scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Chemical Physics in 2019"


Journal ArticleDOI
TL;DR: (DFT-)D4 is suggested as a physically improved and more sophisticated dispersion model in place of DFT-D3 for DFT calculations as well as other low-cost approaches like semi-empirical models.
Abstract: The so-called D4 model is presented for the accurate computation of London dispersion interactions in density functional theory approximations (DFT-D4) and generally for atomistic modeling methods. In this successor to the DFT-D3 model, the atomic coordination-dependent dipole polarizabilities are scaled based on atomic partial charges which can be taken from various sources. For this purpose, a new charge-dependent parameter-economic scaling function is designed. Classical charges are obtained from an atomic electronegativity equilibration procedure for which efficient analytical derivatives with respect to nuclear positions are developed. A numerical Casimir-Polder integration of the atom-in-molecule dynamic polarizabilities then yields charge- and geometry-dependent dipole-dipole dispersion coefficients. Similar to the D3 model, the dynamic polarizabilities are precomputed by time-dependent DFT and all elements up to radon (Z = 86) are covered. The two-body dispersion energy expression has the usual sum-over-atom-pairs form and includes dipole-dipole as well as dipole-quadrupole interactions. For a benchmark set of 1225 molecular dipole-dipole dispersion coefficients, the D4 model achieves an unprecedented accuracy with a mean relative deviation of 3.8% compared to 4.7% for D3. In addition to the two-body part, three-body effects are described by an Axilrod-Teller-Muto term. A common many-body dispersion expansion was extensively tested, and an energy correction based on D4 polarizabilities is found to be advantageous for larger systems. Becke-Johnson-type damping parameters for DFT-D4 are determined for more than 60 common density functionals. For various standard energy benchmark sets, DFT-D4 slightly but consistently outperforms DFT-D3. Especially for metal containing systems, the introduced charge dependence of the dispersion coefficients improves thermochemical properties. We suggest (DFT-)D4 as a physically improved and more sophisticated dispersion model in place of DFT-D3 for DFT calculations as well as other low-cost approaches like semi-empirical models.

529 citations


Journal ArticleDOI
TL;DR: In this article, the authors developed a computationally efficient model where the electrode part of the interface is described at the density-functional theory (DFT) level, and the electrolyte part is represented through an implicit solvation model based on the Poisson-Boltzmann equation.
Abstract: The ab initio computational treatment of electrochemical systems requires an appropriate treatment of the solid/liquid interfaces. A fully quantum mechanical treatment of the interface is computationally demanding due to the large number of degrees of freedom involved. In this work, we develop a computationally efficient model where the electrode part of the interface is described at the density-functional theory (DFT) level, and the electrolyte part is represented through an implicit solvation model based on the Poisson-Boltzmann equation. We describe the implementation of the linearized Poisson-Boltzmann equation into the Vienna Ab initio Simulation Package, a widely used DFT code, followed by validation and benchmarking of the method. To demonstrate the utility of the implicit electrolyte model, we apply it to study the surface energy of Cu crystal facets in an aqueous electrolyte as a function of applied electric potential. We show that the applied potential enables the control of the shape of nanocrystals from an octahedral to a truncated octahedral morphology with increasing potential.

388 citations


Journal ArticleDOI
TL;DR: This work discusses collective-variables-based methods including metadynamics and variationally enhanced sampling, and summarizes in this perspective not only the theoretical background and numerical implementation of these methods but also the new challenges and prospects in the field of the enhanced sampling.
Abstract: Although molecular dynamics simulations have become a useful tool in essentially all fields of chemistry, condensed matter physics, materials science, and biology, there is still a large gap between the time scale which can be reached in molecular dynamics simulations and that observed in experiments. To address the problem, many enhanced sampling methods were introduced, which effectively extend the time scale being approached in simulations. In this perspective, we review a variety of enhanced sampling methods. We first discuss collective-variables-based methods including metadynamics and variationally enhanced sampling. Then, collective variable free methods such as parallel tempering and integrated tempering methods are presented. At last, we conclude with a brief introduction of some newly developed combinatory methods. We summarize in this perspective not only the theoretical background and numerical implementation of these methods but also the new challenges and prospects in the field of the enhanced sampling.

196 citations


Journal ArticleDOI
TL;DR: In this article, the authors introduce an abstract definition of chemical environments based on a smoothed atomic density, using a bra-ket notation to emphasize basis set independence and to highlight the connections with some popular choices of representations for describing atomic systems.
Abstract: The applications of machine learning techniques to chemistry and materials science become more numerous by the day. The main challenge is to devise representations of atomic systems that are at the same time complete and concise, so as to reduce the number of reference calculations that are needed to predict the properties of different types of materials reliably. This has led to a proliferation of alternative ways to convert an atomic structure into an input for a machine-learning model. We introduce an abstract definition of chemical environments that is based on a smoothed atomic density, using a bra-ket notation to emphasize basis set independence and to highlight the connections with some popular choices of representations for describing atomic systems. The correlations between the spatial distribution of atoms and their chemical identities are computed as inner products between these feature kets, which can be given an explicit representation in terms of the expansion of the atom density on orthogonal basis functions, that is equivalent to the smooth overlap of atomic positions power spectrum, but also in real space, corresponding to n-body correlations of the atom density. This formalism lays the foundations for a more systematic tuning of the behavior of the representations, by introducing operators that represent the correlations between structure, composition, and the target properties. It provides a unifying picture of recent developments in the field and indicates a way forward toward more effective and computationally affordable machine-learning schemes for molecules and materials.

146 citations


Journal ArticleDOI
TL;DR: Recent advances in the understanding of the electric double layer are reviewed with a particular focus on the interfacial distribution of cations and the cations' hydration states in the vicinity of the electrode under various experimental conditions.
Abstract: Electrocatalysis is central to the production of renewable fuels and high-value commodity chemicals. The electrolyte and the electrode together determine the catalytic properties of the liquid/solid interface. In particular, the cations of the electrolyte can greatly change the rates and reaction selectivity of many electrocatalytic processes. For this reason, the careful choice of the cation is an essential step in the design of catalytic interfaces with high selectivity for desired high-value products. To make such a judicious choice, it is critical to understand where in the electric double layer the cations reside and the various distinct mechanistic impacts they can have on the electrocatalytic process of interest. In this perspective, we review recent advances in the understanding of the electric double layer with a particular focus on the interfacial distribution of cations and the cations' hydration states in the vicinity of the electrode under various experimental conditions. Furthermore, we summarize the different ways in which cations can alter the rates and selectivity of chemical processes at electrified interfaces and identify possible future areas of research in this field.

142 citations


Journal ArticleDOI
TL;DR: In this paper, the exactness of unitary coupled cluster (UCC) theory based on particle-hole excitation and de-excitation operators is investigated and a family of disentangled wave functions is proven to exactly parameterize any state, thus showing how to construct Trotter-error-free parameterizations of UCC for applications in quantum computing.
Abstract: A formal analysis is conducted on the exactness of various forms of unitary coupled cluster (UCC) theory based on particle-hole excitation and de-excitation operators. Both the conventional single exponential UCC parameterization and a factorized (referred to here as “disentangled”) version are considered. We formulate a differential cluster analysis to determine the UCC amplitudes corresponding to a general quantum state. The exactness of conventional UCC (ability to represent any state) is explored numerically, and it is formally shown to be determined by the structure of the critical points of the UCC exponential mapping. A family of disentangled UCC wave functions is proven to exactly parameterize any state, thus showing how to construct Trotter-error-free parameterizations of UCC for applications in quantum computing. From these results, we construct an exact disentangled UCC parameterization that employs an infinite sequence of particle-hole or general one- and two-body substitution operators.

139 citations


Journal ArticleDOI
TL;DR: In this paper, the potential energy's response with respect to atomic displacement and to electric fields is measured using quantum machine learning models of response operators in molecules, and a theoretical basis is introduced.
Abstract: The role of response operators is well established in quantum mechanics. We investigate their use for universal quantum machine learning models of response properties in molecules. After introducing a theoretical basis, we present and discuss numerical evidence based on measuring the potential energy’s response with respect to atomic displacement and to electric fields. Prediction errors for corresponding properties, atomic forces, and dipole moments improve in a systematic fashion with training set size and reach high accuracy for small training sets. Prediction of normal modes and infrared-spectra of some small molecules demonstrates the usefulness of this approach for chemistry.

128 citations


Journal ArticleDOI
TL;DR: In future investigations, suitably designed potential protocols could provide valuable insights into the potential-dependent kinetics of product formation, adsorption, and desorption.
Abstract: The mechanism of electrochemical CO2 reduction (CO2RR) on copper surfaces is still insufficiently understood. Operando Raman spectroscopy is ideally suited to elucidate the role of adsorbed reaction intermediates and products. For a Cu foam material which has been previously characterized regarding electrochemical properties and product spectrum, 129 operando spectra are reported, covering the spectral range from 250 to 3300 cm−1. (1) The dendritic foam structure facilitates surface-enhanced Raman spectroscopy (SERS) and thus electrochemical operando spectroscopy, without any further surface manipulations. (2) Both Raman enhancement and SERS background depend strongly on the electric potential and the “history” of preceding potential sequences. (3) To restore the plausible intensity dependencies of Raman bands, normalization to the SERS background intensity is proposed. (4) Two distinct types of *CO adsorption modes are resolved. (5) Hysteresis in the potential-dependent *CO desorption supports previous electrochemical analyses; saturating *CO adsorption may limit CO formation rates. (6) HCO3− likely deprotonates upon adsorption so that exclusively adsorbed carbonate is detectable, but with strong dependence on the preceding potential sequences. (7) A variety of species and adsorption modes of reaction products containing C—H bonds were detected and compared to reference solutions of likely reaction products, but further investigations are required for assignment to specific molecular species. (8) The Raman bands of adsorbed reaction products depend weakly or strongly on the preceding potential sequences. In future investigations, suitably designed potential protocols could provide valuable insights into the potential-dependent kinetics of product formation, adsorption, and desorption.

124 citations


Journal ArticleDOI
TL;DR: Water's phase diagram displays enormous complexity with currently 17 experimentally confirmed polymorphs of ice and several more predicted computationally and the exploration of the "chemical" dimensions of ice research appears to now be a newly emerging trend.
Abstract: Water’s phase diagram displays enormous complexity with currently 17 experimentally confirmed polymorphs of ice and several more predicted computationally. For almost 120 years, it has been a stomping ground for scientific discovery, and ice research has often been a trailblazer for investigations into a wide range of materials-related phenomena. Here, the experimental progress of the last couple of years is reviewed, and open questions as well as future challenges are discussed. The specific topics include (i) the polytypism and stacking disorder of ice I, (ii) the mechanism of the pressure amorphization of ice I, (iii) the emptying of gas-filled clathrate hydrates to give new low-density ice polymorphs, (iv) the effects of acid/base doping on hydrogen-ordering phase transitions as well as (v) the formation of solid solutions between salts and the ice polymorphs, and the effect this has on the appearance of the phase diagram. In addition to continuing efforts to push the boundaries in terms of the extremes of pressure and temperature, the exploration of the “chemical” dimensions of ice research appears to now be a newly emerging trend. It is without question that ice research has entered a very exciting era.

122 citations


Journal ArticleDOI
TL;DR: This Perspective focuses on the alkaline earth and rare earth polyhydrides whose superconducting critical temperature, Tc, was predicted to be above the boiling point of liquid nitrogen.
Abstract: The theoretical exploration of the phase diagrams of binary hydrides under pressure using ab initio crystal structure prediction techniques coupled with first principles calculations has led to the in silico discovery of numerous novel superconducting materials. This Perspective focuses on the alkaline earth and rare earth polyhydrides whose superconducting critical temperature, Tc, was predicted to be above the boiling point of liquid nitrogen. After providing a brief overview of the computational protocol used to predict the structures of stable and metastable hydrides under pressure, we outline the equations that can be employed to estimate Tc. The systems with a high Tc can be classified according to the motifs found in their hydrogenic lattices. The highest Tcs are found for cages that are reminiscent of clathrates and the lowest for systems that contain atomic and molecular hydrogen. A wide variety of hydrogenic motifs including 1- and 2-dimensional lattices, as well as H10δ− molecular units comprising fused H5δ− pentagons, are present in phases with intermediate Tcs. Some of these phases are predicted to be superconducting at room temperature. Some may have recently been synthesized in diamond anvil cells.

120 citations


Journal ArticleDOI
TL;DR: The use of scaled charges, which could be regarded as an effective and simple way of accounting for polarization (at least to a certain extend), improves the overall description of ionic systems in water, but will not adequately describe neither the solid nor the melt.
Abstract: In this work, a force field for several ions in water is proposed. In particular, we consider the cations Li+, Na+, K+, Mg2+, and Ca2+ and the anions Cl− and SO42−. These ions were selected as they appear in the composition of seawater, and they are also found in biological systems. The force field proposed (denoted as Madrid-2019) is nonpolarizable, and both water molecules and sulfate anions are rigid. For water, we use the TIP4P/2005 model. The main idea behind this work is to further explore the possibility of using scaled charges for describing ionic solutions. Monovalent and divalent ions are modeled using charges of 0.85 and 1.7, respectively (in electron units). The model allows a very accurate description of the densities of the solutions up to high concentrations. It also gives good predictions of viscosities up to 3 m concentrations. Calculated structural properties are also in reasonable agreement with the experiment. We have checked that no crystallization occurred in the simulations at concentrations similar to the solubility limit. A test for ternary mixtures shows that the force field provides excellent performance at an affordable computer cost. In summary, the use of scaled charges, which could be regarded as an effective and simple way of accounting for polarization (at least to a certain extend), improves the overall description of ionic systems in water. However, for purely ionic systems, scaled charges will not adequately describe neither the solid nor the melt.

Journal ArticleDOI
TL;DR: Current developments in the field suggest that using these two classes of approaches side-by-side and in a fully integrated mode, while keeping in mind the relations between the data analysis framework and the fundamental physical principles, will be key to realizing the full potential of machine learning to help understand the behavior of complex molecules and materials.
Abstract: Automated analyses of the outcome of a simulation have been an important part of atomistic modeling since the early days, addressing the need of linking the behavior of individual atoms and the collective properties that are usually the final quantity of interest. Methods such as clustering and dimensionality reduction have been used to provide a simplified, coarse-grained representation of the structure and dynamics of complex systems from proteins to nanoparticles. In recent years, the rise of machine learning has led to an even more widespread use of these algorithms in atomistic modeling and to consider different classification and inference techniques as part of a coherent toolbox of data-driven approaches. This perspective briefly reviews some of the unsupervised machine-learning methods-that are geared toward classification and coarse-graining of molecular simulations-seen in relation to the fundamental mathematical concepts that underlie all machine-learning techniques. It discusses the importance of using concise yet complete representations of atomic structures as the starting point of the analyses and highlights the risk of introducing preconceived biases when using machine learning to rationalize and understand structure-property relations. Supervised machine-learning techniques that explicitly attempt to predict the properties of a material given its structure are less susceptible to such biases. Current developments in the field suggest that using these two classes of approaches side-by-side and in a fully integrated mode, while keeping in mind the relations between the data analysis framework and the fundamental physical principles, will be key to realizing the full potential of machine learning to help understand the behavior of complex molecules and materials.

Journal ArticleDOI
TL;DR: A rigorous and well-defined DFT coarse-graining scheme to continuum electrolytes highlights the inadequacy of current linear dielectric models for treating properties of the electrochemical interface.
Abstract: Properties of solid-liquid interfaces are of immense importance for electrocatalytic and electrochemical systems, but modeling such interfaces at the atomic level presents a serious challenge and approaches beyond standard methodologies are needed. An atomistic computational scheme needs to treat at least part of the system quantum mechanically to describe adsorption and reactions, while the entire system is in thermal equilibrium. The experimentally relevant macroscopic control variables are temperature, electrode potential, and the choice of the solvent and ions, and these need to be explicitly included in the computational model as well; this calls for a thermodynamic ensemble with fixed ion and electrode potentials. In this work, a general framework within density functional theory (DFT) with fixed electron and ion chemical potentials in the grand canonical (GC) ensemble is established for modeling electrocatalytic and electrochemical interfaces. Starting from a fully quantum mechanical description of multi-component GC-DFT for nuclei and electrons, a systematic coarse-graining is employed to establish various computational schemes including (i) the combination of classical and electronic DFTs within the GC ensemble and (ii) on the simplest level a chemically and physically sound way to obtain various (modified) Poisson-Boltzmann (mPB) implicit solvent models. The detailed and rigorous derivation clearly establishes which approximations are needed for coarse-graining as well as highlights which details and interactions are omitted in vein of computational feasibility. The transparent approximations also allow removing some of the constraints and coarse-graining if needed. We implement various mPB models within a linear dielectric continuum in the GPAW code and test their capabilities to model capacitance of electrochemical interfaces as well as study different approaches for modeling partly periodic charged systems. Our rigorous and well-defined DFT coarse-graining scheme to continuum electrolytes highlights the inadequacy of current linear dielectric models for treating properties of the electrochemical interface.

Journal ArticleDOI
TL;DR: By performing a detailed derivation and analysis of the interface energetics for selected electrochemical systems, this work is able to relate the widely used approach of the computational hydrogen electrode (CHE) to a general grand canonical description of electrified interfaces.
Abstract: We discuss grand canonical simulations based on density-functional theory to study the thermodynamic properties of electrochemical interfaces of metallic electrodes in aqueous environments. Water is represented using implicit solvation, here via the self-consistent continuum solvation (SCCS) model, providing a charge-density dependent dielectric boundary. The electrochemical double layer is accounted for in terms of a phenomenological continuum description. It is shown that the experimental potentials of zero charge and interfacial capacitances can be reproduced for an optimized SCCS parameter set [ρmin = 0.0013, ρmax = 0.010 25]. By performing a detailed derivation and analysis of the interface energetics for selected electrochemical systems, we are able to relate the widely used approach of the computational hydrogen electrode (CHE) to a general grand canonical description of electrified interfaces. In particular, charge-neutral CHE results are shown to be an upper-boundary estimate for the grand canonical interfacial free energies. In order to demonstrate the differences between the CHE and full grand canonical calculations, we study the pristine (100), (110), and (111) surfaces for Pt, Au, Cu, and Ag, and H or Cl electrosorbed on Pt. The calculations support the known surface reconstructions in the aqueous solution for Pt and Au. Furthermore, the predicted potential-pH dependence of proton coverage, surface charge, and interfacial pseudocapacitance for Pt is found to be in close agreement with experimental or other theoretical data as well as the predicted equilibrium shapes for Pt nanoparticles. Finally, Cl is found to interact more strongly than H with the interfacial fields, leading to significantly altered interface energetics and structure upon explicit application of an electrode potential. This work underscores the strengths and eventual limits of the CHE approach and might guide further understanding of the thermodynamics of electrified interfaces.

Journal ArticleDOI
TL;DR: In this paper, a nonlocal representation of the system is proposed to capture nonlocal, nonadditive effects such as those arising due to long-range electrostatics or quantum interference.
Abstract: The most successful and popular machine learning models of atomic-scale properties derive their transferability from a locality ansatz. The properties of a large molecule or a bulk material are written as a sum over contributions that depend on the configurations within finite atom-centered environments. The obvious downside of this approach is that it cannot capture nonlocal, nonadditive effects such as those arising due to long-range electrostatics or quantum interference. We propose a solution to this problem by introducing nonlocal representations of the system, which are remapped as feature vectors that are defined locally and are equivariant in O(3). We consider, in particular, one form that has the same asymptotic behavior as the electrostatic potential. We demonstrate that this framework can capture nonlocal, long-range physics by building a model for the electrostatic energy of randomly distributed point-charges, for the unrelaxed binding curves of charged organic molecular dimers, and for the electronic dielectric response of liquid water. By combining a representation of the system that is sensitive to long-range correlations with the transferability of an atom-centered additive model, this method outperforms current state-of-the-art machine-learning schemes and provides a conceptual framework to incorporate nonlocal physics into atomistic machine learning.

Journal ArticleDOI
TL;DR: In this paper, the Langevin thermostat outperforms the Nose-Hoover (chain) in NEMD simulations because of its stochastic and local nature, which is particularly important for studying asymmetric carbon-based nanostructures.
Abstract: Nonequilibrium molecular dynamics (NEMD) has been extensively used to study thermal transport at various length scales in many materials. In this method, two local thermostats at different temperatures are used to generate a nonequilibrium steady state with a constant heat flux. Conventionally, the thermal conductivity of a finite system is calculated as the ratio between the heat flux and the temperature gradient extracted from the linear part of the temperature profile away from the local thermostats. Here, we show that, with a proper choice of the thermostat, the nonlinear part of the temperature profile should actually not be excluded in thermal transport calculations. We compare NEMD results against those from the atomistic Green’s function method in the ballistic regime and those from the homogeneous nonequilibrium molecular dynamics method in the ballistic-to-diffusive regime. These comparisons suggest that in all the transport regimes, one should directly calculate the thermal conductance from the temperature difference between the heat source and sink and, if needed, convert it into the thermal conductivity by multiplying it with the system length. Furthermore, we find that the Langevin thermostat outperforms the Nose-Hoover (chain) thermostat in NEMD simulations because of its stochastic and local nature. We show that this is particularly important for studying asymmetric carbon-based nanostructures, for which the Nose-Hoover thermostat can produce artifacts leading to unphysical thermal rectification.

Journal ArticleDOI
TL;DR: A novel method is proposed for transferring physical insights from physical equations onto more generic descriptors, allowing us to screen billions of unknown compositions for Li-ion conductivity, a scale which was previously unfeasible.
Abstract: Machine learning (ML) methods have the potential to revolutionize materials design, due to their ability to screen materials efficiently. Unlike other popular applications such as image recognition or language processing, large volumes of data are not available for materials design applications. Here, we first show that a standard learning approach using generic descriptors does not work for small data, unless it is guided by insights from physical equations. We then propose a novel method for transferring such physical insights onto more generic descriptors, allowing us to screen billions of unknown compositions for Li-ion conductivity, a scale which was previously unfeasible. This is accomplished by using the accurate model trained with physical insights to create a large database, on which we train a new ML model using the generic descriptors. Unlike previous applications of ML, this approach allows us to screen materials which have not necessarily been tested before (i.e., not on ICSD or Materials Project). Our method can be applied to any materials design application where a small amount of data is available, combined with high details of physical understanding.

Journal ArticleDOI
TL;DR: A minimal model of self-propelled particles where the competition between interparticle interactions, crowding, and self-propulsion can be studied in great detail is discussed, and more complex models that include some additional, material-specific ingredients are presented.
Abstract: Despite the diversity of materials designated as active matter, virtually all active systems undergo a form of dynamic arrest when crowding and activity compete, reminiscent of the dynamic arrest observed in colloidal and molecular fluids undergoing a glass transition. We present a short perspective on recent and ongoing efforts to understand how activity competes with other physical interactions in dense systems. We review recent experimental work on active materials that uncovered both classic signatures of glassy dynamics and intriguing novel phenomena at large density. We discuss a minimal model of self-propelled particles where the competition between interparticle interactions, crowding, and self-propulsion can be studied in great detail. We present more complex models that include some additional, material-specific ingredients. We provide some general perspectives on dense active materials, suggesting directions for future research, in particular, for theoretical work.

Journal ArticleDOI
TL;DR: The degree to which machine learning can be used to accurately and transferably predict post-Hartree-Fock correlation energies is addressed, and the molecular-orbital-based machine learning (MOB-ML) method is applied to several test systems.
Abstract: We address the degree to which machine learning (ML) can be used to accurately and transferably predict post-Hartree-Fock correlation energies. Refined strategies for feature design and selection are presented, and the molecular-orbital-based machine learning (MOB-ML) method is applied to several test systems. Strikingly, for the second-order Moller-Plessett perturbation theory, coupled cluster with singles and doubles (CCSD), and CCSD with perturbative triples levels of theory, it is shown that the thermally accessible (350 K) potential energy surface for a single water molecule can be described to within 1 mhartree using a model that is trained from only a single reference calculation at a randomized geometry. To explore the breadth of chemical diversity that can be described, MOB-ML is also applied to a new dataset of thermalized (350 K) geometries of 7211 organic models with up to seven heavy atoms. In comparison with the previously reported Δ-ML method, MOB-ML is shown to reach chemical accuracy with threefold fewer training geometries. Finally, a transferability test in which models trained for seven-heavy-atom systems are used to predict energies for thirteen-heavy-atom systems reveals that MOB-ML reaches chemical accuracy with 36-fold fewer training calculations than Δ-ML (140 vs 5000 training calculations).

Journal ArticleDOI
TL;DR: This work introduces state-free reversible VAMPnets (SRV) as a deep learning architecture that learns nonlinear CV approximants to the leading slow eigenfunctions of the spectral decomposition of the transfer operator that evolves equilibrium-scaled probability distributions through time.
Abstract: The success of enhanced sampling molecular simulations that accelerate along collective variables (CVs) is predicated on the availability of variables coincident with the slow collective motions governing the long-time conformational dynamics of a system. It is challenging to intuit these slow CVs for all but the simplest molecular systems, and their data-driven discovery directly from molecular simulation trajectories has been a central focus of the molecular simulation community to both unveil the important physical mechanisms and drive enhanced sampling. In this work, we introduce state-free reversible VAMPnets (SRV) as a deep learning architecture that learns nonlinear CV approximants to the leading slow eigenfunctions of the spectral decomposition of the transfer operator that evolves equilibrium-scaled probability distributions through time. Orthogonality of the learned CVs is naturally imposed within network training without added regularization. The CVs are inherently explicit and differentiable functions of the input coordinates making them well-suited to use in enhanced sampling calculations. We demonstrate the utility of SRVs in capturing parsimonious nonlinear representations of complex system dynamics in applications to 1D and 2D toy systems where the true eigenfunctions are exactly calculable and to molecular dynamics simulations of alanine dipeptide and the WW domain protein.

Journal ArticleDOI
TL;DR: This work extends the sparse identification of nonlinear dynamics (SINDy) method to vector-valued ansatz functions, each describing a particular reaction process, and shows that a gene regulation network can be correctly estimated from observed time series.
Abstract: The inner workings of a biological cell or a chemical reactor can be rationalized by the network of reactions, whose structure reveals the most important functional mechanisms. For complex systems, these reaction networks are not known a priori and cannot be efficiently computed with ab initio methods; therefore, an important goal is to estimate effective reaction networks from observations, such as time series of the main species. Reaction networks estimated with standard machine learning techniques such as least-squares regression may fit the observations but will typically contain spurious reactions. Here we extend the sparse identification of nonlinear dynamics (SINDy) method to vector-valued ansatz functions, each describing a particular reaction process. The resulting sparse tensor regression method “reactive SINDy” is able to estimate a parsimonious reaction network. We illustrate that a gene regulation network can be correctly estimated from observed time series.

Journal ArticleDOI
TL;DR: In this article, the authors proposed modifications to the functional form of the Strongly Constrained and Appropriately Normed (SCAN) density functional to eliminate numerical instabilities.
Abstract: We propose modifications to the functional form of the Strongly Constrained and Appropriately Normed (SCAN) density functional to eliminate numerical instabilities. This is necessary to allow reliable, automatic generation of pseudopotentials (including projector augmented-wave potentials). The regularized SCAN is designed to match the original form very closely, and we show that its performance remains comparable.

Journal ArticleDOI
TL;DR: In this paper, the authors present extensive new path integral Monte Carlo (PIMC) results for the static local field correction (LFC) of the uniform electron gas, which are subsequently used to train a fully connected deep neural network.
Abstract: The study of matter at extreme densities and temperatures as they occur in astrophysical objects and state-of-the-art experiments with high-intensity lasers is of high current interest for many applications. While no overarching theory for this regime exists, accurate data for the density response of correlated electrons to an external perturbation are of paramount importance. In this context, the key quantity is given by the local field correction (LFC), which provides a wave-vector resolved description of exchange-correlation effects. In this work, we present extensive new path integral Monte Carlo (PIMC) results for the static LFC of the uniform electron gas, which are subsequently used to train a fully connected deep neural network. This allows us to present a representation of the LFC with respect to continuous wave-vectors, densities, and temperatures covering the entire warm dense matter regime. Both the PIMC data and neural-net results are available online. Moreover, we expect the presented combination of ab initio calculations with machine-learning methods to be a promising strategy for many applications.

Journal ArticleDOI
TL;DR: The flexible nature of the sGDML model recovers local and non-local electronic interactions without imposing any restriction on the nature of interatomic potentials, and yields new qualitative insights into dynamics and spectroscopy of small molecules close to spectroscopic accuracy.
Abstract: We present the construction of molecular force fields for small molecules (less than 25 atoms) using the recently developed symmetrized gradient-domain machine learning (sGDML) approach [Chmiela et al., Nat. Commun. 9, 3887 (2018) and Chmiela et al., Sci. Adv. 3, e1603015 (2017)]. This approach is able to accurately reconstruct complex high-dimensional potential-energy surfaces from just a few 100s of molecular conformations extracted from ab initio molecular dynamics trajectories. The data efficiency of the sGDML approach implies that atomic forces for these conformations can be computed with high-level wavefunction-based approaches, such as the “gold standard” coupled-cluster theory with single, double and perturbative triple excitations [CCSD(T)]. We demonstrate that the flexible nature of the sGDML model recovers local and non-local electronic interactions (e.g., H-bonding, proton transfer, lone pairs, changes in hybridization states, steric repulsion, and n → π* interactions) without imposing any restriction on the nature of interatomic potentials. The analysis of sGDML molecular dynamics trajectories yields new qualitative insights into dynamics and spectroscopy of small molecules close to spectroscopic accuracy.

Journal ArticleDOI
TL;DR: This work exemplifies the possibility to control the dynamics of active self-assembly via light-controllable nonreciprocal interactions by creating active molecules featuring a complex array of behaviors, becoming migrators, spinners, and rotators.
Abstract: Thanks to a constant energy input, active matter can self-assemble into phases with complex architectures and functionalities such as living clusters that dynamically form, reshape, and break-up, which are forbidden in equilibrium materials by the entropy maximization (or free energy minimization) principle. The challenge to control this active self-assembly has evoked widespread efforts typically hinging on engineering of the properties of individual motile constituents. Here, we provide a different route, where activity occurs as an emergent phenomenon only when individual building blocks bind together in a way that we control by laser light. Using experiments and simulations of two species of immotile microspheres, we exemplify this route by creating active molecules featuring a complex array of behaviors, becoming migrators, spinners, and rotators. The possibility to control the dynamics of active self-assembly via light-controllable nonreciprocal interactions will inspire new approaches to understand living matter and to design active materials.

Journal ArticleDOI
TL;DR: A comprehensive approach to modeling open quantum systems consistent with thermodynamics is presented, and the use of the stochastic surrogate Hamiltonian for modeling ultrafast spectroscopy and quantum control is reviewed.
Abstract: A comprehensive approach to modeling open quantum systems consistent with thermodynamics is presented. The theory of open quantum systems is employed to define system bath partitions. The Markovian master equation defines an isothermal partition between the system and bath. Two methods to derive the quantum master equation are described: the weak coupling limit and the repeated collision model. The role of the eigenoperators of the free system dynamics is highlighted, in particular, for driven systems. The thermodynamical relations are pointed out. Models that lead to loss of coherence, i.e., dephasing are described. The implication of the laws of thermodynamics to simulating transport and spectroscopy is described. The indications for self-averaging in large quantum systems and thus its importance in modeling are described. Basic modeling by the surrogate Hamiltonian is described, as well as thermal boundary conditions using the repeated collision model and their use in the stochastic surrogate Hamiltonian. The problem of modeling with explicitly time dependent driving is analyzed. Finally, the use of the stochastic surrogate Hamiltonian for modeling ultrafast spectroscopy and quantum control is reviewed.

Journal ArticleDOI
TL;DR: As fragment-based quantum chemistry methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future.
Abstract: Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersystem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and therefore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial "free lunch" in quantum chemistry, with the entree being high-level calculations on very large systems. While fragment-based quantum chemistry can count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges are highlighted in this Perspective.

Journal ArticleDOI
TL;DR: The configurational entropy is one of the most important thermodynamic quantities characterizing supercooled liquids approaching the glass transition, and it has become a key quantity to describe glassy materials from early empirical observations to modern theoretical treatments.
Abstract: The configurational entropy is one of the most important thermodynamic quantities characterizing supercooled liquids approaching the glass transition. Despite decades of experimental, theoretical, and computational investigation, a widely accepted definition of the configurational entropy is missing, its quantitative characterization remains fraught with difficulties, misconceptions, and paradoxes, and its physical relevance is vividly debated. Motivated by recent computational progress, we offer a pedagogical perspective on the configurational entropy in glass-forming liquids. We first explain why the configurational entropy has become a key quantity to describe glassy materials, from early empirical observations to modern theoretical treatments. We explain why practical measurements necessarily require approximations that make its physical interpretation delicate. We then demonstrate that computer simulations have become an invaluable tool to obtain precise, nonambiguous, and experimentally relevant measurements of the configurational entropy. We describe a panel of available computational tools, offering for each method a critical discussion. This perspective should be useful to both experimentalists and theoreticians interested in glassy materials and complex systems.

Journal ArticleDOI
TL;DR: It is shown that message-passing neural networks trained with and without 3D structural information for these molecules achieve similar accuracy, comparable to state-of-the-art methods on existing benchmark datasets, and learned molecular representations can be leveraged to reduce the training data required to transfer predictions to a new density functional theory functional.
Abstract: Machine learning methods have shown promise in predicting molecular properties, and given sufficient training data, machine learning approaches can enable rapid high-throughput virtual screening of large libraries of compounds. Graph-based neural network architectures have emerged in recent years as the most successful approach for predictions based on molecular structure and have consistently achieved the best performance on benchmark quantum chemical datasets. However, these models have typically required optimized 3D structural information for the molecule to achieve the highest accuracy. These 3D geometries are costly to compute for high levels of theory, limiting the applicability and practicality of machine learning methods in high-throughput screening applications. In this study, we present a new database of candidate molecules for organic photovoltaic applications, comprising approximately 91 000 unique chemical structures. Compared to existing datasets, this dataset contains substantially larger molecules (up to 200 atoms) as well as extrapolated properties for long polymer chains. We show that message-passing neural networks trained with and without 3D structural information for these molecules achieve similar accuracy, comparable to state-of-the-art methods on existing benchmark datasets. These results therefore emphasize that for larger molecules with practical applications, near-optimal prediction results can be obtained without using optimized 3D geometry as an input. We further show that learned molecular representations can be leveraged to reduce the training data required to transfer predictions to a new density functional theory functional.

Journal ArticleDOI
TL;DR: It is demonstrated that the thickness dependence of film-averaged Tg for individual systems provides a poor basis for discrimination between different theories, and thus their merits are assessed based on the above dynamical gradient properties.
Abstract: The nature of alterations to dynamics and vitrification in the nanoscale vicinity of interfaces—commonly referred to as “nanoconfinement” effects on the glass transition—has been an open question for a quarter century. We first analyze experimental and simulation results over the last decade to construct an overall phenomenological picture. Key features include the following: after a metrology- and chemistry-dependent onset, near-interface relaxation times obey a fractional power law decoupling relation with bulk relaxation; relaxation times vary in a double-exponential manner with distance from the interface, with an intrinsic dynamical length scale appearing to saturate at low temperatures; the activation barrier and vitrification temperature Tg approach bulk behavior in a spatially exponential manner; and all these behaviors depend quantitatively on the nature of the interface. We demonstrate that the thickness dependence of film-averaged Tg for individual systems provides a poor basis for discrimination between different theories, and thus we assess their merits based on the above dynamical gradient properties. Entropy-based theories appear to exhibit significant inconsistencies with the phenomenology. Diverse free-volume-motivated theories vary in their agreement with observations, with approaches invoking cooperative motion exhibiting the most promise. The elastically cooperative nonlinear Langevin equation theory appears to capture the largest portion of the phenomenology, although important aspects remain to be addressed. A full theoretical understanding requires improved confrontation with simulations and experiments that probe spatially heterogeneous dynamics within the accessible 1-ps to 1-year time window, minimal use of adjustable parameters, and recognition of the rich quantitative dependence on chemistry and interface.The nature of alterations to dynamics and vitrification in the nanoscale vicinity of interfaces—commonly referred to as “nanoconfinement” effects on the glass transition—has been an open question for a quarter century. We first analyze experimental and simulation results over the last decade to construct an overall phenomenological picture. Key features include the following: after a metrology- and chemistry-dependent onset, near-interface relaxation times obey a fractional power law decoupling relation with bulk relaxation; relaxation times vary in a double-exponential manner with distance from the interface, with an intrinsic dynamical length scale appearing to saturate at low temperatures; the activation barrier and vitrification temperature Tg approach bulk behavior in a spatially exponential manner; and all these behaviors depend quantitatively on the nature of the interface. We demonstrate that the thickness dependence of film-averaged Tg for individual systems provides a poor basis for discriminati...