scispace - formally typeset
Search or ask a question
JournalISSN: 1549-9596

Journal of Chemical Information and Modeling 

American Chemical Society
About: Journal of Chemical Information and Modeling is an academic journal published by American Chemical Society. The journal publishes majorly in the area(s): Computer science & Medicine. It has an ISSN identifier of 1549-9596. Over the lifetime, 6188 publications have been published receiving 231101 citations. The journal is also known as: JCIM.


Papers
More filters
Journal ArticleDOI
TL;DR: A description of their implementation has not previously been presented in the literature, and ECFPs can be very rapidly calculated and can represent an essentially infinite number of different molecular features.
Abstract: Extended-connectivity fingerprints (ECFPs) are a novel class of topological fingerprints for molecular characterization. Historically, topological fingerprints were developed for substructure and similarity searching. ECFPs were developed specifically for structure−activity modeling. ECFPs are circular fingerprints with a number of useful qualities: they can be very rapidly calculated; they are not predefined and can represent an essentially infinite number of different molecular features (including stereochemical information); their features represent the presence of particular substructures, allowing easier interpretation of analysis results; and the ECFP algorithm can be tailored to generate different types of circular fingerprints, optimized for different uses. While the use of ECFPs has been widely adopted and validated, a description of their implementation has not previously been presented in the literature.

4,173 citations

Journal ArticleDOI
TL;DR: A graphical system for automatically generating multiple 2D diagrams of ligand-protein interactions from 3D coordinates that facilitates popular research tasks, such as analyzing a series of small molecules binding to the same protein target, a single ligand binding to homologous proteins, or the completely general case where both protein and ligand change.
Abstract: We describe a graphical system for automatically generating multiple 2D diagrams of ligand–protein interactions from 3D coordinates. The diagrams portray the hydrogen-bond interaction patterns and hydrophobic contacts between the ligand(s) and the main-chain or side-chain elements of the protein. The system is able to plot, in the same orientation, related sets of ligand–protein interactions. This facilitates popular research tasks, such as analyzing a series of small molecules binding to the same protein target, a single ligand binding to homologous proteins, or the completely general case where both protein and ligand change.

3,840 citations

Journal ArticleDOI
TL;DR: This paper has prepared a library of 727,842 molecules, each with 3D structure, using catalogs of compounds from vendors, and hopes that this database will bring virtual screening libraries to a wide community of structural biologists and medicinal chemists.
Abstract: A critical barrier to entry into structure-based virtual screening is the lack of a suitable, easy to access database of purchasable compounds. We have therefore prepared a library of 727,842 molecules, each with 3D structure, using catalogs of compounds from vendors (the size of this library continues to grow). The molecules have been assigned biologically relevant protonation states and are annotated with properties such as molecular weight, calculated LogP, and number of rotatable bonds. Each molecule in the library contains vendor and purchasing information and is ready for docking using a number of popular docking programs. Within certain limits, the molecules are prepared in multiple protonation states and multiple tautomeric forms. In one format, multiple conformations are available for the molecules. This database is available for free download (http://zinc.docking.org) in several common file formats including SMILES, mol2, 3D SDF, and DOCK flexibase format. A Web-based query tool incorporating a molecular drawing interface enables the database to be searched and browsed and subsets to be created. Users can process their own molecules by uploading them to a server. Our hope is that this database will bring virtual screening libraries to a wide community of structural biologists and medicinal chemists.

3,354 citations

Journal ArticleDOI
TL;DR: A new tool, g_mmpbsa, which implements the MM-PBSA approach using subroutines written in-house or sourced from the GROMACS and APBS packages is described, and the calculated interaction energy of 37 structurally diverse HIV-1 protease inhibitor complexes is compared.
Abstract: Molecular mechanics Poisson–Boltzmann surface area (MM-PBSA), a method to estimate interaction free energies, has been increasingly used in the study of biomolecular interactions. Recently, this method has also been applied as a scoring function in computational drug design. Here a new tool g_mmpbsa, which implements the MM-PBSA approach using subroutines written in-house or sourced from the GROMACS and APBS packages is described. g_mmpbsa was developed as part of the Open Source Drug Discovery (OSDD) consortium. Its aim is to integrate high-throughput molecular dynamics (MD) simulations with binding energy calculations. The tool provides options to select alternative atomic radii and different nonpolar solvation models including models based on the solvent accessible surface area (SASA), solvent accessible volume (SAV), and a model which contains both repulsive (SASA-SAV) and attractive components (described using a Weeks–Chandler–Andersen like integral method). We showcase the effectiveness of the tool ...

2,862 citations

Journal ArticleDOI
TL;DR: The Basis Set Exchange (BSE) is described, a Web portal that provides advanced browsing and download capabilities, facilities for contributing basis set data, and an environment that incorporates tools to foster development and interaction of communities.
Abstract: Basis sets are some of the most important input data for computational models in the chemistry, materials, biology, and other science domains that utilize computational quantum mechanics methods. Providing a shared, Web-accessible environment where researchers can not only download basis sets in their required format but browse the data, contribute new basis sets, and ultimately curate and manage the data as a community will facilitate growth of this resource and encourage sharing both data and knowledge. We describe the Basis Set Exchange (BSE), a Web portal that provides advanced browsing and download capabilities, facilities for contributing basis set data, and an environment that incorporates tools to foster development and interaction of communities. The BSE leverages and enables continued development of the basis set library originally assembled at the Environmental Molecular Sciences Laboratory.

2,642 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023386
2022632
2021541
2020605
2019485
2018231