scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Climate in 2005"


Journal ArticleDOI
TL;DR: In this paper, changes in the timing of snowmelt-derived streamflow from 1948 to 2002 were investigated in a network of 302 western North America gauges by examining the center of mass for flow, spring pulse onset dates, and seasonal fractional flows through trend and principal component analyses.
Abstract: The highly variable timing of streamflow in snowmelt-dominated basins across western North America is an important consequence, and indicator, of climate fluctuations. Changes in the timing of snowmelt-derived streamflow from 1948 to 2002 were investigated in a network of 302 western North America gauges by examining the center of mass for flow, spring pulse onset dates, and seasonal fractional flows through trend and principal component analyses. Statistical analysis of the streamflow timing measures with Pacific climate indicators identified local and key large-scale processes that govern the regionally coherent parts of the changes and their relative importance. Widespread and regionally coherent trends toward earlier onsets of springtime snowmelt and streamflow have taken place across most of western North America, affecting an area that is much larger than previously recognized. These timing changes have resulted in increasing fractions of annual flow occurring earlier in the water year by 1...

1,323 citations


Journal ArticleDOI
TL;DR: This article found that both the empirical evidence from the period of instrumental observations and model projections of a greenhouse-enriched atmosphere indicate an increasing probability of intense precipitation events for many extratropical regions including the United States.
Abstract: Observed changes in intense precipitation (e.g., the frequency of very heavy precipitation or the upper 0.3% of daily precipitation events) have been analyzed for over half of the land area of the globe. These changes have been linked to changes in intense precipitation for three transient climate model simulations, all with greenhouse gas concentrations increasing during the twentieth and twenty-first centuries and doubling in the later part of the twenty-first century. It was found that both the empirical evidence from the period of instrumental observations and model projections of a greenhouse-enriched atmosphere indicate an increasing probability of intense precipitation events for many extratropical regions including the United States. Although there can be ambiguity as to the impact of more frequent heavy precipitation events, the thresholds of the definitions of these events were raised here, such that they are likely to be disruptive. Unfortunately, reliable assertions of very heavy and extreme precipitation changes are possible only for regions with dense networks due to the small radius of correlation for many intense precipitation events.

1,303 citations


Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper assessed trends in annual and seasonal total precipitation and in extreme daily precipitation, defined as those larger than its 95th percentile for the year, summer, and winter half years, have been assessed for the period 1951-2000.
Abstract: Based on a newly developed daily precipitation dataset of 740 stations in China and more robust trend detection techniques, trends in annual and seasonal total precipitation and in extreme daily precipitation, defined as those larger than its 95th percentile for the year, summer, and winter half years, have been assessed for the period 1951–2000. Possible links between changes in total precipitation and frequency of extremes have also been explored. The results indicate that there is little trend in total precipitation for China as a whole, but there are distinctive regional and seasonal patterns of trends. Annual total precipitation has significantly decreased over southern northeast China, north China, and over the Sichuan Basin but significantly increased in western China, the Yangtze River valley, and the southeastern coast. In western China, precipitation increase has been observed for both cold and warm seasons. However, trends differ from one season to another in eastern China. Spring prec...

1,210 citations


Journal ArticleDOI
TL;DR: In this article, a critical review of the topic of cloud-climate feedbacks and exposes some of the underlying reasons for the inherent lack of understanding of these feedbacks, and why progress might be expected on this important climate problem in the coming decade.
Abstract: This paper offers a critical review of the topic of cloud–climate feedbacks and exposes some of the underlying reasons for the inherent lack of understanding of these feedbacks and why progress might be expected on this important climate problem in the coming decade. Although many processes and related parameters come under the influence of clouds, it is argued that atmospheric processes fundamentally govern the cloud feedbacks via the relationship between the atmospheric circulations, cloudiness, and the radiative and latent heating of the atmosphere. It is also shown how perturbations to the atmospheric radiation budget that are induced by cloud changes in response to climate forcing dictate the eventual response of the global-mean hydrological cycle of the climate model to climate forcing. This suggests that cloud feedbacks are likely to control the bulk precipitation efficiency and associated responses of the planet’s hydrological cycle to climate radiative forcings. The paper provides a brie...

874 citations


Journal ArticleDOI
TL;DR: In this paper, a 56-yr NCEP-NCAR reanalysis data revealed a recurrent circumglobal teleconnection (CGT) pattern in the summertime midlatitude circulation of the Northern Hemisphere.
Abstract: Analysis of the 56-yr NCEP–NCAR reanalysis data reveals a recurrent circumglobal teleconnection (CGT) pattern in the summertime midlatitude circulation of the Northern Hemisphere. This pattern represents the second leading empirical orthogonal function of interannual variability of the uppertropospheric circulation. The CGT, having a zonal wavenumber-5 structure, is primarily positioned within a waveguide that is associated with the westerly jet stream. The spatial phases of CGT tend to lock to preferred longitudes. The geographically phase-locked patterns bear close similarity during June, August, and September, but the pattern in July shows shorter wavelengths in the North Pacific–North America sector. The CGT is accompanied by significant rainfall and surface air temperature anomalies in the continental regions of western Europe, European Russia, India, east Asia, and North America. This implies that the CGT may be a source of climate variability and predictability in the above-mentioned midlatitude regions. The CGT has significant correlations with the Indian summer monsoon (ISM) and El Nino–Southern Oscillation (ENSO). However, in normal ISM years the CGT–ENSO correlation disappears; on the other hand, in the absence of El Nino or La Nina, the CGT–ISM correlation remains significant. It is suggested that the ISM acts as a “conductor” connecting the CGT and ENSO. When the interaction between the ISM and ENSO is active, ENSO may influence northern China via the ISM and the CGT. Additionally, the variability of the CGT has no significant association with the Arctic Oscillation and the variability of the western North Pacific summer monsoon. The circulation of the wave train shows a barotropic structure everywhere except the cell located to the northwest of India, where a baroclinic circulation structure dominates. Two possible scenarios are proposed. The abnormal ISM may excite an anomalous west-central Asian high and downstream Rossby wave train extending to the North Pacific and North America. On the other hand, a wave train that is excited in the jet exit region of the North Atlantic may affect the westcentral Asian high and, thus, the intensity of the ISM. It is hypothesized that the interaction between the global wave train and the ISM heat source may be instrumental in maintaining the boreal summer CGT.

857 citations


Journal ArticleDOI
TL;DR: In this article, a mechanism is demonstrated whereby a large reduction in the Atlantic thermohaline circulation (THC) can induce global-scale changes in the Tropics that are consistent with paleo evidence of the global synchronization of millennial-scale abrupt climate change.
Abstract: In this study, a mechanism is demonstrated whereby a large reduction in the Atlantic thermohaline circulation (THC) can induce global-scale changes in the Tropics that are consistent with paleoevidence of the global synchronization of millennial-scale abrupt climate change. Using GFDL’s newly developed global coupled ocean–atmosphere model (CM2.0), the global response to a sustained addition of freshwater to the model’s North Atlantic is simulated. This freshwater forcing substantially weakens the Atlantic THC, resulting in a southward shift of the intertropical convergence zone over the Atlantic and Pacific, an El Nino–like pattern in the southeastern tropical Pacific, and weakened Indian and Asian summer monsoons through air–sea interactions.

653 citations


Journal ArticleDOI
TL;DR: In this article, a Bayesian statistical model is proposed that combines information from a multimodel ensemble of atmosphere-ocean general circulation models and observations to determine probability distributions of future temperature change on a regional scale.
Abstract: A Bayesian statistical model is proposed that combines information from a multimodel ensemble of atmosphere–ocean general circulation models (AOGCMs) and observations to determine probability distributions of future temperature change on a regional scale. The posterior distributions derived from the statistical assumptions incorporate the criteria of bias and convergence in the relative weights implicitly assigned to the ensemble members. This approach can be considered an extension and elaboration of the reliability ensemble averaging method. For illustration, the authors consider the output of mean surface temperature from nine AOGCMs, run under the A2 emission scenario from the Synthesis Report on Emission Scenarios (SRES), for boreal winter and summer, aggregated over 22 land regions and into two 30-yr averages representative of current and future climate conditions. The shapes of the final probability density functions of temperature change vary widely, from unimodal curves for regions where...

649 citations


Journal ArticleDOI
TL;DR: The influence of the El Nino-Southern Oscillation (ENSO) on tropical cyclone intensity in the western North Pacific basin is examined in this article, where ACE is positively correlated with ENSO indices.
Abstract: The influence of the El Nino–Southern Oscillation (ENSO) on tropical cyclone intensity in the western North Pacific basin is examined. Accumulated cyclone energy (ACE), constructed from the best-track dataset for the region for the period 1950–2002, and other related variables are analyzed. ACE is positively correlated with ENSO indices. This and other statistics of the interannually varying tropical cyclone distribution are used to show that there is a tendency in El Nino years toward tropical cyclones that are both more intense and longer-lived than in La Nina years. ACE leads ENSO indices: during the peak season (northern summer and fall), ACE is correlated approximately as strongly with ENSO indices up to six months later (northern winter), as well as simultaneously. It appears that not all of this lead–lag relationship is easily explained by the autocorrelation of the ENSO indices, though much of it is. Interannual variations in the annual mean lifetime, intensity, and number of tropical cyclones all contribute to the ENSO signal in ACE, though the lifetime effect appears to be the most important of the three.

621 citations


Journal ArticleDOI
TL;DR: In this paper, the linear trends in 1 April snow water equivalent (SWE) over much of the western United States in the last half century, as well as trends toward earlier spring snowmelt and peak spring streamflows are examined, as simulated by the Variable Infiltration Capacity hydrologic model implemented at 1/8° latitude longitude spatial resolution, and driven by a carefully quality controlled gridded daily precipitation and temperature dataset for the period 1915-2003.
Abstract: Recent studies have shown substantial declines in snow water equivalent (SWE) over much of the western United States in the last half century, as well as trends toward earlier spring snowmelt and peak spring streamflows. These trends are influenced both by interannual and decadal-scale climate variability, and also by temperature trends at longer time scales that are generally consistent with observations of global warming over the twentieth century. In this study, the linear trends in 1 April SWE over the western United States are examined, as simulated by the Variable Infiltration Capacity hydrologic model implemented at 1/8° latitude–longitude spatial resolution, and driven by a carefully quality controlled gridded daily precipitation and temperature dataset for the period 1915–2003. The long simulations of snowpack are used as surrogates for observations and are the basis for an analysis of regional trends in snowpack over the western United States and southern British Columbia, Canada. By is...

540 citations


Journal ArticleDOI
TL;DR: In this article, changes in temperature and precipitation extremes are examined in transient climate change simulations performed with the second-generation coupled global climate model of the Canadian Centre for Climate Modelling and Analysis.
Abstract: Changes in temperature and precipitation extremes are examined in transient climate change simulations performed with the second-generation coupled global climate model of the Canadian Centre for Climate Modelling and Analysis. Three-member ensembles were produced for the time period 1990–2100 using the IS92a, A2, and B2 emission scenarios of the Intergovernmental Panel on Climate Change. The return values of annual extremes are estimated from a fitted generalized extreme value distribution with time-dependent location and scale parameters by the method of maximum likelihood. The L-moment return value estimates are revisited and found to be somewhat biased in the context of transient climate change simulations. The climate response is of similar magnitude in the integrations with the IS92a and A2 emission scenarios but more modest for the B2 scenario. Changes in temperature extremes are largely associated with changes in the location of the distribution of annual extremes without substantial chan...

518 citations


Journal ArticleDOI
TL;DR: Analyses of streamflow, snow mass temperature, and precipitation in snowmelt-dominated river basins in the western United States indicate an advance in the timing of peak spring season flows over the past 50 years.
Abstract: Analyses of streamflow, snow mass temperature, and precipitation in snowmelt-dominated river basins in the western United States indicate an advance in the timing of peak spring season flows over the past 50 years. Warm temperature spells in spring have occurred much earlier in recent years, which explains in part the trend in the timing of the spring peak flow. In addition, a decrease in snow water equivalent and a general increase in winter precipitation are evident for many stations in the western United States. It appears that in recent decades more of the precipitation is coming as rain rather than snow. The trends are strongest at lower elevations and in the Pacific Northwest region, where winter temperatures are closer to the melting point; it appears that in this region in particular, modest shifts in temperature are capable of forcing large shifts in basin hydrologic response. It is speculated that these trends could be potentially a manifestation of the general global warming trend in r...

Journal ArticleDOI
TL;DR: In this paper, the response of El Nino to natural radiative forcing changes over the past 1000 yr is investigated based on numerical experiments employing the Zebiak-Cane model of the tropical Pacific coupled ocean- atmosphere system.
Abstract: The response of El Nino to natural radiative forcing changes over the past 1000 yr is investigated based on numerical experiments employing the Zebiak–Cane model of the tropical Pacific coupled ocean– atmosphere system. Previously published empirical results demonstrating a statistically significant tendency toward El Nino conditions in response to past volcanic radiative forcing are reproduced in the model experiments. A combination of responses to past changes in volcanic and solar radiative forcing closely reproduces changes in the mean state and interannual variability in El Nino in past centuries recorded from fossil corals. The dynamics of El Nino thus appear to have played an important role in the response of the global climate to past changes in radiative forcing.

Journal ArticleDOI
TL;DR: A workshop on enhancing climate change indices in South America was held in Maceio, Brazil, in August 2004 as discussed by the authors, where scientists from eight southern countries brought daily climatological data from their region for a meticulous assessment of data quality and homogeneity, and for the preparation of climate change index that can be used for analyses of changes in climate extremes.
Abstract: A workshop on enhancing climate change indices in South America was held in Maceio, Brazil, in August 2004. Scientists from eight southern countries brought daily climatological data from their region for a meticulous assessment of data quality and homogeneity, and for the preparation of climate change indices that can be used for analyses of changes in climate extremes. This study presents an examination of the trends over 1960–2000 in the indices of daily temperature extremes. The results indicate no consistent changes in the indices based on daily maximum temperature while significant trends were found in the indices based on daily minimum temperature. Significant increasing trends in the percentage of warm nights and decreasing trends in the percentage of cold nights were observed at many stations. It seems that this warming is mostly due to more warm nights and fewer cold nights during the summer (December–February) and fall (March–May). The stations with significant trends appear to be loca...

Journal ArticleDOI
TL;DR: In this article, the authors recovered the Pacific decadal oscillation (PDO) from a reconstruction of North Pacific sea surface temperature anomalies based on a first-order autoregressive model and forcing by variability of the Aleutian low, El Nino-Southern Oscillation (ENSO), and oceanic zonal advection anomalies in the Kuroshio-Oyashio Extension.
Abstract: The Pacific decadal oscillation (PDO), defined as the leading empirical orthogonal function of North Pacific sea surface temperature anomalies, is a widely used index for decadal variability. It is shown that the PDO can be recovered from a reconstruction of North Pacific sea surface temperature anomalies based on a first-order autoregressive model and forcing by variability of the Aleutian low, El Nino–Southern Oscillation (ENSO), and oceanic zonal advection anomalies in the Kuroshio–Oyashio Extension. The latter results from oceanic Rossby waves that are forced by North Pacific Ekman pumping. The SST response patterns to these processes are not orthogonal, and they determine the spatial characteristics of the PDO. The importance of the different forcing processes is frequency dependent. At interannual time scales, forcing from ENSO and the Aleutian low determines the response in equal parts. At decadal time scales, zonal advection in the Kuroshio–Oyashio Extension, ENSO, and anomalies of the Aleutian low each account for similar amounts of the PDO variance. These results support the hypothesis that the PDO is not a dynamical mode, but arises from the superposition of sea surface temperature fluctuations with different dynamical origins.

Journal ArticleDOI
TL;DR: In this article, a regional coupled ice-ocean model has been analyzed to determine the physical processes contributing to changes in the Arctic pack ice, and it is hypothesized that the thinning since 1988 is due to preconditioning, a trigger, and positive feedbacks: 1) the fall, winter, and spring air temperatures over the Arctic Ocean have gradually increased over the last 50 yr, leading to reduced thickness of first-year ice at the start of summer; 2) a temporary shift, starting in 1989, of two principal climate indexes (the Arctic Oscillation
Abstract: Recent observations of summer Arctic sea ice over the satellite era show that record or near-record lows for the ice extent occurred in the years 2002–05. To determine the physical processes contributing to these changes in the Arctic pack ice, model results from a regional coupled ice–ocean model have been analyzed. Since 1988 the thickness of the simulated basinwide ice thinned by 1.31 m or 43%. The thinning is greatest along the coast in the sector from the Chukchi Sea to the Beaufort Sea to Greenland. It is hypothesized that the thinning since 1988 is due to preconditioning, a trigger, and positive feedbacks: 1) the fall, winter, and spring air temperatures over the Arctic Ocean have gradually increased over the last 50 yr, leading to reduced thickness of first-year ice at the start of summer; 2) a temporary shift, starting in 1989, of two principal climate indexes (the Arctic Oscillation and Pacific Decadal Oscillation) caused a flushing of some of the older, thicker ice out of the basin and an increase in the summer open water extent; and 3) the increasing amounts of summer open water allow for increasing absorption of solar radiation, which melts the ice, warms the water, and promotes creation of thinner first-year ice, ice that often entirely melts by the end of the subsequent summer. Internal thermodynamic changes related to the positive ice–albedo feedback, not external forcing, dominate the thinning processes over the last 16 yr. This feedback continues to drive the thinning after the climate indexes return to near-normal conditions in the late 1990s. The late 1980s and early 1990s could be considered a tipping point during which the ice–ocean system began to enter a new era of thinning ice and increasing summer open water because of positive feedbacks. It remains to be seen if this era will persist or if a sustained cooling period can reverse the processes.

Journal ArticleDOI
TL;DR: The causes of persistent droughts and wet periods over western North America are examined in model simulations of the period from 1856 to 2000 as discussed by the authors, using either global sea surface temperature data as a lower boundary condition or observed data in just the tropical Pacific and computed the surface ocean temperature elsewhere with a simple ocean model.
Abstract: The causes of persistent droughts and wet periods, or pluvials, over western North America are examined in model simulations of the period from 1856 to 2000. The simulations used either (i) global sea surface temperature data as a lower boundary condition or (ii) observed data in just the tropical Pacific and computed the surface ocean temperature elsewhere with a simple ocean model. With both arrangements, the model was able to simulate many aspects of the low-frequency (periods greater than 6 yr) variations of precipitation over the Great Plains and in the American Southwest including much of the nineteenth-century variability, the droughts of the 1930s (the “Dust Bowl”) and 1950s, and the very wet period in the 1990s. Results indicate that the persistent droughts and pluvials were ultimately forced by persistent variations of tropical Pacific surface ocean temperatures. It is argued that ocean temperature variations outside of the tropical Pacific, but forced from the tropical Pacific, act to ...

Journal ArticleDOI
TL;DR: In this article, the authors combine atmospheric reanalysis and station-based temperature data for 1950-2003 to find that European heat waves can be associated with the occurrence of two specific summertime atmospheric circulation regimes.
Abstract: Diagnostics combining atmospheric reanalysis and station-based temperature data for 1950–2003 indicate that European heat waves can be associated with the occurrence of two specific summertime atmospheric circulation regimes. Evidence is presented that during the record warm summer of 2003, the excitation of these two regimes was significantly favored by the anomalous tropical Atlantic heating related to wetter-than-average conditions in both the Caribbean basin and the Sahel. Given the persistence of tropical Atlantic climate anomalies, their seasonality, and their associated predictability, the suggested tropical–extratropical Atlantic connection is encouraging for the prospects of long-range forecasting of extreme weather in Europe.

Journal ArticleDOI
TL;DR: A detailed view of Southern Hemisphere storm tracks is obtained based on the application of filtered variance and modern feature-tracking techniques to a wide range of 45-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data.
Abstract: A detailed view of Southern Hemisphere storm tracks is obtained based on the application of filtered variance and modern feature-tracking techniques to a wide range of 45-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data. It has been checked that the conclusions drawn in this study are valid even if data from only the satellite era are used. The emphasis of the paper is on the winter season, but results for the four seasons are also discussed. Both upper- and lower-tropospheric fields are used. The tracking analysis focuses on systems that last longer than 2 days and are mobile (move more than 1000 km). Many of the results support previous ideas about the storm tracks, but some new insights are also obtained. In the summer there is a rather circular, strong, deep high-latitude storm track. In winter the high-latitude storm track is more asymmetric with a spiral from the Atlantic and Indian Oceans in toward Antarctica and a subtropical jet–related lower-latitu...

Journal ArticleDOI
TL;DR: In this paper, a bootstrap resampling procedure is proposed to estimate exceedance frequencies during the base period, which effectively removes the inhomogeneity of percentile-based temperature indices for climate change detection and monitoring.
Abstract: Using a Monte Carlo simulation, it is demonstrated that percentile-based temperature indices computed for climate change detection and monitoring may contain artificial discontinuities at the beginning and end of the period that is used for calculating the percentiles (base period). This would make these exceedance frequency time series unsuitable for monitoring and detecting climate change. The problem occurs because the threshold calculated in the base period is affected by sampling error. On average, this error leads to overestimated exceedance rates outside the base period. A bootstrap resampling procedure is proposed to estimate exceedance frequencies during the base period. The procedure effectively removes the inhomogeneity.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the variability in the East African short rains using 41-yr data from the observation and 200-year data from a coupled general circulation model known as the Scale Interaction Experiment-Frontier Research Center for Global Change, version 1 (SINTEX-F1).
Abstract: The variability in the East African short rains is investigated using 41-yr data from the observation and 200-yr data from a coupled general circulation model known as the Scale Interaction Experiment-Frontier Research Center for Global Change, version 1 (SINTEX-F1). The model-simulated data provide a scope to understand the climate variability in the region with a better statistical confidence. Most of the variability in the model short rains is linked to the basinwide large-scale coupled mode, that is, the Indian Ocean dipole (IOD) in the tropical Indian Ocean. The analysis of observed data and model results reveals that the influence of the IOD on short rains is overwhelming as compared to that of the El Nino–Southern Oscillation (ENSO); the correlation between ENSO and short rains is insignificant when the IOD influence is excluded. The IOD–short rains relationship does not change significantly in a model experiment in which the ENSO influence is removed by decoupling the ocean and atmosphere...

Journal ArticleDOI
TL;DR: In this article, a merged land-air-sea surface temperature reconstruction analysis is developed for monthly anomalies, and the reconstruction is global and spatially complete, and it is shown that the average reconstruction is similar to simple averages of the unanalyzed data for most of the analysis period.
Abstract: A merged land–air–sea surface temperature reconstruction analysis is developed for monthly anomalies. The reconstruction is global and spatially complete. Reconstructed anomalies damp toward zero in regions with insufficient sampling. Error estimates account for the damping associated with sparse sampling, and also for bias uncertainty in both the land and sea observations. Averages of the reconstruction are similar to simple averages of the unanalyzed data for most of the analysis period. For the nineteenth century, when sampling is most sparse and the error estimates are largest, the differences between the averaged reconstruction and the simple averages are largest. Sampling is always sparse poleward of 60° latitude, and historic reconstructions for the polar regions should be used with caution.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the possible impact of these contrasting SST patterns on the ongoing El Nino, using atmospheric reanalysis products and solutions to both an atmospheric general circulation model (AGCM) and a simple atmospheric model (LBM), with the latter used to identify basic processes.
Abstract: Prior to the 1976–77 climate shift (1950–76), sea surface temperature (SST) anomalies in the tropical Indian Ocean consisted of a basinwide warming during boreal fall of the developing phase of most El Ninos, whereas after the shift (1977–99) they had an east–west asymmetry—a consequence of El Nino being associated with the Indian Ocean Dipole/Zonal mode. In this study, the possible impact of these contrasting SST patterns on the ongoing El Nino is investigated, using atmospheric reanalysis products and solutions to both an atmospheric general circulation model (AGCM) and a simple atmospheric model (LBM), with the latter used to identify basic processes. Specifically, analyses of reanalysis products during the El Nino onset indicate that after the climate shift a low-level anticyclone over the South China Sea was shifted into the Bay of Bengal and that equatorial westerly anomalies in the Pacific Ocean were considerably stronger. The present study focuses on determining influence of Indian Ocean ...

Journal ArticleDOI
TL;DR: In this article, the authors used historical station rainfall data to classify the annual cycles of rainfall over land areas, the TRMM rainfall measurements to identify the monsoon regimes of the four seasons in all of Southeast Asia, and the QuikSCAT winds to study the causes of the variations.
Abstract: In general, the Bay of Bengal, Indochina Peninsula, and Philippines are in the Asian summer monsoon regime while the Maritime Continent experiences a wet monsoon during boreal winter and a dry season during boreal summer. However, the complex distribution of land, sea, and terrain results in significant local variations of the annual cycle. This work uses historical station rainfall data to classify the annual cycles of rainfall over land areas, the TRMM rainfall measurements to identify the monsoon regimes of the four seasons in all of Southeast Asia, and the QuikSCAT winds to study the causes of the variations. The annual cycle is dominated largely by interactions between the complex terrain and a simple annual reversal of the surface monsoonal winds throughout all monsoon regions from the Indian Ocean to the South China Sea and the equatorial western Pacific. The semiannual cycle is comparable in magnitude to the annual cycle over parts of the equatorial landmasses, but only a very small regio...

Journal ArticleDOI
TL;DR: The frequency of cloud detection and the frequency with which these clouds are found in the upper troposphere have been extracted from NOAA High Resolution Infrared Radiometer Sounder (HIRS) polar-orbiting satellite data from 1979 to 2001 as mentioned in this paper.
Abstract: The frequency of cloud detection and the frequency with which these clouds are found in the upper troposphere have been extracted from NOAA High Resolution Infrared Radiometer Sounder (HIRS) polar-orbiting satellite data from 1979 to 2001. The HIRS/2 sensor was flown on nine satellites from the Television Infrared Observation Satellite-Next Generation (TIROS-N) through NOAA-14, forming a 22-yr record. Carbon dioxide slicing was used to infer cloud amount and height. Trends in cloud cover and high-cloud frequency were found to be small in these data. High clouds show a small but statistically significant increase in the Tropics and the Northern Hemisphere. The HIRS analysis contrasts with the International Satellite Cloud Climatology Project (ISCCP), which shows a decrease in both total cloud cover and high clouds during most of this period.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated variability in the intensity of the wintertime Siberian high (SH) by defining a robust SH index (SHI) and correlating it with selected meteorological fields and teleconnection indices.
Abstract: This study investigates variability in the intensity of the wintertime Siberian high (SH) by defining a robust SH index (SHI) and correlating it with selected meteorological fields and teleconnection indices. A dramatic trend of –2.5 hPa decade−1 has been found in the SHI between 1978 and 2001 with unprecedented (since 1871) low values of the SHI. The weakening of the SH has been confirmed by analyzing different historical gridded analyses and individual station observations of sea level pressure (SLP) and excluding possible effects from the conversion of surface pressure to SLP. SHI correlation maps with various meteorological fields show that SH impacts on circulation and temperature patterns extend far outside the SH source area extending from the Arctic to the tropical Pacific. Advection of warm air from eastern Europe has been identified as the main mechanism causing milder than normal conditions over the Kara and Laptev Seas in association with a strong SH. Despite the strong impacts of the...

Journal ArticleDOI
TL;DR: The 1976 Pacific climate shift is examined and its manifestations and significance in Alaskan climatology during the last half-century are demonstrated in this article, and its effect on the long-term temperature trends throughout the state is examined.
Abstract: The 1976 Pacific climate shift is examined, and its manifestations and significance in Alaskan climatology during the last half-century are demonstrated. The Pacific Decadal Oscillation index shifted in 1976 from dominantly negative values for the 25-yr time period 1951–75 to dominantly positive values for the period 1977–2001. Mean annual and seasonal temperatures for the positive phase were up to 3.1°C higher than for the negative phase. Likewise, mean cloudiness, wind speeds, and precipitation amounts increased, while mean sea level pressure and geopotential heights decreased. The pressure decrease resulted in a deepening of the Aleutian low in winter and spring. The intensification of the Aleutian low increased the advection of relatively warm and moist air to Alaska and storminess over the state during winter and spring. The regime shift is also examined for its effect on the long-term temperature trends throughout the state. The trends that have shown climatic warming are strongly biased by...

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the predictability of tropical climate signals using a relatively high resolution Scale Interaction Experiment-Frontier Research Center for Global Change coupled GCM (SINTEX-F).
Abstract: Predictabilities of tropical climate signals are investigated using a relatively high resolution Scale Interaction Experiment–Frontier Research Center for Global Change (FRCGC) coupled GCM (SINTEX-F). Five ensemble forecast members are generated by perturbing the model’s coupling physics, which accounts for the uncertainties of both initial conditions and model physics. Because of the model’s good performance in simulating the climatology and ENSO in the tropical Pacific, a simple coupled SST-nudging scheme generates realistic thermocline and surface wind variations in the equatorial Pacific. Several westerly and easterly wind bursts in the western Pacific are also captured. Hindcast results for the period 1982–2001 show a high predictability of ENSO. All past El Nino and La Nina events, including the strongest 1997/98 warm episode, are successfully predicted with the anomaly correlation coefficient (ACC) skill scores above 0.7 at the 12-month lead time. The predicted signals of some particular e...

Journal ArticleDOI
TL;DR: In this article, a 500-yr control integration with the ECHAM5/Max-Planck-Institute Ocean Model (MPI-OM) showed pronounced multidecadal fluctuations of the Atlantic overturning circulation and the associated meridional heat transport.
Abstract: Analyses of a 500-yr control integration with the non-flux-adjusted coupled atmosphere–sea ice–ocean model ECHAM5/Max-Planck-Institute Ocean Model (MPI-OM) show pronounced multidecadal fluctuations of the Atlantic overturning circulation and the associated meridional heat transport. The period of the oscillations is about 70–80 yr. The low-frequency variability of the meridional overturning circulation (MOC) contributes substantially to sea surface temperature and sea ice fluctuations in the North Atlantic. The strength of the overturning circulation is related to the convective activity in the deep-water formation regions, most notably the Labrador Sea, and the time-varying control on the freshwater export from the Arctic to the convection sites modulates the overturning circulation. The variability is sustained by an interplay between the storage and release of freshwater from the central Arctic and circulation changes in the Nordic Seas that are caused by variations in the Atlantic heat and salt transport. The relatively high resolution in the deep-water formation region and the Arctic Ocean suggests that a better representation of convective and frontal processes not only leads to an improvement in the mean state but also introduces new mechanisms determining multidecadal variability in large-scale ocean circulation.

Journal ArticleDOI
TL;DR: In this article, global estimates of 100-yr return values of wind speed and significant wave height are presented based on the ECMWF 40-yr Re-Analysis (ERA-40) data and are linearly corrected using estimates based on buoy data.
Abstract: In this article global estimates of 100-yr return values of wind speed and significant wave height are presented. These estimates are based on the ECMWF 40-yr Re-Analysis (ERA-40) data and are linearly corrected using estimates based on buoy data. This correction is supported by global Topographic Ocean Experiment (TOPEX) altimeter data estimates. The calculation of return values is based on the peaks-over-threshold method. The large amount of data used in this study provides evidence that the distributions of significant wave height and wind speed data belong to the domain of attraction of the exponential. Further, the effect of the space and time variability of significant wave height and wind speed on the prediction of their extreme values is assessed. This is done by performing detailed global extreme value analyses using different decadal subperiods of the 45-yr-long ERA-40 dataset.

Journal ArticleDOI
TL;DR: In this paper, the amplitude of ENSO events forced by modulated wind bursts was shown to be twice as large as those forced by stochastic wind bursts with the same amplitude and average frequency.
Abstract: Westerly wind bursts (WWBs) in the equatorial Pacific occur during the development of most El Nino events and are believed to be a major factor in ENSO’s dynamics. Because of their short time scale, WWBs are normally considered part of a stochastic forcing of ENSO, completely external to the interannual ENSO variability. Recent observational studies, however, suggest that the occurrence and characteristics of WWBs may depend to some extent on the state of ENSO components, implying that WWBs, which force ENSO, are modulated by ENSO itself. Satellite and in situ observations are used here to show that WWBs are significantly more likely to occur when the warm pool is extended eastward. Based on these observations, WWBs are added to an intermediate complexity coupled ocean–atmosphere ENSO model. The representation of WWBs is idealized such that their occurrence is modulated by the warm pool extent. The resulting model run is compared with a run in which the WWBs are stochastically applied. The modulation of WWBs by ENSO results in an enhancement of the slow frequency component of the WWBs. This causes the amplitude of ENSO events forced by modulated WWBs to be twice as large as the amplitude of ENSO events forced by stochastic WWBs with the same amplitude and average frequency. Based on this result, it is suggested that the modulation of WWBs by the equatorial Pacific SST is a critical element of ENSO’s dynamics, and that WWBs should not be regarded as purely stochastic forcing. In the paradigm proposed here, WWBs are still an important aspect of ENSO’s dynamics, but they are treated as being partially stochastic and partially affected by the large-scale ENSO dynamics, rather than being completely external to ENSO. It is further shown that WWB modulation by the large-scale equatorial SST field is roughly equivalent to an increase in the ocean–atmosphere coupling strength, making the coupled equatorial Pacific effectively self-sustained.