibrillar collagen network, shortened collagen fibers, and elevated expression of cartilage extracellular matrix genes, suggesting that perlecan protects cartilage extracellular matrix from degradation.

Journal ArticleDOI
TL;DR: Three-dimensional reconstructions of portions of the Golgi complex from cryofixed, freeze-substituted normal rat kidney cells have been made by dual-axis, high-voltage EM tomography at ∼7-nm resolution, placing structural constraints on models of trafficking to, through, and from the GolGI complex.
Abstract: Three-dimensional reconstructions of portions of the Golgi complex from cryofixed, freeze-substituted normal rat kidney cells have been made by dual-axis, high-voltage EM tomography at ∼7-nm resolution The reconstruction shown here (∼1 × 1 × 4 μm3) contains two stacks of seven cisternae separated by a noncompact region across which bridges connect some cisternae at equivalent levels, but none at nonequivalent levels The rest of the noncompact region is filled with both vesicles and polymorphic membranous elements All cisternae are fenestrated and display coated buds They all have about the same surface area, but they differ in volume by as much as 50% The trans-most cisterna produces exclusively clathrin-coated buds, whereas the others display only nonclathrin coated buds This finding challenges traditional views of where sorting occurs within the Golgi complex Tubules with budding profiles extend from the margins of both cis and trans cisternae They pass beyond neighboring cisternae, suggesting that these tubules contribute to traffic to and/or from the Golgi Vesicle-filled “wells” open to both the cis and lateral sides of the stacks The stacks of cisternae are positioned between two types of ER, cis and trans The cis ER lies adjacent to the ER-Golgi intermediate compartment, which consists of discrete polymorphic membranous elements layered in front of the cis-most Golgi cisterna The extensive trans ER forms close contacts with the two trans-most cisternae; this apposition may permit direct transfer of lipids between ER and Golgi membranes Within 02 μm of the cisternae studied, there are 394 vesicles (8 clathrin coated, 190 nonclathrin coated, and 196 noncoated), indicating considerable vesicular traffic in this Golgi region Our data place structural constraints on models of trafficking to, through, and from the Golgi complex

Journal ArticleDOI
TL;DR: The results suggest that aggresomes can be formed by soluble, nonubiquitinated proteins as well as by integral transmembrane ubiquitinated ones, supporting the hypothesis that Aggresome formation might be a general cellular response to the presence of misfolded proteins.
Abstract: Formation of a novel structure, the aggresome, has been proposed to represent a general cellular response to the presence of misfolded proteins (Johnston, J.A., C.L. Ward, and R.R. Kopito. 1998. J. Cell Biol. 143:1883–1898; Wigley, W.C., R.P. Fabunmi, M.G. Lee, C.R. Marino, S. Muallem, G.N. DeMartino, and P.J. Thomas. 1999. J. Cell Biol. 145:481–490). To test the generality of this finding and characterize aspects of aggresome composition and its formation, we investigated the effects of overexpressing a cytosolic protein chimera (GFP-250) in cells. Overexpression of GFP-250 caused formation of aggresomes and was paralleled by the redistribution of the intermediate filament protein vimentin as well as by the recruitment of the proteasome, and the Hsp70 and the chaperonin systems of chaperones. Interestingly, GFP-250 within the aggresome appeared not to be ubiquitinated. In vivo time-lapse analysis of aggresome dynamics showed that small aggregates form within the periphery of the cell and travel on microtubules to the MTOC region where they remain as distinct but closely apposed particulate structures. Overexpression of p50/dynamitin, which causes the dissociation of the dynactin complex, significantly inhibited the formation of aggresomes, suggesting that the minus-end–directed motor activities of cytoplasmic dynein are required for aggresome formation. Perinuclear aggresomes interfered with correct Golgi localization and disrupted the normal astral distribution of microtubules. However, ER-to-Golgi protein transport occurred normally in aggresome containing cells. Our results suggest that aggresomes can be formed by soluble, nonubiquitinated proteins as well as by integral transmembrane ubiquitinated ones, supporting the hypothesis that aggresome formation might be a general cellular response to the presence of misfolded proteins.

Journal ArticleDOI
TL;DR: It is concluded that a pool of surface E-cadherin is constantly trafficked through an endocytic, recycling pathway and that this may provide a mechanism for regulating the availability of E- cadherIn for junction formation in development, tissue remodeling, and tumorigenesis.
Abstract: E-Cadherin plays critical roles in many aspects of cell adhesion, epithelial development, and the establishment and maintenance of epithelial polarity. The fate of E-cadherin once it is delivered to the basolateral cell surface, and the mechanisms which govern its participation in adherens junctions, are not well understood. Using surface biotinylation and recycling assays, we observed that some of the cell surface E-cadherin is actively internalized and is then recycled back to the plasma membrane. The pool of E-cadherin undergoing endocytosis and recycling was markedly increased in cells without stable cell-cell contacts, i.e., in preconfluent cells and after cell contacts were disrupted by depletion of extracellular Ca2+, suggesting that endocytic trafficking of E-cadherin is regulated by cell-cell contact. The reformation of cell junctions after replacement of Ca2+ was then found to be inhibited when recycling of endocytosed E-cadherin was disrupted by bafilomycin treatment. The endocytosis and recycling of E-cadherin and of the transferrin receptor were similarly inhibited by potassium depletion and by bafilomycin treatment, and both proteins were accumulated in intracellular compartments by an 18°C temperature block, suggesting that endocytosis may occur via a clathrin-mediated pathway. We conclude that a pool of surface E-cadherin is constantly trafficked through an endocytic, recycling pathway and that this may provide a mechanism for regulating the availability of E-cadherin for junction formation in development, tissue remodeling, and tumorigenesis.

Journal ArticleDOI
TL;DR: Results indicate that MBS is phosphorylated by Rho-kinase downstream of Rho in vivo, and suggest that myosin phosphatase and Rho -kinase spatiotemporally regulate the phosphorylation state of RHo-kinases substrates including MLC and ERM family proteins in vivo in a cooperative manner.
Abstract: Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, phosphorylates myosin-binding subunit (MBS) of myosin phosphatase and thereby inactivates the phosphatase activity in vitro. Rho-kinase is thought to regulate the phosphorylation state of the substrates including myosin light chain (MLC), ERM (ezrin/radixin/moesin) family proteins and adducin by their direct phosphorylation and by the inactivation of myosin phosphatase. Here we identified the sites of phosphorylation of MBS by Rho-kinase as Thr-697, Ser-854 and several residues, and prepared antibody that specifically recognized MBS phosphorylated at Ser-854. We found by use of this antibody that the stimulation of MDCK epithelial cells with tetradecanoylphorbol-13-acetate (TPA) or hepatocyte growth factor (HGF) induced the phosphorylation of MBS at Ser-854 under the conditions in which membrane ruffling and cell migration were induced. Pretreatment of the cells with Botulinum C3 ADP-ribosyltransferase (C3), which is thought to interfere with Rho functions, or Rho-kinase inhibitors inhibited the TPA- or HGF-induced MBS phosphorylation. The TPA stimulation enhanced the immunoreactivity of phosphorylated MBS in the cytoplasm and membrane ruffling area of MDCK cells. In migrating MDCK cells, phosphorylated MBS as well as phosphorylated MLC at Ser-19 were localized in the leading edge and posterior region. Phosphorylated MBS was localized on actin stress fibers in REF52 fibroblasts. The microinjection of C3 or dominant negative Rho-kinase disrupted stress fibers and weakened the accumulation of phosphorylated MBS in REF52 cells. During cytokinesis, phosphorylated MBS, MLC and ERM family proteins accumulated at the cleavage furrow, and the phosphorylation level of MBS at Ser-854 was increased. Taken together, these results indicate that MBS is phosphorylated by Rho-kinase downstream of Rho in vivo, and suggest that myosin phosphatase and Rho-kinase spatiotemporally regulate the phosphorylation state of Rho-kinase substrates including MLC and ERM family proteins in vivo in a cooperative manner.

Journal ArticleDOI
TL;DR: Findings provided evidence for the direct involvement of claudins in the barrier functions of TJs and the TJ barrier of MDCK I cells was downregulated by C-CPE in a dose-dependent manner.
Abstract: Claudins, comprising a multigene family, constitute tight junction (TJ) strands. Clostridium perfringens enterotoxin (CPE), a single ∼35-kD polypeptide, was reported to specifically bind to claudin-3/RVP1 and claudin-4/CPE-R at its COOH-terminal half. We examined the effects of the COOH-terminal half fragment of CPE (C-CPE) on TJs in L transfectants expressing claudin-1 to -4 (C1L to C4L, respectively), and in MDCK I cells expressing claudin-1 and -4. C-CPE bound to claudin-3 and -4 with high affinity, but not to claudin-1 or -2. In the presence of C-CPE, reconstituted TJ strands in C3L cells gradually disintegrated and disappeared from their cell surface. In MDCK I cells incubated with C-CPE, claudin-4 was selectively removed from TJs with its concomitant degradation. At 4 h after incubation with C-CPE, TJ strands were disintegrated, and the number of TJ strands and the complexity of their network were markedly decreased. In good agreement with the time course of these morphological changes, the TJ barrier (TER and paracellular flux) of MDCK I cells was downregulated by C-CPE in a dose-dependent manner. These findings provided evidence for the direct involvement of claudins in the barrier functions of TJs.

Journal ArticleDOI
TL;DR: Results show that the LAMC1 gene coding for the laminin γ1 subunit is necessary for laminIn assembly and that lamin in is in turn essential for the organization of other basement membrane components in vivo and in vitro.
Abstract: Although basement membrane molecules have been shown to affect the differentiation and survival of cells (Streuli, 1996), the mechanisms regulating the assembly of basement membranes in vivo and the fundamental roles of basement membranes during embryogenesis are poorly defined. The best studied basement membrane proteins are the laminins which constitute the major noncollagenous basement membrane component (Timpl, 1996). Antibody inhibition of laminin binding to its cellular receptors or to other basement membrane components has been shown to perturb both basement membrane deposition and also epithelial morphogenesis in organ culture (Klein et al., 1988; Sorokin et al., 1990; Ekblom et al., 1994; Kadoya et al., 1995). However, it remains to be established if basement membranes are an absolute requirement for epithelial cell differentiation and at what stages of development these fundamental extracellular matrix structures become essential. All characterized laminin variants are heterotrimeric molecules formed by the covalent bonding of one polypeptide from the α, β, and γ laminin subunit families, each of which comprises multiple members encoded by individual genes (Maurer and Engel, 1996). Thus, many variant laminin trimers may potentially be formed, depending on differential subunit gene expression which occurs in a time- and cell-specific manner (Paulsson, 1996). Definitive evidence for the distinct roles of some laminin variants in vivo has been provided by the phenotypes of mutations in laminin subunit genes. For example, natural mutations in any of the genes coding for subunits of laminin type-5 (kalinin) can result in junctional epidermolysis bullosa (Burgeson, 1996). Similarly, mutations of the α2 subunit (merosin) can result in autosomal forms of muscular dystrophy (Helbling-Leclerc et al., 1995), and targeted disruption of the laminin β2 chain (s-laminin) has been shown to result in disruption of neuromuscular junction development and of kidney function (Noakes et al., 1995). The characteristic postnatal phenotypes of all of these mutations reflect the restricted expression and specific functions of the minor laminin subunits concerned. Laminin γ1 is one of the earliest expressed laminin subunits which, together with the α1 and β1 subunits of laminin type-1, is expressed in the preimplantation embryo (Shim et al., 1996) before the appearance of the first basement membrane of the trophectodermal epithelium (Dziadek and Timpl, 1985; Thorsteinsdottir, 1992). Furthermore, γ1 is the most ubiquitously expressed laminin subunit, being present in 10 of the 11 known laminin isoforms (Burgeson et al., 1994; Miner et al., 1997). Indeed, the only isoform (type-5) shown to lack the γ1 subunit has instead the other known member of this subunit family, γ2 (Kallunki et al., 1992). However, the γ2 subunit has a restricted distribution being associated with epithelial anchoring filaments rather than being a common component of basement membranes (Burgeson, 1996). This is most probably either because it has no nidogen binding domain (Mayer et al., 1993) or because it lacks the three self-interacting NH2-terminal globular domains necessary to link it to the other basement membrane components (Champliaud et al., 1996; Cheng et al., 1997). We therefore decided to use homologous recombination to target the mouse LAMC1 gene because the resulting lack of the laminin γ1 subunit would alter the formation of all known integral basement membrane laminin isoforms. This would therefore be expected to affect the structure and function of most if not all basement membranes. Analysis of the phenotype of this knockout thus defines the role of laminin in basement membrane formation in vivo, and in this in turn demonstrates the initial function of basement membranes in tissue development during embryogenesis.

Journal ArticleDOI
TL;DR: Results indicate that Rac and PtdIns 4, 5-P2 act in a common pathway to control polar pollen tube growth and provide direct evidence for a function of Ptdins 4,5-P1 compartmentalization in the regulation of this process.
Abstract: Pollen tube cells elongate based on actin- dependent targeted secretion at the tip. Rho family small GTPases have been implicated in the regulation of related processes in animal and yeast cells. We have functionally characterized Rac type Rho family proteins that are expressed in growing pollen tubes. Expression of dominant negative Rac inhibited pollen tube elongation, whereas expression of constitutive active Rac induced depolarized growth. Pollen tube Rac was found to accumulate at the tip plasma membrane and to physically associate with a phosphatidylinositol monophosphate kinase (PtdIns P-K) activity. Phosphatidylinositol 4, 5-bisphosphate (PtdIns 4, 5-P2), the product of PtdIns P-Ks, showed a similar intracellular localization as Rac. Expression of the pleckstrin homology (PH)-domain of phospholipase C (PLC)-δ1, which binds specifically to PtdIns 4, 5-P2, inhibited pollen tube elongation. These results indicate that Rac and PtdIns 4, 5-P2 act in a common pathway to control polar pollen tube growth and provide direct evidence for a function of PtdIns 4, 5-P2 compartmentalization in the regulation of this process.

Journal ArticleDOI
TL;DR: It is proposed that mature platelets are assembled de novo and released only at the ends of proplatelets, and that the complex bending and branching observed during proplatelet morphogenesis represents an elegant mechanism to increase the numbers of pro platelet ends.
Abstract: Megakaryocytes release mature platelets in a complex process. Platelets are known to be released from intermediate structures, designated proplatelets, which are long, tubelike extensions of the megakaryocyte cytoplasm. We have resolved the ultrastructure of the megakaryocyte cytoskeleton at specific stages of proplatelet morphogenesis and correlated these structures with cytoplasmic remodeling events defined by video microscopy. Platelet production begins with the extension of large pseudopodia that use unique cortical bundles of microtubules to elongate and form thin proplatelet processes with bulbous ends; these contain a peripheral bundle of microtubules that loops upon itself and forms a teardrop-shaped structure. Contrary to prior observations and assumptions, time-lapse microscopy reveals proplatelet processes to be extremely dynamic structures that interconvert reversibly between spread and tubular forms. Microtubule coils similar to those observed in blood platelets are detected only at the ends of proplatelets and not within the platelet-sized beads found along the length of proplatelet extensions. Growth and extension of proplatelet processes is associated with repeated bending and bifurcation, which results in considerable amplification of free ends. These aspects are inhibited by cytochalasin B and, therefore, are dependent on actin. We propose that mature platelets are assembled de novo and released only at the ends of proplatelets, and that the complex bending and branching observed during proplatelet morphogenesis represents an elegant mechanism to increase the numbers of proplatelet ends.