scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cellular Physiology in 2000"


Journal ArticleDOI
TL;DR: Although the Ki‐67 protein is well characterized on the molecular level and extensively used as a proliferation marker, the functional significance still remains unclear; there are indications, however, that Ki‐ 67 protein expression is an absolute requirement for progression through the cell‐division cycle.
Abstract: The expression of the human Ki-67 protein is strictly associated with cell proliferation. During interphase, the antigen can be exclusively detected within the nucleus, whereas in mitosis most of the protein is relocated to the surface of the chromosomes. The fact that the Ki-67 protein is present during all active phases of the cell cycle (G(1), S, G(2), and mitosis), but is absent from resting cells (G(0)), makes it an excellent marker for determining the so-called growth fraction of a given cell population. In the first part of this study, the term proliferation marker is discussed and examples of the applications of anti-Ki-67 protein antibodies in diagnostics of human tumors are given. The fraction of Ki-67-positive tumor cells (the Ki-67 labeling index) is often correlated with the clinical course of the disease. The best-studied examples in this context are carcinomas of the prostate and the breast. For these types of tumors, the prognostic value for survival and tumor recurrence has repeatedly been proven in uni- and multivariate analysis. The preparation of new monoclonal antibodies that react with the Ki-67 equivalent protein from rodents now extends the use of the Ki-67 protein as a proliferation marker to laboratory animals that are routinely used in basic research. The second part of this review focuses on the biology of the Ki-67 protein. Our current knowledge of the Ki-67 gene and protein structure, mRNA splicing, expression, and cellular localization during the cell-division cycle is summarized and discussed. Although the Ki-67 protein is well characterized on the molecular level and extensively used as a proliferation marker, the functional significance still remains unclear. There are indications, however, that Ki-67 protein expression is an absolute requirement for progression through the cell-division cycle.

4,359 citations


Journal ArticleDOI
TL;DR: From a practical point of view, immunodetection of p27 in tumors may prove to be useful in the assessment of prognosis and may ultimately influence the therapy of this disease.
Abstract: p27 is a cell cycle inhibitor whose cellular abundance increases in response to many antimitogenic stimuli. In this review, we summarize the current knowledge on p27 function and its regulation by synthesis and by ubiquitin-mediated degradation. Importantly, p27 degradation is enhanced in many aggressive human tumors. The frequency with which this is observed suggests that loss of p27 may confer a growth advantage to these cancers. From a practical point of view, immunodetection of p27 in tumors may prove to be useful in the assessment of prognosis and may ultimately influence the therapy of this disease. J. Cell. Physiol. 183:10–17, 2000. © 2000 Wiley-Liss, Inc.

717 citations


Journal ArticleDOI
TL;DR: A key event in the regulation of eukaryotic gene expression is the posttranslational modification of nucleosomal histones, which converts regions of chromosomes into transcriptionally active or inactive chromatin.
Abstract: A key event in the regulation of eukaryotic gene expression is the posttranslational modification of nucleosomal histones, which converts regions of chromosomes into transcriptionally active or inactive chromatin. The most well studied posttranslational modification of histones is the acetylation of epsilon-amino groups on conserved lysine residues in the histones' amino-terminal tail domains. Significant advances have been made in the past few years toward the identification of histone acetyltransferases and histone deacetylases. Currently, there are over a dozen cloned histone acetyltransferases and at least eight cloned human histone deacetylases. Interestingly, many histone deacetylases can function as transcriptional corepressors and, often, they are present in multi-subunit complexes. More intriguing, at least some histone deacetylases are associated with chromatin-remodeling machines. In addition, several studies have pointed to the possible involvement of histone deacetylases in human cancer. The availability of the cloned histone deacetylase genes has provided swift progress in the understanding of the mechanisms of deacetylases, their role in transcription, and their possible role in health and disease.

660 citations


Journal ArticleDOI
TL;DR: Perturbations in each level of the IGF axis have been implicated in cancer formation and progression in various cell types and are believed to occur through IGFBP‐3‐specific cell surface association proteins or receptors and involves nuclear translocation.
Abstract: Interest in the role of the insulin-like growth factor (IGF) axis in growth control and carcinogenesis has recently been increased by the finding of elevated serum insulin-like growth factor I (IGF-I) levels in association with three of the most prevalent cancers in the United States: prostate cancer, colorectal cancer, and lung cancer. IGFs serve as endocrine, autocrine, and paracrine stimulators of mitogenesis, survival, and cellular transformation. These actions are mediated through the type 1 IGF-receptor (IGF-1R), a tyrosine kinase that resembles the insulin receptor. The availability of free IGF for interaction with the IGF-1R is modulated by the insulin-like growth factor-binding proteins (IGFBPs). IGFBPs, especially IGFBP-3, also have IGF-independent effects on cell growth. IGF-independent growth inhibition by IGFBP-3 is believed to occur through IGFBP-3-specific cell surface association proteins or receptors and involves nuclear translocation. IGFBP-3-mediated apoptosis is controlled by numerous cell cycle regulators in both normal and disease processes. IGFBP activity is also regulated by IGFBP proteases, which affect the relative affinities of IGFBPs, IGFs and IGF-1R. Perturbations in each level of the IGF axis have been implicated in cancer formation and progression in various cell types.

521 citations


Journal ArticleDOI
TL;DR: J. Cell.
Abstract: J. Cell. Physiol. 184:285–300, 2000. © 2000 Wiley‐Liss, Inc.

416 citations


Journal ArticleDOI
TL;DR: This review summarizes recent progress in the field of ocular neovascularization and the prospects that it provides for the development of new treatments.
Abstract: The unique vascular supply of the retina, the ability to visualize the vasculature in vivo, and the ability to selectively express genes in the retina make the retina an ideal model system to study molecular mechanisms of angiogenesis. In addition, this area of investigation has great clinical significance, because retinal and choroidal neovascularization are the most common causes of severe visual loss in developed countries and new treatments are needed. As a result, interest in ocular neovascularization is rapidly growing and there has been considerable recent progress. Use of genetically engineered mice in recently developed murine models provides a means to investigate the role of individual gene products in neovascularization in two distinct vascular beds, the retinal vasculature and the choroidal vasculature. It appears that angiogenesis in different vascular beds has common themes, but also has tissue-specific aspects. This review summarizes recent progress in the field of ocular neovascularization and the prospects that it provides for the development of new treatments.

410 citations


Journal ArticleDOI
TL;DR: It is proposed that the cGMP‐induced decrease in Ca2+ sensitivity is a strategic way to achieve “active relaxation” of the smooth muscle.
Abstract: Contraction and relaxation of smooth muscle is a tightly regulated process involving numerous endogenous substances and their intracellular second messengers. We examine the key role of cyclic guanosine monophosphate (cGMP) in mediating smooth muscle relaxation. We briefly review the current art regarding cGMP generation and degradation, while focusing on the recent identification of the molecular mechanisms underlying cGMP-mediated smooth muscle relaxation. cGMP-induced SM relaxation is mediated mainly by cGMP-dependent protein kinase activation. It involves several molecular events culminating in a reduction in intracellular Ca(2+) concentration and a decrease in the sensitivity of the contractile system to Ca(2+). We propose that the cGMP-induced decrease in Ca(2+) sensitivity is a strategic way to achieve "active relaxation" of the smooth muscle. In summary, we present compelling evidence supporting a key role for cGMP as a mediator of smooth muscle relaxation in physiological and pharmacological settings.

399 citations


Journal ArticleDOI
TL;DR: It is concluded that chemically induced hypoxia produces different types of cell death depending on the intensity of the insult and on the ATP availability of the cell, and that the classic apoptosis and necrosis may represent only two extremes of a continuum of intermediate forms of cell demise.
Abstract: A rat fibroblastic cell line (rat-1/myc-ER™) was treated with different concentration of Antimycin A, a metabolic poison that affects mitochondrial respiratory chain complex III. The modes of cell death were analyzed by time-lapse videomicroscopy, in situ end-labeling (ISEL) technique, and ultrastructural analysis. Intracellular ATP levels were also measured in order to detect whether the energetic stores were determinant for the type of cell death. It was found that while apoptosis was the prevalent cell death in the fibroblasts treated with low doses, 100 or 200 μM Antimycin A, a new type of cell demise that shared dynamic, molecular, and morphological features with both apoptosis and necrosis represents the most common cell death when the cells were exposed to high doses, 300 or 400 μM, of the hypoxic stimulus. This new type of cell death has been chimerically termed aponecrosis. The inhibition of caspase 3, an enzyme critical for the apoptotic DNA degradation, caused a clear shift from aponecrosis to necrosis in the cell culture, suggesting that this new type of cell death could account for an incomplete execution of the apoptotic program and the following degeneration in necrosis. After being treated with higher doses, i.e., 1000 μM Antimycin A, almost all of the cells died by true necrosis. The analysis of the cellular energetic stores showed that the levels of ATP were a primary determinant in directing toward active cell death (apoptosis), aponecrosis, or necrosis. We conclude that chemically induced hypoxia produces different types of cell death depending on the intensity of the insult and on the ATP availability of the cell, and that the classic apoptosis and necrosis may represent only two extremes of a continuum of intermediate forms of cell demise. J. Cell. Physiol. 182:41–49, 2000. © 2000 Wiley-Liss, Inc.

366 citations


Journal ArticleDOI
TL;DR: It is shown that type I collagen matrix gels induce osteoblastic differentiation of bone marrow cells with high alkaline phosphatase activity, collagen synthesis, and formed mineralized tissues with anti‐α 2 integrin antibody, which interacts with α subunit of Integrin and blocks the binding of integrin with collagen.
Abstract: Bone marrow cells are multipotent cells. When bone marrow cells were cultured with type I collagen matrix gels, they showed high alkaline phosphatase activity, collagen synthesis, and formed mineralized tissues. Furthermore, cells expressed osteocalcin and bone sialoprotein genes, which are osteoblast-specific genes. These findings indicate that type I collagen matrix gels induce osteoblastic differentiation of bone marrow cells. Type I collagen interacts with the α 2 β 1 integrin receptor on the cell membrane and mediates extracellular signals into cells. DGEA peptide is a cell-binding domain of type I collagen molecule. When collagen–integrin interaction was interrupted by the addition of Asp-Gly-Glu-Ala (DGEA) peptide to the culture, the expression of osteoblastic phenotypes of bone marrow cells was inhibited. Furthermore, anti-α 2 integrin antibody, which interacts with α subunit of integrin and blocks the binding of integrin with collagen, suppressed the expression of osteoblastic phenotypes. These findings imply that collagen-α 2 β 1 integrin interaction is an important signal for the osteoblastic differentiation of bone marrow cells. J. Cell. Physiol. 184:207–213, 2000. © 2000 Wiley-Liss, Inc.

364 citations


Journal ArticleDOI
TL;DR: The potent and specific inhibitor of DNA methylation, 5‐aza‐2′‐deoxycytidine (5‐AZA‐CdR) has been demonstrated to reactivate the expression most of these “malignancy” suppressor genes in human tumor cell lines, suggesting that epigenetics plays an important role in tumorigenesis.
Abstract: The methylation of DNA is an epigenetic modification that can play an important role in the control of gene expression in mammalian cells. The enzyme involved in this process is DNA methyltransferase, which catalyzes the transfer of a methyl group from S-adenosyl-methionine to cytosine residues to form 5-methylcytosine, a modified base that is found mostly at CpG sites in the genome. The presence of methylated CpG islands in the promoter region of genes can suppress their expression. This process may be due to the presence of 5-methylcytosine that apparently interferes with the binding of transcription factors or other DNA-binding proteins to block transcription. In different types of tumors, aberrant or accidental methylation of CpG islands in the promoter region has been observed for many cancer-related genes resulting in the silencing of their expression. How this aberrant hypermethylation takes place is not known. The genes involved include tumor suppressor genes, genes that suppress metastasis and angiogenesis, and genes that repair DNA suggesting that epigenetics plays an important role in tumorigenesis. The potent and specific inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-AZA-CdR) has been demonstrated to reactivate the expression most of these "malignancy" suppressor genes in human tumor cell lines. These genes may be interesting targets for chemotherapy with inhibitors of DNA methylation in patients with cancer and this may help clarify the importance of this epigenetic mechanism in tumorigenesis.

361 citations


Journal ArticleDOI
TL;DR: The association of HER2 overexpression with human tumors, its extracellular accessibility, as well as its involvement in tumor aggressiveness are all factors that make this receptor an appropriate target for tumor‐specific therapies.
Abstract: The HER2 proto-oncogene encodes a transmembrane glycoprotein of 185 kDa (p185(HER2)) with intrinsic tyrosine kinase activity. Amplification of the HER2 gene and overexpression of its product induce cell transformation. Numerous studies have demonstrated the prognostic relevance of p185(HER2), which is overexpressed in 10% to 40% of human breast tumors. Recent data suggest that p185(HER2) is a ligand orphan receptor that amplifies the signal provided by other receptors of the HER family by heterodimerizing with them. Ligand-dependent activation of HER1, HER3, and HER4 by EGF or heregulin results in heterodimerization and, thereby, HER2 activation. HER2 overexpression is associated with breast cancer patient responsiveness to doxorubicin, to cyclophosphamide, methotrexate, and fluorouracil (CMF), and to paclitaxel, whereas tamoxifen was found to be ineffective and even detrimental in patients with HER2-positive tumors. In vitro analyses have shown that the role of HER2 overexpression in determining the sensitivity of cancer cells to drugs is complex, and molecules involved in its signaling pathway are probably the actual protagonists of the sensitivity to drugs. The association of HER2 overexpression with human tumors, its extracellular accessibility, as well as its involvement in tumor aggressiveness are all factors that make this receptor an appropriate target for tumor-specific therapies. A number of approaches are being investigated as possible therapeutic strategies that target HER2: (1) growth inhibitory antibodies, which can be used alone or in combination with standard chemotherapeutics; (2) tyrosine kinase inhibitors (TKI), which have been developed in an effort to block receptor activity because phosphorylation is the key event leading to activation and initiation of the signaling pathway; and (3) active immunotherapy, because the HER2 oncoprotein is immunogenic in some breast carcinoma patients.

Journal ArticleDOI
TL;DR: Current information on the functions of p27Kip1, its abnormalities found in human tumors, and the possible clinical implications of these findings with respect to the management of cancer patients are reviewed.
Abstract: Cyclin-dependent kinases (CDKs), together with cyclins, their regulatory subunits, govern cell-cycle progression in eukaryotic cells. p27(Kip1) is a member of a family of CDK inhibitors (CDIs) that bind to cyclin/CDK complexes and arrest cell division. There is considerable evidence that p27(Kip1) plays an important role in multiple fundamental cellular processes, including cell proliferation, cell differentiation, and apoptosis. Moreover, p27(Kip1) is a putative tumor-suppressor gene that appears to play a critical role in the pathogenesis of several human malignancies and its reduced expression has been shown to correlate with poor prognosis in cancer patients. This study reviews current information on the functions of p27(Kip1), its abnormalities found in human tumors, and the possible clinical implications of these findings with respect to the management of cancer patients.

Journal ArticleDOI
TL;DR: The studies summarized in this review can provide a useful tool to uncover the molecular basis underlying the formation of tumors of myogenic derivation, and can have important implications in setting out strategies aimed at muscle regeneration.
Abstract: Skeletal muscle differentiation is influenced by multiple pathways, which regulate the activity of myogenic regulatory factors (MRFs)—the myogenic basic helix-loop-helix proteins and the MEF2-family members—in positive or negative ways. Here we will review and discuss the network of signals that regulate MRF function during myocyte proliferation, differentiation, and post-mitotic growth. Elucidating the mechanisms governing muscle-specific transcription will provide important insight in better understanding the embryonic development of muscle at the molecular level and will have important implications in setting out strategies aimed at muscle regeneration. Since the activity of MRFs are compromised in tumors of myogenic derivation—the rhabdomyosarcomas—the studies summarized in this review can provide a useful tool to uncover the molecular basis underlying the formation of these tumors. J. Cell. Physiol. 185:155–173, 2000. © 2000 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: The basic mechanisms of the Ubiquitin system are reviewed and the various ways in which ubiquitin‐mediated degradation can be modulated by physiological signals are reviewed.
Abstract: The ubiquitin-proteasome pathway is responsible for the major portion of specific cellular protein degradation. Ubiquitin-mediated degradation is involved in physiological regulation of many cellular processes, including cell cycle progression, differentiation, and signal transduction. Here, we review the basic mechanisms of the ubiquitin system and the various ways in which ubiquitin-mediated degradation can be modulated by physiological signals.

Journal ArticleDOI
TL;DR: It is indicated that OPN exists as an integral component of a hyaluronan‐CD44‐ERM attachment complex that is involved in the migration of embryonic fibroblasts, activated macrophages, and metastatic cells.
Abstract: Osteopontin (OPN) is a secreted glycoprotein with mineral- and cell-binding properties that can regulate cell activities through integrin receptors. Previously, we identified an intracellular form of osteopontin with a perimembranous distribution in migrating fetal fibroblasts (Zohar et al., J Cell Physiol 170:88–98, 1997). Since OPN and CD44 expression are increased in migrating cells, we analyzed the relationship of these proteins with immunofluorescence and confocal microscopy. A distinct co-localization of perimembranous OPN and cell-surface CD44 was observed in fetal fibroblasts, periodontal ligament cells, activated macrophages, and metastatic breast cancer cells. The co-localization of OPN and CD44 was prominent at the leading edge of migrating fibroblasts, where OPN also co-localized with the ezrin/radixin/moesin (ERM) protein ezrin, as well as in cell processes and at attachment sites of hyaluronan-coated beads. The subcortical location of OPN in these cells was verified by cell-surface biotinylation experiments in which biotinylated CD44 and non-biotinylated OPN were isolated from complexes formed with hyaluronan-coated beads and identified with immunoblotting. That perimembranous OPN represents secreted protein internalized by endocytosis or phagocytosis appeared to be unlikely since exogenous OPN that was added to cell cultures could not be detected inside the cells. A physical association with OPN, CD44, and ERM, but not with vinculin or α-actin, was indicated by immunoadsorption and immunoblotting of cell proteins in complexes extracted from hyaluronan-coated beads. The functional significance of OPN in this complex was demonstrated using OPN−/− and CD−/− mouse fibroblasts which displayed impaired migration and a reduced attachment to hyaluronan-coated beads. These studies indicate that OPN exists as an integral component of a hyaluronan-CD44-ERM attachment complex that is involved in the migration of embryonic fibroblasts, activated macrophages, and metastatic cells. J. Cell. Physiol. 184:118–130, 2000. © 2000 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Functional contributions of 5′ regulatory sequences conserved in rat, mouse and human CBFA1 genes to transcription are defined and indicate that the CB FA1 gene is autoregulated in part by negative feedback on its own promoter to stringently controlCBFA1 gene expression and function during bone formation.
Abstract: The runt related transcription factor CBFA1 (AML3/PEBP2αA/RUNX2) regulates expression of several bone- and cartilage-related genes and is required for bone formation in vivo. The gene regulatory mechanisms that control activation and repression of CBFA1 gene transcription during osteoblast differentiation and skeletal development are essential for proper execution of the osteogenic program. We have therefore defined functional contributions of 5′ regulatory sequences conserved in rat, mouse and human CBFA1 genes to transcription. Deletion analysis reveals that 0.6 kB of the bone-related rat or mouse CBFA1 promoter (P1, MASNS protein isoform) is sufficient to confer transcriptional activation, and that there are multiple promoter domains which positively and negatively regulate transcription. Progressive deletion of promoter segments between nt −351 and −92 causes a striking 30- to 100-fold combined decrease in promoter activity. Additionally, 5′ UTR sequences repress reporter gene transcription 2- to 3-fold. Our data demonstrate that CBFA1 is a principal DNA binding protein interacting with the 5′ region of the CBFA1 gene in osseous cells, that there are at least three CBFA1 recognition motifs in the rat CBFA1 promoter, and that there are three tandemly repeated CBFA1 sites within the 5′ UTR. We find that forced expression of CBFA1 protein downregulates CBFA1 promoter activity and that a single CBFA1 site is sufficient for transcriptional autosuppression. Thus, our data indicate that the CBFA1 gene is autoregulated in part by negative feedback on its own promoter to stringently control CBFA1 gene expression and function during bone formation. J. Cell. Physiol. 184:341–350, 2000. © 2000 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: An efficient and reproducible procedure for the isolation of stromal cells from bone marrow aspirates of normal human donors based on the expression of endoglin, a type III receptor of the transforming growth factor‐beta (TGF‐β) receptor family is developed.
Abstract: Multipotential bone marrow stromal cells have the ability to differentiate along multiple connective tissue lineages including cartilage. In this study, we developed an efficient and reproducible procedure for the isolation of stromal cells from bone marrow aspirates of normal human donors based on the expression of endoglin, a type III receptor of the transforming growth factor-beta (TGF-β) receptor family. We demonstrate that these cells have the ability of multiple lineage differentiation. Stromal cells represented 2–3% of the total mononuclear cells of the marrow. The cells displayed a fibroblastic colony formation in monolayer culture and maintained similar morphology with passage. Expression of cell surface molecules by flow cytometry displayed a stable phenotype with culture expansion. When cocultured with hematopoietic CD34+ progenitor cells, stromal cells were able to maintain their ability to support hematopoiesis in vitro. Culture expanded stromal cells were placed in a 3-dimensional matrix of alginate beads and cultured in serum-free media in the presence of TGFβ-3 for chondrogenic lineage progression. Increased expression of type II collagen messenger RNA was observed in the TGFβ3 treated cultures. Immunohistochemistry performed on sections of alginate beads detected the presence of type II collagen protein. This isolation procedure for stromal cells and the establishment of the alginate culture system for chondrogenic progression will contribute to the understanding of chondrogenesis and cartilage repair. J. Cell. Physiol. 185:98–106, 2000. © 2000 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: p73 and p63 are two other members of the p53 family that show homology to p53 in their respective transactivation, DNA‐binding and oligomerization domains and are predicted to mediate apoptosis via mechanisms that are completely distinct from those engaged by p53.
Abstract: p53-mediated apoptosis involves multiple mechanisms. A number of p53-regulated apoptosis-related genes have been identified. Some of these genes encode proteins that are important in controlling the integrity of mitochondria while the others code for membrane death receptors. p53 may also induce apoptosis by interfering with the growth factor-mediated survival signals. Although the transactivation-deficient p53 can induce apoptosis, evidence suggests that both the transcription-dependent and independent functions are needed for full apoptotic activity. p73 and p63 are two other members of the p53 family that show homology to p53 in their respective transactivation, DNA-binding and oligomerization domains. Both p73 and p63 transactivate p53-regulated promoters and induce apoptosis. Evidence suggests that both p73 and p63 may mediate apoptosis via some of the same mechanisms that are utilized by p53. However, both p73 and p63 exhibit features that are different from those of p53. Hence, both p73 and p63 are predicted to mediate apoptosis via mechanisms that are completely distinct from those engaged by p53. J. Cell. Physiol. 182:171-181, 2000. Published 2000 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Nakanishi et al. as discussed by the authors investigated the effects of CTGF/Hcs24 on the proliferation and differentiation of osteoblastic cell lines in vitro and revealed that CTGF is a novel, potent stimulator for the proliferation in addition to chondrocytes and endothelial cells.
Abstract: Connective tissue growth factor/hypertrophic chondrocyte-specific gene product Hcs24 (CTGF/Hcs24) promotes the proliferation and differentiation of chondrocytes and endothelial cells which are involved in endochondral ossification (Shimo et al., 1998, J Biochem 124:130–140; Shimo et al., 1999, J Biochem 126:137–145; Nakanishi et al., 2000, Endocrinology 141:264–273). To further clarify the role of CTGF/Hcs24 in endochondral ossification, here we investigated the effects of CTGF/Hcs24 on the proliferation and differentiation of osteoblastic cell lines in vitro. A binding study using 125I-labeled recombinant CTGF/Hcs24 (rCTGF/Hcs24) disclosed two classes of specific binding sites on a human osteosarcoma cell line, Saos-2. The apparent dissociation constant (Kd) value of each binding site was 17.2 and 391 nM, respectively. A cross-linking study revealed the formation of 125I-rCTGF/Hcs24-receptor complex with an apparent molecular weight of 280 kDa. The intensity of 125I-rCTGF/Hcs24-receptor complex decreased on the addition of increasing concentrations of unlabeled rCTGF/Hcs24, but not platelet-derived growth factor-BB homodimer or basic fibroblast growth factor. These findings suggest that osteoblastic cells have specific receptor molecules for CTGF/Hcs24. rCTGF/Hcs24 promoted the proliferation of Saos-2 cells and a mouse osteoblast cell line MC3T3-E1 in a dose- and time-dependent manner. rCTGF/Hcs24 also increased mRNA expression of type I collagen, alkaline phosphatase, osteopontin, and osteocalcin in both Saos-2 cells and MC3T3-E1 cells. Moreover, rCTGF/Hcs24 increased alkaline phosphatase activity in both cells. It also stimulated collagen synthesis in MC3T3-E1 cells. Furthermore, rCTGF/Hcs24 stimulated the matrix mineralization on MC3T3-E1 cells and its stimulatory effect was comparable to that of bone morphogenetic protein-2. These findings indicate that CTGF/Hcs24 is a novel, potent stimulator for the proliferation and differentiation of osteoblasts in addition to chondrocytes and endothelial cells. Because of these functions, we are re-defining CTGF/Hcs24 as a major factor to promote endochondral ossification to be called “ecogenin: endochondral ossification genetic factor.” J. Cell. Physiol. 184:197–206, 2000. © 2000 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Overexpression of synectin in ECV304 cells in culture led to a dose‐dependent inhibition of migration while not affecting cell adhesion or growth rate, and it is concluded that syNECTin is involved in syndecan‐4–dependent interactions and may play a role in the assembly of syndecans‐4 signaling complex.
Abstract: Syndecan-4, a member of the syndecan gene family of proteoglycans, is an important regulator of bFGF signaling. In particular, bFGF-dependent regulation of cell growth and migration has been linked to syndecan-4 cytoplasmic domain-mediated interactions. Screening of a yeast two-hybrid library with a cytoplasmic domain of rat syndecan-4 identified a novel binding partner, here termed synectin. Synectin is highly homologous to semaphorin F binding protein semcap1, glucose 1 transporter binding protein glut1cbp, and RGS-GAIP/neuropilin-1 binding protein GIPC. Overexpression of synectin in ECV304 cells in culture led to a dose-dependent inhibition of migration while not affecting cell adhesion or growth rate. We conclude that synectin is involved in syndecan-4–dependent interactions and may play a role in the assembly of syndecan-4 signaling complex. J. Cell. Physiol. 184:373–379, 2000. © 2000 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: There is temporal and spatial correlation of Ang2 expression with developmental and pathologic angiogenesis in the retina, suggesting that it may play a role in retinal neovascularization in adults.
Abstract: Vascular development in the embryo requires coordinated signaling through several endothelial cell-specific receptors; however, it is not known whether this is also required later during retinal vascular development or as part of retinal neovascularization in adults. The Tie2 receptor has been implicated in stabilization and maturation of vessels through action of an agonist ligand, angiopoietin 1 (Ang1) and an antagonistic ligand, Ang2. In this study, we have demonstrated that ang2 mRNA levels are increased in the retina during development of the deep retinal capillaries by angiogenesis and during pathologic angiogenesis in a model of ischemic retinopathy. Mice with hemizygous disruption of the ang2 gene by insertion of a promoterless beta-galactosidase (beta gal) gene behind the ang2 promoter, show constitutive beta gal staining primarily in cells along the outer border of the inner nuclear layer identified as horizontal cells by colocalization of calbindin. During development of the deep capillary bed or retinal neovascularization, other cells in the inner nuclear layer and ganglion cell layer, in regions of neovascularization, stain for beta gal. Thus, there is temporal and spatial correlation of Ang2 expression with developmental and pathologic angiogenesis in the retina, suggesting that it may play a role.

Journal ArticleDOI
TL;DR: A functional Smad‐binding element of the COL1A2 promoter harboring a CAGACA consensus sequence is identified that is both necessary and sufficient for stimulation by TGF‐β, and it is demonstrated that interaction of this Smad•binding element with endogenous Smads is required for the full T GF‐β response in fibroblasts.
Abstract: Transcription of the α2(I) collagen gene (COL1A2) in fibroblasts is potently induced by transforming growth factor-β (TGF-β). Smad family proteins function as intracellular signal transducers for TGF-β that convey information from the cell membrane to the nucleus. In the present study, we establish the functional requirement for endogenous Smad3 and Smad4 in TGF-β–stimulated COL1A2 transcription in human skin fibroblasts in vitro. Furthermore, using transfections with a series of 5′ deletions of the human COL1A2 promoter, we identify a proximal region between −353 and −148 bp, which is required for full stimulation of transcription by a constitutively active TGF-β type I receptor. This region of the COL1A2 promoter contains a CAGA motif also found in the promoter of the plasminogen activator inhibitor-1. Substitutions disrupting this sequence decreased the binding of nuclear extracts or recombinant Smad3 to the CAGACA oligonucleotide, and markedly reduced the transcriptional response to TGF-β or overexpressed Smad3 in transient transfection assays. The insertion of tandem repeats of CAGACA conferred TGF-β stimulation to a heterologous minimal promoter–reporter construct. Inhibition of endogenous Smad expression in fibroblasts by antisense oligonucleotides or cDNA against Smad3 or Smad4, and transfection of COL1A2 promoter constructs into Smad4-deficient breast adenocarcinoma cells, indicated the critical role of Smads for the full TGF-β response. The importance of Smad binding to the CAGACA box of COL1A2 was further established by transcriptional decoy oligonucleotide competition. Taken together, the results identify a functional Smad-binding element of the COL1A2 promoter harboring a CAGACA consensus sequence that is both necessary and sufficient for stimulation by TGF-β, and demonstrate that interaction of this Smad-binding element with endogenous Smads is required for the full TGF-β response in fibroblasts. J. Cell. Physiol. 183:381–392, 2000. © 2000 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: A coculture system of hMSCs and CD34+ cells in serum‐free media without exogenous cytokines is established and results suggest that MSCs residing within the megakaryocytic microenvironment in bone marrow provide key signals to stimulatemegakaryocyte and platelet production from CD34- hematopoietic cells.
Abstract: Megakaryocytopoiesis and thrombocytopoiesis result from the interactions between hematopoietic progenitor cells, humoral factors, and marrow stromal cells derived from mesenchymal stem cells (MSCs) or MSCs directly. MSCs are self-renewing marrow cells that provide progenitors for osteoblasts, adipocytes, chondrocytes, myocytes, and marrow stromal cells. MSCs are isolated from bone marrow aspirates and are expanded in adherent cell culture using an optimized media preparation. Culture-expanded human MSCs (hMSCs) express a variety of hematopoietic cytokines and growth factors and maintain long-term culture-initiating cells in long-term marrow culture with CD34(+) hematopoietic progenitor cells. Two lines of evidence suggest that hMSCs function in megakaryocyte development. First, hMSCs express messenger RNA for thrombopoietin, a primary regulator for megakaryocytopoiesis and thrombocytopoiesis. Second, adherent hMSC colonies in primary culture are often associated with hematopoietic cell clusters containing CD41(+) megakaryocytes. The physical association between hMSCs and megakaryocytes in marrow was confirmed by experiments in which hMSCs were copurified by immunoselection using an anti-CD41 antibody. To determine whether hMSCs can support megakaryocyte and platelet formation in vitro, we established a coculture system of hMSCs and CD34(+) cells in serum-free media without exogenous cytokines. These cocultures produced clusters of hematopoietic cells atop adherent MSCs. After 7 days, CD41(+) megakaryocyte clusters and pro-platelet networks were observed with pro-platelets increasing in the next 2 weeks. CD41(+) platelets were found in culture medium and expressed CD62P after thrombin treatment. These results suggest that MSCs residing within the megakaryocytic microenvironment in bone marrow provide key signals to stimulate megakaryocyte and platelet production from CD34(+) hematopoietic cells.

Journal ArticleDOI
TL;DR: It is suggested that bone morphogenetic protein‐7 maintains the expression of vascular SMC phenotype and may prevent vascular proliferative disorders, thus potentially acting as a palliative after damage to the vascular integrity.
Abstract: Vascular proliferative disorders are characterized by migration and proliferation of vascular smooth muscle cells (SMCs), loss of expression of SMC phenotype, and enhanced extracellular matrix synthesis (e.g., type I collagen). We report here that bone morphogenetic protein-7 (BMP-7), a member of the transforming growth factor-beta (TGF-beta) superfamily, is capable of inhibiting both serum-stimulated and growth factor-induced (platelet-derived growth factor [PDGF-BB] and TGF-beta1) cell growth as measured by (3)H-thymidine uptake into DNA synthesis and cell number in primary human aortic smooth muscle (HASM) cell cultures. Concomitantly, addition of BMP-7 stimulates the expression of SMC-specific markers, namely alpha-actin and heavy chain myosin as examined by RT-PCR and Northern blot analyses. The collagen type III/I ratio that becomes lower with the transdifferentiation of SMCs into myofibroblasts is also maintained in BMP-7-treated cultures as compared to untreated controls. Studies on the mechanism of action indicate that BMP-7 treatment inhibits cyclin-dependent kinase 2 (cdk-2) that was stimulated during PDGF-BB-induced proliferation of SMCs and upregulates the expression of the inhibitory Smad, Smad6, which was shown to inhibit TGF-beta superfamily signaling. These results collectively suggest that BMP-7 maintains the expression of vascular SMC phenotype and may prevent vascular proliferative disorders, thus potentially acting as a palliative after damage to the vascular integrity.

Journal ArticleDOI
TL;DR: The therapeutic potential of MAA has still to be fully exploited and new strategies have to be found in order to achieve an effective and long‐lasting in vivo immune control of melanoma growth and progression.
Abstract: In this review, we summarize the significant progress that has been made in the identification of melanoma-associated antigens (MAA) recognized by cytotoxic T-lymphocytes (CTL). These antigens belong to three main groups: tumor-associated testis-specific antigens (e.g., MAGE, BAGE, and GAGE); melanocyte differentiation antigens (e.g., tyrosinase, Melan-A/MART-1); and mutated or aberrantly expressed molecules (e.g, CDK4, MUM-1, β-catenin). Although strong CTL activity may be induced ex vivo against most of these antigens, often in the presence of excess cytokines and antigen, a clear understanding of the functional status of CTL in vivo and their impact on tumor growth, is still lacking. Several mechanisms are described that potentially contribute to tumor cell evasion of the immune response, suggesting that any antitumor efficacy achieved by immune effectors may be offset by factors that result ultimately in tumor progression. Nevertheless, most of these MAA are currently being investigated as immunizing agents in clinical studies, the conflicting results of which are reviewed. Indeed, the therapeutic potential of MAA has still to be fully exploited and new strategies have to be found in order to achieve an effective and long-lasting in vivo immune control of melanoma growth and progression. J. Cell. Physiol. 182:323–331, 2000. © 2000 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: In this review, some data concerning the involvement of the nm23 genes in development and differentiation are summarized, attempting to delineate an overall view of many facets of their biological role.
Abstract: Tumor suppressor genes have a pivotal role in normal cells regulating cell cycle processes negatively. Furthermore, the inhibition of cell proliferation is a crucial step in the achievement of cell differentiation. Increasing evidence suggests that the nm23 genes, initially documented as suppressors of the invasive phenotype in some cancer types, are involved in the control of normal development and differentiation. In this review, we summarize some data concerning the involvement of the nm23 genes in development and differentiation, attempting to delineate an overall view of many facets of their biological role.

Journal ArticleDOI
TL;DR: Data indicate that the induction of A EC apoptosis by TNF‐α requires a functional renin/angiotensin system (RAS) in the target cell and suggest that therapeutic control of AEC apoptosis in response to TNF-α is feasible through pharmacologic manipulation of the local RAS.
Abstract: Recent work from this laboratory demonstrated that apoptosis of pulmonary alveolar epithelial cells (AEC) in response to Fas requires angiotensin II (ANGII) generation de novo and binding to its receptor (Wang et al., 1999b, Am J Physiol Lung Cell Mol Physiol 277:L1245-L1250). These findings led us to hypothesize that a similar mechanism might be involved in the induction of AEC apoptosis by TNF-alpha. Apoptosis was detected by assessment of nuclear and chromatin morphology, increased activity of caspase 3, binding of annexin V, and by net cell loss inhibitable by the caspase inhibitor ZVAD-fmk. Purified human TNF-alpha induced dose-dependent apoptosis in primary type II pneumocytes isolated from rats or in the AEC-derived human lung carcinoma cell line A549. Apoptosis in response to TNF-alpha was inhibited in a dose-dependent manner by the nonselective ANGII receptor antagonist saralasin or by the nonthiol ACE inhibitor lisinopril; the inhibition of TNF-induced apoptosis was maximal at 50 microgram/ml saralasin (101% inhibition) and at 0.5 microgram/ml lisinopril (86% inhibition). In both cell culture models, purified TNF-alpha caused a significant increase in the mRNA for angiotensinogen (ANGEN), which was not expressed in unactivated cells. Transfection of primary cultures of rat AEC with antisense oligonucleotides against ANGEN mRNA inhibited the subsequent induction of TNF-stimulated apoptosis by 72% (P < 0.01). Exposure to TNF-alpha increased the concentration of ANGII in the serum-free extracellular medium by fivefold in A549 cell cultures and by 40-fold in primary AEC preparations; further, exposure to TNF-alpha for 40 h caused a net cell loss of 70%, which was completely abrogated by either the caspase inhibitor ZVAD-fmk, lisinopril, or saralasin. Apoptosis in response to TNF-alpha was also completely inhibited by neutralizing antibodies specific for ANGII (P < 0.01), but isotype-matched nonimmune immunoglobulins had no significant effect. These data indicate that the induction of AEC apoptosis by TNF-alpha requires a functional renin/angiotensin system (RAS) in the target cell. They also suggest that therapeutic control of AEC apoptosis in response to TNF-alpha is feasible through pharmacologic manipulation of the local RAS.

Journal ArticleDOI
TL;DR: A more complex approach to mechanisms that underlie tumor growth, which takes into account the altered metabolic pathways in cancer disease, could represent a challenge for the future of cancer research.
Abstract: An efficient regulation of fuel metabolism in response to internal and environmental stimuli is a vital task that requires an intact carnitine system. The carnitine system, comprehensive of carnitine, its derivatives, and proteins involved in its transformation and transport, is indispensable for glucose and lipid metabolism in cells. Two major functions have been identified for the carnitine system: (1) to facilitate entry of long-chain fatty acids into mitochondria for their utilization in energy-generating processes; (2) to facilitate removal from mitochondria of short-chain and medium-chain fatty acids that accumulate as a result of normal and abnormal metabolism. In cancer patients, abnormalities of tumor tissue as well as nontumor tissue metabolism have been observed. Such abnormalities are supposed to contribute to deterioration of clinical status of patients, or might induce cancerogenesis by themselves. The carnitine system appears abnormally expressed both in tumor tissue, in such a way as to greatly reduce fatty acid beta-oxidation, and in nontumor tissue. In this view, the study of the carnitine system represents a tool to understand the molecular basis underlying the metabolism in normal and cancer cells. Some important anticancer drugs contribute to dysfunction of the carnitine system in nontumor tissues, which is reversed by carnitine treatment, without affecting anticancer therapeutic efficacy. In conclusion, a more complex approach to mechanisms that underlie tumor growth, which takes into account the altered metabolic pathways in cancer disease, could represent a challenge for the future of cancer research.

Journal ArticleDOI
TL;DR: The low level of myostatin observed in regenerating myotubes in these studies suggests a negative regulatory role for myostAT in muscle regeneration.
Abstract: Myostatin, a member of the TGF-beta superfamily, is a key negative regulator of skeletal muscle growth. The role of myostatin during skeletal muscle regeneration has not previously been reported. In the present studies, normal Sprague-Dawley and growth hormone (GH)-deficient (dw/dw) rats were administered the myotoxin, notexin, in the right M. biceps femoris on day 0. The dw/dw rats then received either saline or human-N-methionyl GH (200microg/100g body weight/day) during the ensuing regeneration. Normal and dw/dw M. biceps femoris were dissected on days 1, 2, 3, 5, 9 and 13, formalin-fixed, then immunostained for myostatin protein. Immunostaining for myostatin revealed high levels of protein within necrotic fibres and connective tissue of normal and dw/dw damaged muscles. Regenerating myotubes contained no myostatin at the time of fusion (peak fusion on day 5), and only low levels of myostatin were observed during subsequent myotube enlargement. Fibres which survived assault by notexin (survivor fibres) contained moderate to high myostatin immunostaining initially. The levels in both normal and dw/dw rat survivor fibres decreased on days 2-3, then increased on days 9-13. In dw/dw rats, there was no observed effect of GH administration on the levels of myostatin protein in damaged muscle. The low level of myostatin observed in regenerating myotubes in these studies suggests a negative regulatory role for myostatin in muscle regeneration.

Journal ArticleDOI
TL;DR: It is demonstrated that antecedent upregulation of HO‐1 is necessary and sufficient for subsequent induction of the MnSOD gene in neonatal rat astroglia challenged with CSH or dopamine, and in astroglial cultures transiently transfected with full‐length human HO‐ 1 cDNA.
Abstract: Manganese superoxide dismutase (MnSOD) is an antioxidant enzyme that reduces superoxide anion to hydrogen peroxide in cell mitochondria. MnSOD is overexpressed in normal aging brain and in various central nervous system disorders; however, the mechanisms mediating the upregulation of MnSOD under these conditions remain poorly understood. We previously reported that cysteamine (CSH) and other pro-oxidants rapidly induce the heme oxygenase-1 (HO-1) gene in cultured rat astroglia followed by late upregulation of MnSOD in these cells. In the present study, we demonstrate that antecedent upregulation of HO-1 is necessary and sufficient for subsequent induction of the MnSOD gene in neonatal rat astroglia challenged with CSH or dopamine, and in astroglial cultures transiently transfected with full-length human HO-1 cDNA. Treatment with potent antioxidants attenuates MnSOD expression in HO-1-transfected astroglia, strongly suggesting that intracellular oxidative stress signals MnSOD gene induction in these cells. Activation of this HO-1-MnSOD axis may play an important role in the pathogenesis of Alzheimer disease, Parkinson disease and other free radical-related neurodegenerative disorders. In these conditions, compensatory upregulation of MnSOD may protect mitochondria from oxidative damage accruing from heme-derived free iron and carbon monoxide liberated by the activity of HO-1.