scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Chemical Theory and Computation in 2013"


Journal ArticleDOI
TL;DR: PTRAJ and its successor CPPTRAJ are described, two complementary, portable, and freely available computer programs for the analysis and processing of time series of three-dimensional atomic positions and the data therein derived.
Abstract: We describe PTRAJ and its successor CPPTRAJ, two complementary, portable, and freely available computer programs for the analysis and processing of time series of three-dimensional atomic positions (i.e., coordinate trajectories) and the data therein derived. Common tools include the ability to manipulate the data to convert among trajectory formats, process groups of trajectories generated with ensemble methods (e.g., replica exchange molecular dynamics), image with periodic boundary conditions, create average structures, strip subsets of the system, and perform calculations such as RMS fitting, measuring distances, B-factors, radii of gyration, radial distribution functions, and time correlations, among other actions and analyses. Both the PTRAJ and CPPTRAJ programs and source code are freely available under the GNU General Public License version 3 and are currently distributed within the AmberTools 12 suite of support programs that make up part of the Amber package of computer programs (see http://ambe...

4,382 citations


Journal ArticleDOI
TL;DR: An implementation of explicit solvent all atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA-enabled GPUs, providing results that are statistically indistinguishable from the traditional CPU version of the software and with performance that exceeds that achievable by the CPUs running on all conventional CPU-based clusters and supercomputers.
Abstract: We present an implementation of explicit solvent all atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA-enabled GPUs. First released publicly in April 2010 as part of version 11 of the AMBER MD package and further improved and optimized over the last two years, this implementation supports the three most widely used statistical mechanical ensembles (NVE, NVT, and NPT), uses particle mesh Ewald (PME) for the long-range electrostatics, and runs entirely on CUDA-enabled NVIDIA graphics processing units (GPUs), providing results that are statistically indistinguishable from the traditional CPU version of the software and with performance that exceeds that achievable by the CPU version of AMBER software running on all conventional CPU-based clusters and supercomputers. We briefly discuss three different precision models developed specifically for this work (SPDP, SPFP, and DPDP) and highlight the technical details of the approach as it extends beyond previously reported work [Gotz et al., J. Chem. Theory Comput. 2012, DOI: 10.1021/ct200909j; Le Grand et al., Comp. Phys. Comm. 2013, DOI: 10.1016/j.cpc.2012.09.022].We highlight the substantial improvements in performance that are seen over traditional CPU-only machines and provide validation of our implementation and precision models. We also provide evidence supporting our decision to deprecate the previously described fully single precision (SPSP) model from the latest release of the AMBER software package.

2,418 citations


Journal ArticleDOI
TL;DR: Improve some of the bonded terms in the Martini protein force field that lead to a more realistic length of α-helices and to improved numerical stability for polyalanine and glycine repeats.
Abstract: The Martini coarse-grained force field has been successfully used for simulating a wide range of (bio)molecular systems. Recent progress in our ability to test the model against fully atomistic force fields, however, has revealed some shortcomings. Most notable, phenylalanine and proline were too hydrophobic, and dimers formed by polar residues in apolar solvents did not bind strongly enough. Here, we reparametrize these residues either through reassignment of particle types or by introducing embedded charges. The new parameters are tested with respect to partitioning across a lipid bilayer, membrane binding of Wimley–White peptides, and dimerization free energy in solvents of different polarity. In addition, we improve some of the bonded terms in the Martini protein force field that lead to a more realistic length of α-helices and to improved numerical stability for polyalanine and glycine repeats. The new parameter set is denoted Martini version 2.2.

1,112 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed an extension of the self-consistent charge density-functional tight-binding method (SCC-DFTB) and derived from a third order expansion of the density functional theory (DFT) total energy around a given reference density.
Abstract: DFTB3 is a recent extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB) and derived from a third order expansion of the density functional theory (DFT) total energy around a given reference density. Being applied in combination with the parametrization of its predecessor (MIO), DFTB3 improves for hydrogen binding energies, proton affinities, and hydrogen transfer barriers. In the present study, parameters especially designed for DFTB3 are presented, and its performance is evaluated for small organic molecules focusing on thermochemistry, geometries, and vibrational frequencies from our own and several databases from literature. The new parameters remove significant overbinding errors, reduce errors for geometries of noncovalent interactions, and improve the overall performance.

725 citations


Journal ArticleDOI
TL;DR: OpenMM is a software toolkit for performing molecular simulations on a range of high performance computing architectures that was designed to be extensible, so new hardware architectures can be accommodated and new functionality can be easily added.
Abstract: OpenMM is a software toolkit for performing molecular simulations on a range of high performance computing architectures. It is based on a layered architecture: the lower layers function as a reusable library that can be invoked by any application, while the upper layers form a complete environment for running molecular simulations. The library API hides all hardware-specific dependencies and optimizations from the users and developers of simulation programs: they can be run without modification on any hardware on which the API has been implemented. The current implementations of OpenMM include support for graphics processing units using the OpenCL and CUDA frameworks. In addition, OpenMM was designed to be extensible, so new hardware architectures can be accommodated and new functionality (e.g., energy terms and integrators) can be easily added.

599 citations


Journal ArticleDOI
TL;DR: An exceptionally simple algebraic construction allows for defining atomic core and valence orbitals, polarized by the molecular environment, which can exactly represent self-consistent field wave functions, providing an unbiased and direct connection between quantum chemistry and empirical chemical concepts.
Abstract: Modern quantum chemistry can make quantitative predictions on an immense array of chemical systems. However, the interpretation of those predictions is often complicated by the complex wave function expansions used. Here we show that an exceptionally simple algebraic construction allows for defining atomic core and valence orbitals, polarized by the molecular environment, which can exactly represent self-consistent field wave functions. This construction provides an unbiased and direct connection between quantum chemistry and empirical chemical concepts, and can be used, for example, to calculate the nature of bonding in molecules, in chemical terms, from first principles. In particular, we find consistency with electronegativities (χ), C 1s core-level shifts, resonance substituent parameters (σR), Lewis structures, and oxidation states of transition-metal complexes.

598 citations


Journal ArticleDOI
TL;DR: A number of established machine learning techniques are outlined and the influence of the molecular representation on the methods performance is investigated, finding the best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules.
Abstract: The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.

584 citations


Journal ArticleDOI
TL;DR: An improved method is suggested, which utilizes second order Independent Components Analysis (also known as time-structure based Independent components Analysis, or tICA), to construct the state-space of Markov State Models, and the resulting model is an improvement over previously built models using conventional distance metrics.
Abstract: Markov State Models (MSMs) provide an automated framework to investigate the dynamical properties of high-dimensional molecular simulations. These models can provide a human-comprehensible picture of the underlying process and have been successfully used to study protein folding, protein aggregation, protein ligand binding, and other biophysical systems. The MSM requires the construction of a discrete state-space such that two points are in the same state if they can interconvert rapidly. In the following, we suggest an improved method, which utilizes second order Independent Component Analysis (also known as time-structure based Independent Component Analysis, or tICA), to construct the state-space. We apply this method to simulations of NTL9 (provided by Lindorff-Larsen et al. Science2011, 334, 517–520) and show that the MSM is an improvement over previously built models using conventional distance metrics. Additionally, the resulting model provides insight into the role of non-native contacts by reveal...

540 citations


Journal ArticleDOI
TL;DR: Initial results suggest the AMOEBA polarizable multipole force field is able to describe the structure and energetics of peptides and proteins, in both gas-phase and solution environments.
Abstract: Development of the AMOEBA (atomic multipole optimized energetics for biomolecular simulation) force field for proteins is presented. The current version (AMOEBA-2013) utilizes permanent electrostatic multipole moments through the quadrupole at each atom, and explicitly treats polarization effects in various chemical and physical environments. The atomic multipole electrostatic parameters for each amino acid residue type are derived from high-level gas phase quantum mechanical calculations via a consistent and extensible protocol. Molecular polarizability is modeled via a Thole-style damped interactive induction model based upon distributed atomic polarizabilities. Inter- and intramolecular polarization is treated in a consistent fashion via the Thole model. The intramolecular polarization model ensures transferability of electrostatic parameters among different conformations, as demonstrated by the agreement between QM and AMOEBA electrostatic potentials, and dipole moments of dipeptides. The backbone and...

533 citations


Journal ArticleDOI
TL;DR: The PYXAID program is introduced, developed for non-adiabatic molecular dynamics simulations in condensed matter systems and used to study photoinduced dynamics at the ab initio level in systems composed of hundreds of atoms and involving thousands of electronic states.
Abstract: This work introduces the PYXAID program, developed for non-adiabatic molecular dynamics simulations in condensed matter systems. By applying the classical path approximation to the fewest switches surface hopping approach, we have developed an efficient computational tool that can be applied to study photoinduced dynamics at the ab initio level in systems composed of hundreds of atoms and involving thousands of electronic states. The technique is used to study in detail the ultrafast relaxation of hot electrons in crystalline pentacene. The simulated relaxation occurs on a 500 fs time scale, in excellent agreement with experiment, and is driven by molecular lattice vibrations in the 200–250 cm–1 frequency range. The PYXAID program is organized as a Python extension module and can be easily combined with other Python-driven modules, enhancing user-friendliness and flexibility of the software. The source code and additional information are available on the Web at the address http://gdriv.es/pyxaid. The prog...

501 citations


Journal ArticleDOI
TL;DR: This work systematically designed LJ parameters for 24 +2 metal (M(II) cations to reproduce different experimental properties appropriate for the Lorentz-Berthelot combining rules and PME simulations to represent the best possible compromise that can be achieved using the nonbonded model for the ions in combination with simple water models.
Abstract: Metal ions play significant roles in biological systems. Accurate molecular dynamics (MD) simulations on these systems require a validated set of parameters. Although there are more detailed ways to model metal ions, the nonbonded model, which employs a 12–6 Lennard-Jones (LJ) term plus an electrostatic potential, is still widely used in MD simulations today due to its simple form. However, LJ parameters have limited transferability due to different combining rules, various water models, and diverse simulation methods. Recently, simulations employing a Particle Mesh Ewald (PME) treatment for long-range electrostatics have become more and more popular owing to their speed and accuracy. In the present work, we have systematically designed LJ parameters for 24 +2 metal (M(II)) cations to reproduce different experimental properties appropriate for the Lorentz–Berthelot combining rules and PME simulations. We began by testing the transferability of currently available M(II) ion LJ parameters. The results showe...

Journal ArticleDOI
TL;DR: An implementation of a Gaussian-based approach to deliver the dielectric constant distribution throughout the protein and surrounding water phase by utilizing the 3D structure of the corresponding macromolecule is reported.
Abstract: Implicit methods for modeling protein electrostatics require dielectric properties of the system to be known, in particular, the value of the dielectric constant of protein. While numerous values of the internal protein dielectric constant were reported in the literature, still there is no consensus of what the optimal value is. Perhaps this is due to the fact that the protein dielectric constant is not a "constant" but is a complex function reflecting the properties of the protein's structure and sequence. Here, we report an implementation of a Gaussian-based approach to deliver the dielectric constant distribution throughout the protein and surrounding water phase by utilizing the 3D structure of the corresponding macromolecule. In contrast to previous reports, we construct a smooth dielectric function throughout the space of the system to be modeled rather than just constructing a "Gaussian surface" or smoothing molecule-water boundary. Analysis on a large set of proteins shows that (a) the average dielectric constant inside the protein is relatively low, about 6-7, and reaches a value of about 20-30 at the protein's surface, and (b) high average local dielectric constant values are associated with charged residues while low dielectric constant values are automatically assigned to the regions occupied by hydrophobic residues. In terms of energetics, a benchmarking test was carried out against the experimental pKa's of 89 residues in staphylococcal nuclease (SNase) and showed that it results in a much better RMSD (= 1.77 pK) than the corresponding calculations done with a homogeneous high dielectric constant with an optimal value of 10 (RMSD = 2.43 pK).

Journal ArticleDOI
TL;DR: An extensive survey of wave function and DFT methods to test their accuracy on geometries and dissociation energies of halogen bonds (XB) found that functionals with high exact exchange or long-range corrections were suitable for these dimers, especially M06-2X, ωB97XD, and double hybrids.
Abstract: We carried out an extensive survey of wave function and DFT methods to test their accuracy on geometries and dissociation energies of halogen bonds (XB). For that purpose, we built two benchmark sets (XB18 and XB51). Between the DFT methods, it was found that functionals with high exact exchange or long-range corrections were suitable for these dimers, especially M06-2X, ωB97XD, and double hybrids. Dispersion corrections tend to be detrimental, in spite of the fact that XB is considered a noncovalent interaction. Wave function techniques require heavy correlated methods (i.e., CCSD(T)) or parametrized ones (SCS-MP2 or SCS(MI)MP2). Heavy basis sets are needed to obtain high accuracy, such as aVQZ or aVTZ+CP, and ideally a CBS extrapolation. Relativistic ECPs are also important, even for the bromine based dimers. In addition, we explored some XB with new theoretical tools, the NCI (“Non-Covalent Interactions”) method and the NOFF (“Natural Orbital Fukui Functions”).

Journal ArticleDOI
TL;DR: It is shown that a regional analysis of the reduced density gradient, as provided by the recently introduced Non-Covalent Interactions (NCI) index, transcends AIM theory to deliver a chemically intuitive description of hydrogen bonding for a series of 1,n-alkanediols.
Abstract: Atoms in Molecules (AIM) theory is routinely used to assess hydrogen bond formation; however its stringent criteria controversially exclude some systems that otherwise appear to exhibit weak hydrogen bonds. We show that a regional analysis of the reduced density gradient, as provided by the recently introduced Non-Covalent Interactions (NCI) index, transcends AIM theory to deliver a chemically intuitive description of hydrogen bonding for a series of 1,n-alkanediols. This regional definition of interactions overcomes the known caveat of only analyzing electron density critical points. In other words, the NCI approach is a simple and elegant generalization of the bond critical point approach, which raises the title question. Namely, is it the presence of an electron density bond critical point that defines a hydrogen bond or the general topology in the region surrounding it?

Journal ArticleDOI
TL;DR: The final CCSD(T) results at the complete basis set limit with corrections to these approximations are the most accurate estimate of the true interaction energies in noncovalent complexes available.
Abstract: We have quantified the effects of approximations usually made even in accurate CCSD(T)/CBS calculations of noncovalent interactions, often considered as the “gold standard” of computational chemistry. We have investigated the effect of excitation series truncation, frozen core approximation, and relativistic effects in a set of 24 model complexes. The final CCSD(T) results at the complete basis set limit with corrections to these approximations are the most accurate estimate of the true interaction energies in noncovalent complexes available. The average error due to these approximations was found to be about 1.5% of the interaction energy.

Journal ArticleDOI
TL;DR: A new test set (S12L) containing 12 supramolecular noncovalently bound complexes is presented and used to evaluate seven different methods to account for dispersion in DFT as a "sanity check" against overfitting to too small molecular cases.
Abstract: A new test set (S12L) containing 12 supramolecular noncovalently bound complexes is presented and used to evaluate seven different methods to account for dispersion in DFT (DFT-D3, DFT-D2, DFT-NL, XDM, dDsC, TS-vdW, M06-L) at different basis set levels against experimental, back-corrected reference energies. This allows conclusions about the performance of each method in an explorative research setting on “real-life” problems. Most DFT methods show satisfactory performance but, due to the largeness of the complexes, almost always require an explicit correction for the nonadditive Axilrod–Teller–Muto three-body dispersion interaction to get accurate results. The necessity of using a method capable of accounting for dispersion is clearly demonstrated in that the two-body dispersion contributions are on the order of 20–150% of the total interaction energy. MP2 and some variants thereof are shown to be insufficient for this while a few tested D3-corrected semiempirical MO methods perform reasonably well. Over...

Journal ArticleDOI
TL;DR: The new GB model (GB-Neck2) has better agreement to Poisson-Boltzmann (PB) in terms of reproducing solvation energies for a variety of systems ranging from peptides to proteins.
Abstract: The generalized Born (GB) model is one of the fastest implicit solvent models, and it has become widely adopted for Molecular Dynamics (MD) simulations. This speed comes with trade-offs, and many reports in the literature have pointed out weaknesses with GB models. Because the quality of a GB model is heavily affected by empirical parameters used in calculating solvation energy, in this work we have refit these parameters for GB-Neck, a recently developed GB model, in order to improve the accuracy of both the solvation energy and effective radii calculations. The data sets used for fitting are significantly larger than those used in the past. Comparing to other pairwise GB models like GB-OBC and the original GB-Neck, the new GB model (GB-Neck2) has better agreement with Poisson–Boltzmann (PB) in terms of reproducing solvation energies for a variety of systems ranging from peptides to proteins. Secondary structure preferences are also in much better agreement with those obtained from explicit solvent MD si...

Journal ArticleDOI
TL;DR: This 1st generation polarizable model, termed Drude-2013, is anticipated to yield a molecular picture of peptide and protein structure and function that will be of increased physical validity and internal consistency in a computationally accessible fashion.
Abstract: Presented is a polarizable force field based on a classical Drude oscillator framework, currently implemented in the programs CHARMM and NAMD, for modeling and molecular dynamics (MD) simulation studies of peptides and proteins. Building upon parameters for model compounds representative of the functional groups in proteins, the development of the force field focused on the optimization of the parameters for the polypeptide backbone and the connectivity between the backbone and side chains. Optimization of the backbone electrostatic parameters targeted quantum mechanical conformational energies, interactions with water, molecular dipole moments and polarizabilities, and experimental condensed phase data for short polypeptides such as (Ala)5. Additional optimization of the backbone ϕ, ψ conformational preferences included adjustments of the tabulated two-dimensional spline function through the CMAP term. Validation of the model included simulations of a collection of peptides and proteins. This first gener...

Journal ArticleDOI
TL;DR: In this article, two long-range corrected (LC) hybrid density functionals are proposed for a wide range of applications, such as thermochemistry, kinetics, noncovalent interactions, frontier orbital energies, fundamental gaps, and long range charge transfer excitations, when compared with common global and LC hybrid functionals.
Abstract: By incorporating the improved empirical atom–atom dispersion corrections from DFT-D3 [Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys.2010, 132, 154104], two long-range corrected (LC) hybrid density functionals are proposed. Our resulting LC hybrid functionals, ωM06-D3 and ωB97X-D3, are shown to be accurate for a very wide range of applications, such as thermochemistry, kinetics, noncovalent interactions, frontier orbital energies, fundamental gaps, and long-range charge-transfer excitations, when compared with common global and LC hybrid functionals. Relative to ωB97X-D [Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys.2008, 10, 6615], ωB97X-D3 (reoptimization of ωB97X-D with improved dispersion corrections) is shown to be superior for nonbonded interactions, and similar in performance for bonded interactions, while ωM06-D3 is shown to be superior for general applications.

Journal ArticleDOI
TL;DR: A new index is defined, called Δr, based on the charge centroids of the orbitals involved in the excitations and can be interpreted in term of the hole-electron distance, which shows ability in discriminating between short and long-range excitations.
Abstract: A new index is defined with the aim of further exploring the metric of excited electronic states in the framework of the time-dependent density functional theory. This descriptor, called Δr, is based on the charge centroids of the orbitals involved in the excitations and can be interpreted in term of the hole–electron distance. The tests carried out on a set of molecules characterized by a significant number of charge-transfer excitations well illustrate its ability in discriminating between short (Δr ≤ 1.5 A) and long-range (Δr ≥ 2.0 A) excitations. On the basis of the well-known pitfalls of TD-DFT, its values can be then associated to the functional performances in reproducing different type of transitions and allow for the definition of a “trust radius” for GGA and hybrid functionals. The study of other systems, including some well-known difficult cases for other metric descriptors, gives further evidence of the high discrimination power of the proposed index. The combined use with other density or orb...

Journal ArticleDOI
TL;DR: It is suggested that the meta-programming and empirical performance optimization approach may be important in future computational chemistry applications, especially in the face of quickly evolving computer architectures.
Abstract: We describe an extension of our graphics processing unit (GPU) electronic structure program TeraChem to include atom-centered Gaussian basis sets with d angular momentum functions. This was made possible by a "meta-programming" strategy that leverages computer algebra systems for the derivation of equations and their transformation to correct code. We generate a multitude of code fragments that are formally mathematically equivalent, but differ in their memory and floating-point operation footprints. We then select between different code fragments using empirical testing to find the highest performing code variant. This leads to an optimal balance of floating-point operations and memory bandwidth for a given target architecture without laborious manual tuning. We show that this approach is capable of similar performance compared to our hand-tuned GPU kernels for basis sets with s and p angular momenta. We also demonstrate that mixed precision schemes (using both single and double precision) remain stable and accurate for molecules with d functions. We provide benchmarks of the execution time of entire self-consistent field (SCF) calculations using our GPU code and compare to mature CPU based codes, showing the benefits of the GPU architecture for electronic structure theory with appropriately redesigned algorithms. We suggest that the meta-programming and empirical performance optimization approach may be important in future computational chemistry applications, especially in the face of quickly evolving computer architectures.

Journal ArticleDOI
TL;DR: An effective time-dependent approach to compute vibrationally resolved optical spectra from first principles is presented for the computation of one-photon electronic spectra induced by either electric or magnetic transition dipoles or by their mutual interaction, namely absorption, emission, and circular dichroism.
Abstract: An effective time-dependent (TD) approach to compute vibrationally resolved optical spectra from first principles is presented for the computation of one-photon electronic spectra induced by either electric or magnetic transition dipoles or by their mutual interaction, namely absorption, emission, and circular dichroism. Particular care has been devoted to generality, modularity, and numerical stability including all the contributions that play a role at the harmonic level of approximation, namely Franck-Condon, Herzberg-Teller, and Dushinsky (i.e., mode mixing) effects. The implementation shares the same general framework of our previous time-independent (TI) model, thus allowing an effective integration between both approaches with the consequent enhancement of their respective strengths (e.g., spectrum completeness and straightforward account of temperature effects for the TD route versus band resolution and assignment for the TI route) using a single set of starting data. Implementation of both models in the same general computer program allows comprehensive studies using several levels of electronic structure description together with effective account of environmental effects by atomistic and/or continuum models of different sophistication. A few medium-size molecules (furan, phenyl radical, anthracene, dimethyloxirane, coumarin 339) have been studied in order to fully validate the approach.

Journal ArticleDOI
TL;DR: In detailing the underpinnings of these numerical strategies devised for the accurate determination of standard binding free energies, many practical elements of the proposed rigorous, conceptual framework are clarified, thereby paving way to tackle virtually any recognition and association phenomenon.
Abstract: Accurate prediction of standard binding free energies describing protein–ligand association remains a daunting computational endeavor. This challenge is rooted to a large extent in the considerable changes in conformational, translational, and rotational entropies underlying the binding process that atomistic simulations cannot easily sample. In spite of significant methodological advances, reflected in a continuously improving agreement with experiment, a characterization of alternate strategies aimed at measuring binding affinities, notably their respective advantages and drawbacks, is somewhat lacking. Here, two distinct avenues to determine the standard binding free energy are compared in the case of a short, proline-rich peptide associating to the Src homology domain 3 of tyrosine kinase Abl. These avenues, one relying upon alchemical transformations and the other on potentials of mean force (PMFs), invoke a series of geometrical restraints acting on collective variables designed to alleviate samplin...

Journal ArticleDOI
TL;DR: This study investigates how six well-established thermostat algorithms applied with different coupling strengths and to different degrees of freedom affect the dynamics of various molecular systems.
Abstract: Temperature control algorithms in molecular dynamics (MD) simulations are necessary to study isothermal systems. However, these thermostatting algorithms alter the velocities of the particles and thus modify the dynamics of the system with respect to the microcanonical ensemble, which could potentially lead to thermostat-dependent dynamical artifacts. In this study, we investigate how six well-established thermostat algorithms applied with different coupling strengths and to different degrees of freedom affect the dynamics of various molecular systems. We consider dynamic processes occurring on different times scales by measuring translational and rotational self-diffusion as well as the shear viscosity of water, diffusion of a small molecule solvated in water, and diffusion and the dynamic structure factor of a polymer chain in water. All of these properties are significantly dampened by thermostat algorithms which randomize particle velocities, such as the Andersen thermostat and Langevin dynamics, when...

Journal ArticleDOI
TL;DR: This work reveals a high dependence on charge-transfer amounts for the optimal Hartree-Fock percentage in the exchange-correlation functional of time-dependent density functional theory (TD-DFT) and the error of a vertical transition energy calculated by a given functional.
Abstract: Our work reveals a high dependence on charge-transfer (CT) amounts for the optimal Hartree-Fock percentage in the exchange-correlation functional of time-dependent density functional theory (TD-DFT) and the error of a vertical transition energy calculated by a given functional. Using these relations, the zero-zero transition energies of the first singlet and first triplet excited states of various CT compounds are accurately reproduced. (3)CT and locally excited triplet ((3)LE) states are well distinguished and calculated independently.

Journal ArticleDOI
TL;DR: A method with the most favorable "accuracy/cost" ratio belongs to the DFT family: BLYP-D3, with an rRMSD of 8 %, and can thus be recommended as an alternative to the CCSD(T)/CBS (alternatively QCISD( T)/CBS) benchmark for molecular systems which exceed current computational capacity.
Abstract: We evaluate the performance of the most widely used wave function, density functional theory, and semiempirical methods for the description of noncovalent interactions in a set of larger, mostly dispersion-stabilized noncovalent complexes (the L7 data set). The methods tested include MP2, MP3, SCS-MP2, SCS(MI)-MP2, MP2.5, MP2.X, MP2C, DFT-D, DFT-D3 (B3-LYP-D3, B-LYP-D3, TPSS-D3, PW6B95-D3, M06-2X-D3), and M06-2X, and semiempirical methods augmented with dispersion and hydrogen bonding corrections: SCC-DFTB-D, PM6-D, PM6-DH2, and PM6-D3H4. The test complexes are the octadecane dimer, the guanine trimer, the circumcoronene···adenine dimer, the coronene dimer, the guanine-cytosine dimer, the circumcoronene···guanine-cytosine dimer, and an amyloid fragment trimer containing phenylalanine residues. The best performing method is MP2.5 with relative root-mean-square deviation (rRMSD) of 4%. It can thus be recommended as an alternative to the CCSD(T)/CBS (alternatively QCISD(T)/CBS) benchmark for molecular system...

Journal ArticleDOI
TL;DR: The results showed that the εζOL1 refinement improves the backbone description of B-DNA double helices and G-DNA stem, and the balance between populations of BI and BII backbone substates was shifted towards the BII state, in better agreement with ensemble-refined solution experimental results.
Abstract: We present a refinement of the backbone torsion parameters e and ζ of the Cornell et al. AMBER force field for DNA simulations. The new parameters, denoted as eζOL1, were derived from quantum-mechanical calculations with inclusion of conformation-dependent solvation effects according to the recently reported methodology (J. Chem. Theory Comput.2012, 7 (9), 2886–2902). The performance of the refined parameters was analyzed by means of extended molecular dynamics (MD) simulations for several representative systems. The results showed that the eζOL1 refinement improves the backbone description of B-DNA double helices and the G-DNA stem. In B-DNA simulations, we observed an average increase of the helical twist and narrowing of the major groove, thus achieving better agreement with X-ray and solution NMR data. The balance between populations of BI and BII backbone substates was shifted toward the BII state, in better agreement with ensemble-refined solution experimental results. Furthermore, the refined param...

Journal ArticleDOI
TL;DR: A comprehensive theoretical study of halogen, chalcogen, and pnicogen bonding interactions using a large set of pure and hybrid functionals and some ab initio methods finds that the pure and some hybrid functional largely overestimate the interaction energies when the donor atom is anionic or Br(-).
Abstract: In this article, we report a comprehensive theoretical study of halogen, chalcogen, and pnicogen bonding interactions using a large set of pure and hybrid functionals and some ab initio methods. We have observed that the pure and some hybrid functionals largely overestimate the interaction energies when the donor atom is anionic (Cl– or Br–), especially in the halogen bonding complexes. To evaluate the reliability of the different DFT (BP86, BP86-D3, BLYP, BLYP-D3, B3LYP, B97-D, B97-D3, PBE0, HSE06, APFD, and M06-2X) and ab initio (MP2, RI-MP2, and HF) methods, we have compared the binding energies and equilibrium distances to those obtained using the CCSD(T)/aug-cc-pVTZ level of theory, as reference. The addition of the latest available correction for dispersion (D3) to pure functionals is not recommended for the calculation of halogen, chalcogen, and pnicogen complexes with anions, since it further contributes to the overestimation of the binding energies. In addition, in chalcogen bonding interactions,...

Journal ArticleDOI
TL;DR: In agreement with experimental and simulation studies, it was found that the permeability and partitioning of water is affected by cholesterol in lipid bilayers made of saturated lipids to the largest extent.
Abstract: To be able to model complex biological membranes in a more realistic manner, the force field Slipids (Stockholm lipids) has been extended to include parameters for sphingomyelin (SM), phosphatidylglycerol (PG), phosphatidylserine (PS) lipids, and cholesterol. Since the parametrization scheme was faithful to the scheme used in previous editions of Slipids, all parameters are consistent and fully compatible. The results of careful validation of a number of key structural properties for one and two component lipid bilayers are in excellent agreement with experiments. Potentials of mean force for transferring water across binary mixtures of lipids and cholesterol were also computed in order to compare water permeability rates to experiments. In agreement with experimental and simulation studies, it was found that the permeability and partitioning of water is affected by cholesterol in lipid bilayers made of saturated lipids to the largest extent. With the extensions of Slipids presented here, it is now possible to study complex systems containing many different lipids and proteins in a fully atomistic resolution in the isothermic-isobaric (NPT) ensemble, which is the proper ensemble for membrane simulations.

Journal ArticleDOI
TL;DR: The GW-technology corrects the Kohn-Sham (KS) single particle energies and single particle states for artifacts of the exchange-correlation (XC) functional of the underlying density functional theory (DFT) calculation.
Abstract: The GW-technology corrects the Kohn-Sham (KS) single particle energies and single particle states for artifacts of the exchange-correlation (XC) functional of the underlying density functional theory (DFT) calculation. We present the formalism and implementation of GW adapted for standard quantum chemistry packages. Our implementation is tested using a typical set of molecules. We find that already after the first iteration of the self-consistency cycle, G0W0, the deviations of quasi-particle energies from experimental ionization potentials and electron affinities can be reduced by an order of magnitude against those of KS-DFT using GGA or hybrid functionals. Also, we confirm that even on this level of approximation there is a considerably diminished dependency of the G0W0-results on the XC-functional of the underlying DFT.