scispace - formally typeset
Search or ask a question
JournalISSN: 0021-9525

Journal of Cell Biology 

Rockefeller University Press
About: Journal of Cell Biology is an academic journal published by Rockefeller University Press. The journal publishes majorly in the area(s): Mitosis & Endoplasmic reticulum. It has an ISSN identifier of 0021-9525. Over the lifetime, 25812 publications have been published receiving 3365568 citations. The journal is also known as: The Journal of Cell Biology & J Cell Biol.


Papers
More filters
Journal ArticleDOI
TL;DR: The stain reported here differs from previous alkaline lead stains in that the chelating agent, citrate, is in sufficient excess to sequester all lead present, and is less likely to contaminate sections.
Abstract: Aqueous solutions of lead salts (1, 2) and saturated solutions of lead hydroxide (1) have been used as stains to enhance the electron-scattering properties of components of biological materials examined in the electron microscope. Saturated solutions of lead hydroxide (1), while staining more intensely than either lead acetate or monobasic lead acetate (l , 2), form insoluble lead carbonate upon exposure to air. The avoidance of such precipitates which contaminate surfaces of sections during staining has been the stimulus for the development of elaborate procedures for exclusion of air or carbon dioxide (3, 4). Several modifications of Watson's lead hydroxide stain (1) have recently appeared (5-7). All utilize relatively high pH (approximately 12) and one contains small amounts of tartrate (6), a relatively weak complexing agent (8), in addition to lead. These modified lead stains are less liable to contaminate the surface of the section with precipitated stain products. The stain reported here differs from previous alkaline lead stains in that the chelating agent, citrate, is in sufficient excess to sequester all lead present. Lead citrate, soluble in high concentrations in basic solutions, is a chelate compound with an apparent association constant (log Ka) between ligand and lead ion of 6.5 (9). Tissue binding sites, presumably organophosphates, and other anionic species present in biological components following fixation, dehydration, and plastic embedding apparently have a greater affinity for this cation than lead citrate inasmuch as cellular and extracellular structures in the section sequester lead from the staining solution. Alkaline lead citrate solutions are less likely to contaminate sections, as no precipitates form when droplets of fresh staining solution are exposed to air for periods of up to 30 minutes. The resultant staining of the sections is of high intensity in sections of Aralditeor Epon-embedded material. Cytoplasmic membranes, ribosomes, glycogen, and nuclear material are stained (Figs. 1 to 3). STAIN SOLUTION: Lead citrate is prepared by

24,137 citations

Journal ArticleDOI
TL;DR: Epoxy embedding methods of Glauert and Kushida have been modified so as to yield rapid, reproducible, and convenientembedding methods for electron microscopy.
Abstract: Epoxy embedding methods of Glauert and Kushida have been modified so as to yield rapid, reproducible, and convenient embedding methods for electron microscopy. The sections are robust and tissue damage is less than with methacrylate embedding.

9,741 citations

Journal ArticleDOI
TL;DR: The extent of tissue-PCD revealed by this method is considerably greater than apoptosis detected by nuclear morphology, and thus opens the way for a variety of studies.
Abstract: Programmed cell death (PCD) plays a key role in developmental biology and in maintenance of the steady state in continuously renewing tissues. Currently, its existence is inferred mainly from gel electrophoresis of a pooled DNA extract as PCD was shown to be associated with DNA fragmentation. Based on this observation, we describe here the development of a method for the in situ visualization of PCD at the single-cell level, while preserving tissue architecture. Conventional histological sections, pretreated with protease, were nick end labeled with biotinylated poly dU, introduced by terminal deoxy-transferase, and then stained using avidin-conjugated peroxidase. The reaction is specific, only nuclei located at positions where PCD is expected are stained. The initial screening includes: small and large intestine, epidermis, lymphoid tissues, ovary, and other organs. A detailed analysis revealed that the process is initiated at the nuclear periphery, it is relatively short (1-3 h from initiation to cell elimination) and that PCD appears in tissues in clusters. The extent of tissue-PCD revealed by this method is considerably greater than apoptosis detected by nuclear morphology, and thus opens the way for a variety of studies.

9,597 citations

Journal ArticleDOI
TL;DR: This review focuses on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.
Abstract: Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and RNA. Deficiencies in our knowledge of the molecular mechanisms for EV formation and lack of methods to interfere with the packaging of cargo or with vesicle release, however, still hamper identification of their physiological relevance in vivo. In this review, we focus on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.

6,141 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023152
2022267
2021297
2020292
2019325
2018336