scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Chemical Ecology in 2010"


Journal ArticleDOI
TL;DR: The time is right to intensify goal-oriented interdisciplinary research on semiochemicals, involving chemists, entomologists, and plant protection experts, in order to provide the urgently needed, and cost-effective technical solutions for sustainable insect management worldwide.
Abstract: The idea of using species-specific behavior-modifying chemicals for the management of noxious insects in agriculture, horticulture, forestry, stored products, and for insect vectors of diseases has been a driving ambition through five decades of pheromone research. Hundreds of pheromones and other semiochemicals have been discovered that are used to monitor the presence and abundance of insects and to protect plants and animals against insects. The estimated annual production of lures for monitoring and mass trapping is on the order of tens of millions, covering at least 10 million hectares. Insect populations are controlled by air permeation and attract-and-kill techniques on at least 1 million hectares. Here, we review the most important and widespread practical applications. Pheromones are increasingly efficient at low population densities, they do not adversely affect natural enemies, and they can, therefore, bring about a long-term reduction in insect populations that cannot be accomplished with conventional insecticides. A changing climate with higher growing season temperatures and altered rainfall patterns makes control of native and invasive insects an increasingly urgent challenge. Intensified insecticide use will not provide a solution, but pheromones and other semiochemicals instead can be implemented for sustainable area-wide management and will thus improve food security for a growing population. Given the scale of the challenges we face to mitigate the impacts of climate change, the time is right to intensify goal-oriented interdisciplinary research on semiochemicals, involving chemists, entomologists, and plant protection experts, in order to provide the urgently needed, and cost-effective technical solutions for sustainable insect management worldwide.

825 citations


Journal ArticleDOI
TL;DR: The literature indicates that invasive species can alter the biogeochemistry of ecosystems, that secondary metabolites released by invasive species may play important roles in soil chemistry as well as plant-plant and plant-microbe interactions, and that the herbicides used to control invasive speciesCan impact plant chemistry and ecosystems in ways that have yet to be fully explored.
Abstract: Invasive plants have a multitude of impacts on plant communities through their direct and indirect effects on soil chemistry and ecosystem function. For example, plants modify the soil environment through root exudates that affect soil structure, and mobilize and/or chelate nutrients. The long-term impact of litter and root exudates can modify soil nutrient pools, and there is evidence that invasive plant species may alter nutrient cycles differently from native species. The effects of plants on ecosystem biogeochemistry may be caused by differences in leaf tissue nutrient stoichiometry or secondary metabolites, although evidence for the importance of allelochemicals in driving these processes is lacking. Some invasive species may gain a competitive advantage through the release of compounds or combinations of compounds that are unique to the invaded community—the “novel weapons hypothesis.” Invasive plants also can exert profound impact on plant communities indirectly through the herbicides used to control them. Glyphosate, the most widely used herbicide in the world, often is used to help control invasive weeds, and generally is considered to have minimal environmental impacts. Most studies show little to no effect of glyphosate and other herbicides on soil microbial communities. However, herbicide applications can reduce or promote rhizobium nodulation and mycorrhiza formation. Herbicide drift can affect the growth of non-target plants, and glyphosate and other herbicides can impact significantly the secondary chemistry of plants at sublethal doses. In summary, the literature indicates that invasive species can alter the biogeochemistry of ecosystems, that secondary metabolites released by invasive species may play important roles in soil chemistry as well as plant-plant and plant-microbe interactions, and that the herbicides used to control invasive species can impact plant chemistry and ecosystems in ways that have yet to be fully explored.

288 citations


Journal ArticleDOI
TL;DR: The discipline of chemical ecology is fundamentally important for elucidating the impacts of humans on the health and sustainability of forest ecosystems, as many of the interactions that govern above- and below-ground community and ecosystem processes are chemically mediated.
Abstract: Prominent among the many factors now affecting the sustainability of forest ecosystems are anthropogenically-generated carbon dioxide (CO2) and ozone (O3). CO2 is the substrate for photosynthesis and thus can accelerate tree growth, whereas O3 is a highly reactive oxygen species and interferes with basic physiological functions. This review summarizes the impacts of CO2 and O3 on tree chemical composition and highlights the consequences thereof for trophic interactions and ecosystem dynamics. CO2 and O3 influence phytochemical composition by altering substrate availability and biochemical/physiological processes such as photosynthesis and defense signaling pathways. Growth of trees under enriched CO2 generally leads to an increase in the C/N ratio, due to a decline in foliar nitrogen and concomitant increases in carbohydrates and phenolics. Terpenoid levels generally are not affected by atmospheric CO2 concentration. O3 triggers up-regulation of antioxidant defense pathways, leading to the production of simple phenolics and flavonoids (more so in angiosperms than gymnosperms). Tannins levels generally are unaffected, while terpenoids exhibit variable responses. In combination, CO2 and O3 exert both additive and interactive effects on tree chemical composition. CO2-and O3-mediated changes in plant chemistry influence host selection, individual performance (development, growth, reproduction), and population densities of herbivores (primarily phytophagous insects) and soil invertebrates. These changes can effect shifts in the amount and temporal pattern of forest canopy damage and organic substrate deposition. Decomposition rates of leaf litter produced under elevated CO2 and O3 may or may not be altered, and can respond to both the independent and interactive effects of the pollutants. Overall, however, CO2 and O3 effects on decomposition will be influenced more by their impacts on the quantity, rather than quality, of litter produced. A prominent theme to emerge from this and related reviews is that the effects of elevated CO2 and O3 on plant chemistry and ecological interactions are highly context- and species-specific, thus frustrating attempts to identify general, global patterns. Many of the interactions that govern above- and below-ground community and ecosystem processes are chemically mediated, ultimately influencing terrestrial carbon sequestration and feeding back to influence atmospheric composition. Thus, the discipline of chemical ecology is fundamentally important for elucidating the impacts of humans on the health and sustainability of forest ecosystems. Future research should seek to increase the diversity of natural products, species, and biomes studied; incorporate long-term, multi-factor experiments; and employ a comprehensive “genes to ecosystems” perspective that couples genetic/genomic tools with the approaches of evolutionary and ecosystem ecology.

248 citations


Journal ArticleDOI
Robert S. Boyd1
TL;DR: It is clear that much remains to be learned about how heavy metal pollution impacts organisms, and that exciting new research frontiers are available for experimental exploration.
Abstract: Heavy metals are an important class of pollutants with both lethal and sublethal effects on organisms. The latter are receiving increased attention, as these may have harmful ecological outcomes. For example, recent explorations of heavy metals in freshwater habitats reveal that they can modify chemical communication between individuals, resulting in “info-disruption” that can impact ecological relationships within and between species. Info-disruption can affect animal behavior and social structure, which in turn can modify both intraspecies and interspecies interactions. In terrestrial habitats, info-disruption by metals is not well studied, but recent demonstrations of chemical signaling between plants via both roots and volatile organic molecules provide potential opportunities for info-disruption. Metals in terrestrial habitats also can form elemental plant defenses, in which they can defend a plant against natural enemies. For example, hyperaccumulation of metals by terrestrial plants has been shown to provide defensive benefits, although in almost all known cases the metals are not anthropogenic pollutants but are naturally present in soils inhabited by these plants. Info-disruption among microbes is another arena in which metal pollutants may have ecological effects, as recent discoveries regarding quorum sensing in bacteria provide an avenue for metals to affect interactions among bacteria or between bacteria and other organisms. Metal pollutants also may influence immune responses of organisms, and thus affect pathogen/host relationships. Immunomodulation (modification of immune system function) has been tied to some metal pollutants, although specific metals may boost or reduce immune system function depending on dose. Finally, the study of metal pollutants is complicated by their frequent occurrence as mixtures, either with other metals or with organic pollutants. Most studies of metal pollutants focus on single metals and therefore oversimplify complex field conditions. Study of pollutant impacts on chemical ecology also are difficult due to the necessity of studying effects at varying ecological scales: “dynamic scaling” of chemical ecology studies is rarely done completely. It is clear that much remains to be learned about how heavy metal pollution impacts organisms, and that exciting new research frontiers are available for experimental exploration.

240 citations


Journal ArticleDOI
TL;DR: Choice tests show that aliphatic and indole glucosinolates act in an additive manner to promote larval feeding of both species and P. rapae oviposition, and support the hypothesis that a diversity of glucos inolates is required to limit the growth of multiple insect herbivores.
Abstract: Glucosinolates are a diverse group of defensive secondary metabolites that is characteristic of the Brassicales. Arabidopsis thaliana (L.) Heynh. (Brassicaceae) lines with mutations that greatly reduce abundance of indole glucosinolates (cyp79B2 cyp79B3), aliphatic glucosinolates (myb28 myb29), or both (cyp79B2 cyp79B3 myb28 myb29) make it possible to test the in vivo defensive function of these two major glucosinolate classes. In experiments with Lepidoptera that are not crucifer-feeding specialists, aliphatic and indole glucosinolates had an additive effect on Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae) larval growth, whereas Trichoplusia ni (Hubner) (Lepidoptera: Noctuidae) and Manduca sexta (L.) (Lepidoptera: Sphingidae) were affected only by the absence of aliphatic glucosinolates. In the case of two crucifer-feeding specialists, Pieris rapae (L.) (Lepidoptera: Pieridae) and Plutella xylostella (L.) (Lepidoptera: Plutellidae), there were no major changes in larval performance due to decreased aliphatic and/or indole glucosinolate content. Nevertheless, choice tests show that aliphatic and indole glucosinolates act in an additive manner to promote larval feeding of both species and P. rapae oviposition. Together, these results support the hypothesis that a diversity of glucosinolates is required to limit the growth of multiple insect herbivores.

195 citations


Journal ArticleDOI
TL;DR: Findings suggest that Swingle citrus roots release induced volatiles as an indirect defense in response to herbivore feeding, and that some of these inducedvolatiles function as attractants for entomopathogenic nematodes.
Abstract: Herbivore-induced volatile emissions benefit plant hosts by recruiting natural enemies of herbivorous insects. Such tritrophic interactions have been examined thoroughly in the above-ground terrestrial environment. Recently, similar signals have also been described in the subterranean environment, which may be of equal importance for indirect plant defense. The larvae of the root weevil, Diaprepes abbreviates, are a serious pest of citrus. Infestations can be controlled by the use of entomopathogenic nematodes, yet the interactions between the plant, insect and nematode are poorly understood and remain unpredictable. In bioassays that used a root zone six-arm olfactometer, citrus roots (‘Swingle citrumelo’ rootstock) recruited significantly more entomopathogenic nematodes (Steinernema diaprepesi) when infested with root weevil larvae than non-infested roots. Infested plants were more attractive to nematodes than larvae alone. Roots damaged by weevil larvae attracted more nematodes than mechanically damaged roots and sand controls. By dynamic in situ collection and GC-MS analysis of volatiles from soil, we determined that four major terpene compounds were produced by infested plant roots that were not found in samples from non-infested roots or soil that contained only larvae. Solvent extracts of weevil-infested roots attracted more nematodes than extracts of non-infested roots in a two choice sand-column bioassay. These findings suggest that Swingle citrus roots release induced volatiles as an indirect defense in response to herbivore feeding, and that some of these induced volatiles function as attractants for entomopathogenic nematodes.

178 citations


Journal ArticleDOI
TL;DR: RNAi data suggest that CquiOBP1 is involved in the reception of some oviposition attractants, and that high levels of OBPs expression are essential for the sensitivity of the insect’s olfactory system.
Abstract: Odorant-binding proteins (OBPs) were discovered almost three decades ago, but there is still considerable debate regarding their role(s) in insect olfaction, particularly due to our inability to knockdown OBPs and demonstrate their direct phenotypic effects. By using RNA interference (RNAi), we reduced transcription of a major OBP gene, CquiOBP1, in the antennae of the Southern house mosquito, Culex quinquefasciatus. Previously, we had demonstrated that the mosquito oviposition pheromone (MOP) binds to CquiOBP1, which is expressed in MOP-sensitive sensilla. Antennae of RNAi-treated mosquitoes showed significantly lower electrophysiological responses to known mosquito oviposition attractants than the antennae of water-injected, control mosquitoes. While electroantennogram (EAG) responses to MOP, skatole, and indole were reduced in the knockdowns, there was no significant difference in the EAG responses from RNAi-treated and water-injected mosquito antennae to nonanal at all doses tested. These data suggest that CquiOBP1 is involved in the reception of some oviposition attractants, and that high levels of OBPs expression are essential for the sensitivity of the insect’s olfactory system.

169 citations


Journal ArticleDOI
TL;DR: This wind tunnel assay based on a conspicuous and unambiguous behavioral response provides the necessary resolution for the investigation of physiologically and ecologically relevant odors and will become an essential tool for the functional analysis of the D. melanogaster olfactory system.
Abstract: The fruit fly, Drosophila melanogaster Meigen (Diptera: Drosophilidae), is a model for how animals sense, discriminate, and respond to chemical signals. However, with D. melanogaster our knowledge of the behavioral activity of olfactory receptor ligands has relied largely on close-range attraction, rather than on long-range orientation behavior. We developed a flight assay to relate chemosensory perception to behavior. Headspace volatiles from vinegar attracted 62% of assayed flies during a 15-min experimental period. Flies responded irrespective of age, sex, and mating state, provided they had been starved. To identify behaviorally relevant chemicals from vinegar, we compared the responses to vinegar and synthetic chemicals. Stimuli were applied by a piezoelectric sprayer at known and constant release rates. Re-vaporized methanol extracts of Super Q-trapped vinegar volatiles attracted as many flies as vinegar. The main volatile component of vinegar, acetic acid, elicited significant attraction as a single compound. Two other vinegar volatiles, 2-phenyl ethanol and acetoin, produced a synergistic effect when added to acetic acid. Geosmin, a microbiological off-flavor, diminished attraction to vinegar. This wind tunnel assay based on a conspicuous and unambiguous behavioral response provides the necessary resolution for the investigation of physiologically and ecologically relevant odors and will become an essential tool for the functional analysis of the D. melanogaster olfactory system.

160 citations


Journal ArticleDOI
TL;DR: The results suggest that this humic fraction induces changes in phenyl Propanoid metabolism, the first study that shows a relationship between humic substances and the phenylpropanoid pathway.
Abstract: A high molecular weight humic fraction (>3,500 Da) was characterized chemically by DRIFT and 1H NMR spectroscopy, and was applied to Zea mays L. plants to evaluate its effect on phenylpropanoid metabolism. The activity and gene expression of phenylalanine (tyrosine) ammonia-lyase (PAL/TAL), and the concentrations of phenolics and their amino acid precursors phenylalanine and tyrosine were assayed. Maximum induction of PAL/TAL activity and expression was obtained when the concentration of added humic substance was 1 mg C/l hydroponic solution. Phenylalanine and tyrosine significantly decreased (−16% and −22%, respectively), and phenolic compounds increased in treated plants. The effects of the humic substance could be ascribed partly to indoleacetic acid (27 nmol/mg C) in the humic fraction. Our results suggest that this humic fraction induces changes in phenylpropanoid metabolism. This is the first study that shows a relationship between humic substances and the phenylpropanoid pathway.

159 citations


Journal ArticleDOI
TL;DR: The effects of O3 on plants and their VOC emissions are reviewed, the state of current knowledge on the effects of ozone on ecological interactions based on VOC signaling is reviewed, and further research directions are proposed.
Abstract: Tropospheric ozone (O3) is an important secondary air pollutant formed as a result of photochemical reactions between primary pollutants, such as nitrogen oxides (NOx), and volatile organic compounds (VOCs). O3 concentrations in the lower atmosphere (troposphere) are predicted to continue increasing as a result of anthropogenic activity, which will impact strongly on wild and cultivated plants. O3 affects photosynthesis and induces the development of visible foliar injuries, which are the result of genetically controlled programmed cell death. It also activates many plant defense responses, including the emission of phytogenic VOCs. Plant emitted VOCs play a role in many eco-physiological functions. Besides protecting the plant from abiotic stresses (high temperatures and oxidative stress) and biotic stressors (competing plants, micro- and macroorganisms), they drive multitrophic interactions between plants, herbivores and their natural enemies e.g., predators and parasitoids as well as interactions between plants (plant-to-plant communication). In addition, VOCs have an important role in atmospheric chemistry. They are O3 precursors, but at the same time are readily oxidized by O3, thus resulting in a series of new compounds that include secondary organic aerosols (SOAs). Here, we review the effects of O3 on plants and their VOC emissions. We also review the state of current knowledge on the effects of ozone on ecological interactions based on VOC signaling, and propose further research directions.

153 citations


Journal ArticleDOI
TL;DR: It is concluded that 2-undecyloxy-1-ethanol is a male-produced aggregation pheromone of M. galloprovincialis, the first example of a sex-specific compound in the cerambycid subfamily Lamiinae with significant behavioral activity in the field at a range sufficient to make it a useful trap bait.
Abstract: The pine sawyer beetle, Monochamus galloprovincialis, is a pest of pine trees in Europe and North Africa. Previously considered a secondary pest of stressed and dying trees, it is now receiving considerable attention as a vector of the pine wood nematode, Bursaphelenchus xylophilus, the causal agent of a lethal wilting disease in susceptible species of pines. Adult beetles are attracted to traps baited with a kairomone blend consisting of a host volatile, α-pinene, and two bark beetle pheromone components, ipsenol and 2-methyl-3-buten-2-ol. More recently it has been shown that mature male M. galloprovincialis produce a pheromone that attracts mature females in a laboratory bioassay. Here, volatiles were collected from mature male and female M. galloprovincialis, and a compound produced specifically by mature males was identified as 2-undecyloxy-1-ethanol from its gas chromatographic retention times, its mass spectrum, and by comparison with synthetic standards. The naturally-derived and synthetic compounds elicited electroantennographic responses from both females and males. Sealed polyethylene vials and polyethylene sachets were shown to be effective dispensers with zero-order release, the latter giving a higher release rate than the former. In two field tests, multiple-funnel traps baited with synthetic 2-undecyloxy-1-ethanol caught both female and male M. galloprovincialis, with higher catches at the higher release rate. This compound also synergized the attractiveness of the kairomone blend, the combined mixture catching 80–140% more beetles than the sum of the catches to each bait separately and luring up to two beetles/trap/d in a moderate-density population. We conclude that 2-undecyloxy-1-ethanol is a male-produced aggregation pheromone of M. galloprovincialis. This is the first example of a sex-specific compound in the cerambycid subfamily Lamiinae with significant behavioral activity in the field at a range sufficient to make it a useful trap bait. The possible roles of this pheromone in the chemical ecology of M. galloprovincialis and its potential use in pine wilt disease management are discussed.

Journal ArticleDOI
TL;DR: These interactions across different levels of biological organization, i.e., molecular, biochemical, and organismal, with tomato plants damaged by one 3rd-instar beet armyworm caterpillar, produced consistent results when considering each herbivore separately but not when considering them together.
Abstract: Previous work identified aphids and caterpillars as having distinct effects on plant responses to herbivory. We sought to decipher these interactions across different levels of biological organization, i.e., molecular, biochemical, and organismal, with tomato plants either damaged by one 3rd-instar beet armyworm caterpillar (Spodoptera exigua), damaged by 40 adult potato aphids (Macrosiphum euphorbiae), simultaneous damaged by both herbivores, or left undamaged (controls). After placing insects on plants, plants were transferred to a growth chamber for 5 d to induce a systemic response. Subsequently, individual leaflets from non-damaged parts of plants were excised and used for gene expression analysis (microarrays and quantitative real-time PCR), C/N analysis, total protein analysis, proteinase inhibitor (PI) analysis, and for performance assays. At the molecular level, caterpillars up-regulated 56 and down-regulated 29 genes systemically, while aphids up-regulated 93 and down-regulated 146 genes, compared to controls. Although aphids induced more genes than caterpillars, the magnitude of caterpillar-induced gene accumulation, particularly for those associated with plant defenses, was often greater. In dual-damaged plants, aphids suppressed 27% of the genes regulated by caterpillars, while caterpillars suppressed 66% of the genes regulated by aphids. At the biochemical level, caterpillars induced three-fold higher PI activity compared to controls, while aphids had no effects on PIs either alone or when paired with caterpillars. Aphid feeding alone reduced the foliar C/N ratio, but not when caterpillars also fed on the plants. Aphid and caterpillar feeding alone had no effect on the amount of protein in systemic leaves; however, both herbivores feeding on the plant reduced the amount of protein compared to aphid-damaged plants. At the organismal level, S. exigua neonate performance was negatively affected by prior caterpillar feeding, regardless of whether aphids were present or absent. This study highlights areas of concordance and disjunction between molecular, biochemical, and organismal measures of induced plant resistance when plants are attacked by multiple herbivores. In general, our data produced consistent results when considering each herbivore separately but not when considering them together.

Journal ArticleDOI
TL;DR: In this paper, the constitutive levels of jasmonic acid and other octadecanoid compounds were elevated prior to herbivory in a maize genotype with documented resistance to fall armyworm (Spodoptera frugiperda) and other lepidopteran pests.
Abstract: This study was conducted to determine if constitutive levels of jasmonic acid (JA) and other octadecanoid compounds were elevated prior to herbivory in a maize genotype with documented resistance to fall armyworm (Spodoptera frugiperda) and other lepidopteran pests. The resistant inbred Mp708 had approximately 3-fold higher levels of jasmonic acid (JA) prior to herbivore feeding than the susceptible inbred Tx601. Constitutive levels of cis-12-oxo-phytodienoic acid (OPDA) also were higher in Mp708 than Tx601. In addition, the constitutive expression of JA-inducible genes, including those in the JA biosynthetic pathway, was higher in Mp708 than Tx601. In response to herbivory, Mp708 generated comparatively higher levels of hydrogen peroxide, and had a greater abundance of NADPH oxidase transcripts before and after caterpillar feeding. Before herbivore feeding, low levels of transcripts encoding the maize insect resistance cysteine protease (Mir1-CP) and the Mir1-CP protein were detected consistently. Thus, Mp708 appears to have a portion of its defense pathway primed, which results in constitutive defenses and the ability to mount a stronger defense when caterpillars attack. Although the molecular mechanisms that regulate the constitutive accumulation of JA in Mp708 are unknown, it might account for its enhanced resistance to lepidopteran pests. This genotype could be valuable in studying the signaling pathways that maize uses to response to insect herbivores.

Journal ArticleDOI
TL;DR: A review of research that has led to the development of effective trapping methods for A. planipennis is presented, which includes the identification of several potential attractants as well as the design of a visually attractive trap.
Abstract: The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is a serious invasive pest that has caused devastating mortality of ash trees (Fraxinus sp., Oleaceae) since it was first identified in North America in 2002. Shortly after its discovery, surveys were conducted, based on the visual inspection of trees. The shortcomings of visual surveys have led to a critical research need to find an efficient survey method for detecting A. planipennis infestations. Here, we present a review of research that has led to the development of effective trapping methods for A. planipennis. Studies on the insect’s biology and behavior have led to the identification of several potential attractants as well as the design of a visually attractive trap. The ongoing challenge in developing an optimally efficient trapping methodology for A. planipennis will involve finding the best combination of variables, such as trap shape, trap color (or other visual properties), trap placement, lure components, as well as the ratios and release rates of those components.

Journal ArticleDOI
TL;DR: The relationship between host breadth and GOX activities is analyzed, and a significant relationship is found, where highly polyphagous species were more likely to possess relatively high levels of GOX compared to species with more limited host range.
Abstract: Salivary glucose oxidase (GOX) has been reported in a few insect species where it plays a role in protection against infectious disease. Our recent research has focused on the role of this salivary enzyme in the noctuid Helicoverpa zea, where it functions as an effector to suppress the induced defenses of the host plant Nicotiana tabacum. In this study, we examined the labial gland GOX activities in 23 families of Lepidoptera (85 species) and two families of plant-feeding Hymenoptera (three species). We analyzed the relationship between host breadth and GOX activities, and we found a significant relationship, where highly polyphagous species were more likely to possess relatively high levels of GOX compared to species with more limited host range. We also examined the effect of diet on GOX activity and found that the host plant had a significant effect on enzyme activity. The significance of these findings is discussed in relation to caterpillar host breadth.

Journal ArticleDOI
TL;DR: Analysis of bilberry leaves collected in open and forest areas showed that major phenolic changes appeared in the first stages of leaf development, but, most importantly, synthesis and accumulation of flavonoids was delayed in the forest compared to the high light sites.
Abstract: Bilberry is a characteristic field layer species in the boreal forests and is an important forage plant for herbivores of the North European ecosystem. Bilberry leaves contain high levels of phenolic compounds, especially hydroxycinnamic acids, flavonols, catechins, and proanthocyanidins. We investigated the phenolic composition of bilberry leaves in two studies, one following foliar development in forest and open areas, and the other along a wide geographical gradient from south to north boreal forests in Finland. An analysis of bilberry leaves collected in open and forest areas showed that major phenolic changes appeared in the first stages of leaf development, but, most importantly, synthesis and accumulation of flavonoids was delayed in the forest compared to the high light sites. Sampling along a geographical gradient in the boreal zone indicated that leaves from higher latitudes and higher altitudes had greater soluble phenolic and flavonol levels, higher antioxidant capacity, and lower contents of chlorogenic acid derivatives. The ecological significance of the results is discussed.

Journal ArticleDOI
TL;DR: It was found that RWA-infested Dnx plants upregulated >180 genes related to reactive oxygen species, signaling, pathogen defense, and arthropod allelochemical and physical defense, suggesting that DnX RWA defense and resistance genes may be regulated via the oxylipin pathway.
Abstract: Damage by the Russian wheat aphid (RWA), Diuraphis noxia, significantly reduces wheat and barley yields worldwide. In compatible interactions, virulent RWA populations flourish and susceptible plants suffer extensive leaf chlorophyll loss. In incompatible interactions, RWA reproduction and population growth are significantly reduced and RWA-related chlorophyll loss in resistant plants is minor. The objectives of this study were to develop an understanding of the molecular and phytochemical bases of RWA resistance in plants containing the Dnx resistance gene. Microarray, real-time polymerase chain reaction, and phytohormone assays were conducted to identify transcriptome components unique to RWA-infested Dnx plants and susceptible (Dn0) plants, and to identify and characterize putative genes involved in Dnx plant defense responses. We found that RWA-infested Dnx plants upregulated >180 genes related to reactive oxygen species, signaling, pathogen defense, and arthropod allelochemical and physical defense. The expression of several of these genes in RWA-infested Dnx plants increased significantly from 6- to 24-h post infestation (hpi), but their expression in Dn0 plants, when present, was delayed until 48- to 96 hpi. Concentrations of 16- and 18-carbon fatty acids, trans-methyl-12-oxophytodienoic acid, and abscisic acid were significantly greater in Dnx foliage than in Dn0 foliage after RWA infestation, suggesting that Dnx RWA defense and resistance genes may be regulated via the oxylipin pathway. These findings provide a foundation for the elucidation of the molecular basis for compatible- and incompatible plant-aphid interactions.

Journal ArticleDOI
TL;DR: P Piper cenocladum amides acted synergistically to increase mortality caused by parasitoids, and the direct negative effects of mixtures on parasitoid resistance and pupal mass were stronger than indirect effects via changes in growth rate and approximate digestibility.
Abstract: Plants use a diverse mix of defenses against herbivores, including multiple secondary metabolites, which often affect herbivores synergistically. Chemical defenses also can affect natural enemies of herbivores via limiting herbivore populations or by affecting herbivore resistance to parasitoids. In this study, we performed feeding experiments to examine the synergistic effects of imides and amides (hereafter “amides”) from Piper cenocladum and P. imperiale on specialist (Eois nympha, Geometridae) and generalist (Spodoptera frugiperda, Noctuidae) lepidopteran larvae. Each Piper species has three unique amides, and in each experiment, larvae were fed diets containing different concentrations of single amides or combinations of the three. The amides from P. imperiale had negative synergistic effects on generalist survival and specialist pupal mass, but had no effect on specialist survival. Piper cenocladum amides also acted synergistically to increase mortality caused by parasitoids, and the direct negative effects of mixtures on parasitoid resistance and pupal mass were stronger than indirect effects via changes in growth rate and approximate digestibility. Our results are consistent with plant defense theory that predicts different effects of plant chemistry on generalist versus adapted specialist herbivores. The toxicity of Piper amide mixtures to generalist herbivores are standard bottom-up effects, while specialists experienced the top-down mediated effect of mixtures causing reduced parasitoid resistance and associated decreases in pupal mass.

Journal ArticleDOI
TL;DR: Quantitative examination of transcript levels showed that BmorPBP1 and BmorGOBP2 are expressed specifically at very high levels in the antennae, consistent with their involvement in olfaction, and these results are supported by further comparative studies of molecular docking, crystallographic structures, and EAG recording as a measure of biological response.
Abstract: Insects use olfactory cues to locate hosts and mates. Pheromones and other semiochemicals are transported in the insect antenna by odorant-binding proteins (OBPs), which ferry the signals across the sensillum lymph to the olfactory receptors (ORs). In the silkworm, Bombyx mori (L.), two OBP subfamilies, the pheromone-binding proteins (PBPs) and the general odorant-binding proteins (GOBPs), are thought to be involved in both sensing and transporting the sex pheromone, bombykol [(10E,12Z)-hexadecadien-1-ol], and host volatiles, respectively. Quantitative examination of transcript levels showed that BmorPBP1 and BmorGOBP2 are expressed specifically at very high levels in the antennae, consistent with their involvement in olfaction. A partitioning binding assay, along with other established assays, showed that both BmorPBP1 and BmorGOBP2 bind to the main sex pheromone component, bombykol. BmorPBP1 also binds equally well to the other major pheromone component, bombykal [(10E,12Z)-hexadecadienal], whereas BmorGOBP2 discriminates between the two ligands. The pheromone analogs (10E,12Z)-hexadecadienyl acetate and (10E,12Z)-octadecadien-1-ol bind to both OBPs more strongly than does bombykol, suggesting that they could act as potential blockers of the response to sex pheromone by the male. These results are supported by further comparative studies of molecular docking, crystallographic structures, and EAG recording as a measure of biological response.

Journal ArticleDOI
TL;DR: The presence of MeSA has negative effects on parasitoid host-finding behavior when exposed to wild-type production of herbivore-induced Arabidopsis volatiles, and a positive correlation between MeSA dose and repellence of D. semiclausum is recorded.
Abstract: The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced compound in the attraction of the parasitoid wasp Diadegma semiclausum by using a mutant Arabidopsis line. Pieris rapae infested AtBSMT1-KO mutant Arabidopsis plants, compromised in the biosynthesis of MeSA, were more attractive to parasitoids than infested wild-type plants. This suggests that the presence of MeSA has negative effects on parasitoid host-finding behavior when exposed to wild-type production of herbivore-induced Arabidopsis volatiles. Furthermore, in line with this, we recorded a positive correlation between MeSA dose and repellence of D. semiclausum when supplementing the headspace of caterpillar-infested AtBSMT1-KO plants with synthetic MeSA.

Journal ArticleDOI
TL;DR: The characterization of an odorant receptor (OR), CquiOR10, which is narrowly tuned to skatole when expressed in the Xenopus oocyte system is described, which suggests that this OR is expresses in the mosquito ORN sensitive to sk atole.
Abstract: Oviposition attractants are environmental cues that allow Culex gravid female mosquitoes to locate suitable sites for egg-laying and, therefore, may be exploited for environmentally friendly strategies for controlling mosquito populations. Naturally occurring skatole has been identified as an oviposition attractant for the Southern House mosquito, Culex quinquefasciatus. Previously, we identified in Cx. quinquefasciatus female antennae an olfactory receptor neuron (ORN) highly sensitive to skatole and an odorant-binding protein involved in the detection of this semiochemical. Here, we describe the characterization of an odorant receptor (OR), CquiOR10, which is narrowly tuned to skatole when expressed in the Xenopus oocyte system. Odorant-induced response profiles generated by heterologously expressed CquiOR10 suggest that this OR is expressed in the mosquito ORN sensitive to skatole. However, geranylacetone, which stimulates the antennal ORN, was not detected by CquiOR10-expressing oocytes, thus raising interesting questions about reception of oviposition attractants in mosquitoes.

Journal ArticleDOI
TL;DR: Comparing the diversity of FACs with lepidopteran phylogeny indicates that glutamic acid conjugates can be synthesized by relatively primitive species, while hydroxylation of fatty acids is limited mostly to larger and more developed macrolepidoptera species.
Abstract: Fatty acid amino acid conjugates (FACs) have been found in noctuid as well as sphingid caterpillar oral secretions; in particular, volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants. These induced volatiles, in turn, attract natural enemies of the caterpillars. In a previous study, we showed that N-linolenoyl-L-glutamine in larval Spodoptera litura plays an important role in nitrogen assimilation which might be an explanation for caterpillars synthesizing FACs despite an increased risk of attracting natural enemies. However, the presence of FACs in lepidopteran species outside these families of agricultural interest is not well known. We conducted FAC screening of 29 lepidopteran species, and found them in 19 of these species. Thus, FACs are commonly synthesized through a broad range of lepidopteran caterpillars. Since all FAC-containing species had N-linolenoyl-L-glutamine and/or N-linoleoyl-L-glutamine in common, and the evolutionarily earliest species among them had only these two FACs, these glutamine conjugates might be the evolutionarily older FACs. Furthermore, some species had glutamic acid conjugates, and some had hydroxylated FACs. Comparing the diversity of FACs with lepidopteran phylogeny indicates that glutamic acid conjugates can be synthesized by relatively primitive species, while hydroxylation of fatty acids is limited mostly to larger and more developed macrolepidopteran species.

Journal ArticleDOI
TL;DR: It is found that bumblebees possess species-specific alkene positional isomer profiles that are stable over large geographical regions and are mimicked by three host-specific cuckoo parasites.
Abstract: Semiochemicals influence many aspects of insect behavior, including interactions between parasites and their hosts. We studied the chemical recognition system of bumblebees (Bombus) by examining the cuticular hydrocarbon cues of 14 species, including five species of social parasites, known as cuckoo bees (subgenus Psithyrus). We found that bumblebees possess species-specific alkene positional isomer profiles that are stable over large geographical regions and are mimicked by three host-specific cuckoo parasites. In three host-cuckoo associations where mimicry is poor, possibly due to recent host shifts, these cuckoos produce dodecyl acetate a known chemical repellent that allows the cuckoos to invade their host colonies. Our findings indicate cuckoos use two chemical mechanisms, mimicry and repellents, to invade their hosts, and this may reflect different stages of an ongoing dynamic arms race.

Journal ArticleDOI
TL;DR: In general, extracts inhibited plants more than endophytic or phytopathogens fungi, and the possible allelopathic role that metabolites of M. yucatanensis play in its ecological interactions with its host plant and other organisms is discussed.
Abstract: Muscodor yucatanensis, an endophytic fungus, was isolated from the leaves of Bursera simaruba (Burseraceae) in a dry, semideciduous tropical forest in the Ecological Reserve El Eden, Quintana Roo, Mexico. We tested the mixture of volatile organic compounds (VOCs) produced by M. yucatanensis for allelochemical effects against other endophytic fungi, phytopathogenic fungi and fungoids, and plants. VOCs were lethal to Guignardia mangifera, Colletotrichum sp., Phomopsis sp., Alternaria solani, Rhizoctonia sp., Phytophthora capsici, and P. parasitica, but had no effect on Fusarium oxysporum, Xylaria sp., the endophytic isolate 120, or M. yucatanensis. VOCs inhibited root elongation in amaranth, tomato, and barnyard grass, particularly those produced during the first 15 days of fungal growth. VOCs were identified by gas chromatography/mass spectrometry and included compounds not previously reported from other Muscodor species and the previously reported compounds octane, 2-methyl butyl acetate, 2-pentyl furan, caryophyllene, and aromadendrene. We also evaluated organic extracts from the culture medium and mycelium of M. yucatanensis on the same endophytes, phytopathogens, and plants. In general, extracts inhibited plants more than endophytic or phytopathogens fungi. G. mangifera was the only organism that was significantly stimulated by both extracts regardless of concentration. Compounds in both organic extracts were identified by gas chromatography/mass spectrometry. We discuss the possible allelopathic role that metabolites of M. yucatanensis play in its ecological interactions with its host plant and other organisms.

Journal ArticleDOI
TL;DR: Sensitivity, precision, and reproducibility of the method suggest that this technique has potential in physiological, metabolomic, pharmacokinetic, forensic, and toxicological studies of small organic compounds where a large number of human saliva samples are involved.
Abstract: Human saliva not only helps control oral health (with anti-microbial proteins), but it may also play a role in chemical communication. As is the case with other mammalian species, human saliva contains peptides, proteins, and numerous volatile organic compounds (VOCs). A high-throughput analytical method is described for profiling a large number of saliva samples to screen the profiles of VOCs. Saliva samples were collected in a non-stimulated fashion. The method utilized static stir bar extraction followed by gas chromatography-mass spectrometry (GC-MS). The method provided excellent reproducibility for a wide range of salivary compounds, including alcohols, aldehydes, ketones, carboxylic acids, esters, amines, amides, lactones, and hydrocarbons. Furthermore, substantial overlap of salivary VOCs and the previously reported skin VOCs in the same subject group was found in this study by using pattern recognition analyses. Sensitivity, precision, and reproducibility of the method suggest that this technique has potential in physiological, metabolomic, pharmacokinetic, forensic, and toxicological studies of small organic compounds where a large number of human saliva samples are involved.

Journal ArticleDOI
TL;DR: This study suggests that pollution- related difference in nestling plumage color in P. major is related to varying dietary proportion of lutein-rich food items rather than pollution-related variation in insect carotenoid levels.
Abstract: Dietary carotenoids are important pigments, antioxidants, and immune-stimulants for birds Despite recent interest in carotenoids in bird ecology, we know surprisingly little about the carotenoid content of invertebrates consumed by birds We compared carotenoid (lutein, beta-carotene, and total) concentrations in invertebrates brought to nestlings by two insectivorous passerines, the great tit, Parus major and the pied flycatcher, Ficedula hypoleuca We also compared carotenoid levels between environments that were either polluted by heavy metals or were not polluted, because the carotenoid-based plumage color of P major nestlings is affected by environmental pollution Lepidopterans were the most carotenoid-rich food items and contained the largest proportion of lutein There were no differences in carotenoid concentrations in the food items of the two bird species but P major nestlings obtained more carotenoids from their invertebrate diet than F hypoleuca nestlings because the P major diet had a higher proportion of lepidopteran larvae In polluted areas, P major nestlings consumed lower levels of dietary carotenoids than in unpolluted areas because of temporal differences in caterpillar abundance between polluted and unpolluted sites Our study suggests that pollution-related difference in nestling plumage color in P major is related to varying dietary proportion of lutein-rich food items rather than pollution-related variation in insect carotenoid levels

Journal ArticleDOI
TL;DR: The attraction of three different Tetropium species to the combination of (S)-fuscumol and host volatiles suggests that cross-attraction may occur where these species are sympatric, and that reproductive isolation possibly occurs via differences in close-range cues.
Abstract: The male-produced aggregation pheromones of Tetropium fuscum (F.) and T. cinnamopterum Kirby were identified as (2S,5E)-6,10-dimethyl-5,9-undecadienol by chemical analysis, synthesis, electronantennography, and field trapping; the compound is here renamed “fuscumol”. The effect of fuscumol chirality, alone or with host volatiles, and fuscumol release rate on Tetropium spp. was tested in field-trapping experiments in Nova Scotia and Poland. Both (S)-fuscumol and racemic fuscumol synergized trap catches of male and female T. fuscum, T. cinnamopterum, and T. castaneum (L.) when combined with a blend of host monoterpenes and ethanol. Without added host volatiles, fuscumol was either unattractive (in Nova Scotia) or only slightly so (in Poland). (R)-Fuscumol, alone or in combination with host volatiles, did not elicit increases in trap capture of any Tetropium species, relative to the controls. Fuscumol synergized attraction of both sexes to host volatiles, thus indicating it acts as an aggregation pheromone. Sex ratio was often female-biased in traps baited with fuscumol plus host volatiles, and was either unbiased or male-biased in traps with host volatiles alone. In traps with host volatiles and racemic fuscumol, mean catches of Tetropium species were unaffected by fuscumol release rates ranging from 1 to 32 mg/d. The attraction of three different Tetropium species to the combination of (S)-fuscumol and host volatiles suggests that cross-attraction may occur where these species are sympatric, and that reproductive isolation possibly occurs via differences in close-range cues. These results have practical applications for survey and monitoring of T. fuscum, a European species established in Nova Scotia since at least 1980, and for early detection of T. castaneum, a European species not presently established in North America.

Journal ArticleDOI
TL;DR: These studies indicate that tomato plants perceive B. tabaci and T. vaporariorum in a manner similar to baterical pathogens and distinct from tissue-damaging insects.
Abstract: The temporal and spatial expression of tomato wound- and defense-response genes to Bemisia tabaci biotype B (the silverleaf whitefly) and Trialeurodes vaporariorum (the greenhouse whitefly) feeding were characterized. Both species of whiteflies evoked similar changes in tomato gene expression. The levels of RNAs for the methyl jasmonic acid (MeJA)- or ethylene-regulated genes that encode the basic β-1,3-glucanase (GluB), basic chitinase (Chi9), and Pathogenesis-related protein-1 (PR-1) were monitored. GluB and Chi9 RNAs were abundant in infested leaves from the time nymphs initiated feeding (day 5). In addition, GluB RNAs accumulated in apical non-infested leaves. PR-1 RNAs also accumulated after whitefly feeding. In contrast, the ethylene- and salicylic acid (SA)-regulated Chi3 and PR-4 genes had RNAs that accumulated at low levels and GluAC RNAs that were undetectable in whitefly-infested tomato leaves. The changes in Phenylalanine ammonia lyase5 (PAL5) were variable; in some, but not all infestations, PAL5 RNAs increased in response to whitefly feeding. PAL5 RNA levels increased in response to MeJA, ethylene, and abscisic acid, and declined in response to SA. Transcripts from the wound-response genes, leucine aminopeptidase (LapA1) and proteinase inhibitor 2 (pin2), were not detected following whitefly feeding. Furthermore, whitefly infestation of transgenic LapA1:GUS tomato plants showed that whitefly feeding did not activate the LapA1 promoter, although crushing of the leaf lamina increased GUS activity up to 40 fold. These studies indicate that tomato plants perceive B. tabaci and T. vaporariorum in a manner similar to baterical pathogens and distinct from tissue-damaging insects.

Journal ArticleDOI
TL;DR: It is suggested that PA diversity is under the influence of natural selection, and total PA concentration in roots and shoots is not dependent on species, but that species determines the pattern of PA diversification.
Abstract: We examined the effects of water and nutrient availability on the expression of the defense pyrrolizidine alkaloids (PAs) in Senecio jacobaea and S. aquaticus. Senecio jacobaea, and S. aquaticus are adapted to different natural habitats, characterized by differing abiotic conditions and different selection pressures from natural enemies. We tested if PA concentration and diversity are plastic over a range of water and nutrient treatments, and also whether such plasticity is dependent on plant species. We also tested the hypothesis that hybridization may contribute to PA diversity within plants, by comparing PA expression in parental species to that in artificially generated F1 hybrids, and also in later generation natural hybrids between S. jacobaea and S. aquaticus. We showed that total PA concentration in roots and shoots is not dependent on species, but that species determines the pattern of PA diversification. Pyrrolizidine alkaloid diversity and concentration are both dependent on environmental factors. Hybrids produce a putatively novel PA, and this PA is conserved in natural hybrids, that are backcrossed to S. jacobaea. Natural hybrids that are backcrossed several times to S. jacobaea are with regard to PA diversity significantly different from S. jacobaea but not from S. aquaticus, while F1 hybrids are in all cases more similar to S. jacobaea. These results collectively suggest that PA diversity is under the influence of natural selection.

Journal ArticleDOI
TL;DR: Pinocembrin strongly affected survival of E. paenulata while quercetin had only a weak effect without major consequences on the insect life-cycle, demonstrating the different responses of one insect species to two widely distributed plant flavonoids.
Abstract: We examined the effects of the flavonoids pinocembrin and quercetin on the feeding behavior, survival, and development of the Cucurbitaceae pest Epilachna paenulata (Coleoptera: Coccinellidae). In no-choice experiments, 48 hr-consumption of Cucurbita maxima Duch. leaves treated with pinocembrin at 1, 5, and 50 μg/cm2 was less than one third of that for leaves treated with 0.1 μg/cm2 of pinocembrin or untreated leaves. Larvae stopped feeding after 9 days of high doses of pinocembrin (5 and 50 μg/cm2), and larval weight and survival were negatively affected by pinocembrin at 1–50 μg/cm2. Delayed mortality in comparison to food-deprived larvae suggests that the mechanism of action for pinocembrin is chronic intoxication, rather than simple starvation from antifeedant effects. In contrast, leaf consumption and larval weight were not significantly affected by quercetin (at 0.1, 1, 5, and 50 μg/cm2) while mortality rates were only slightly increased. The response of E. paenulata larvae in a choice-test to combinations of pinocembrin at antifeedant doses (5 and 50 μg/cm2) and quercetin at phagostimulant doses (0.01 and 0.1 μg/cm2) indicated that the feeding deterrent activity of the former completely overshadowed the stimulant activity of the latter. These results demonstrate the different responses of one insect species to two widely distributed plant flavonoids. Pinocembrin strongly affected survival of E. paenulata while quercetin had only a weak effect without major consequences on the insect life-cycle.