scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Climate in 2006"


Journal ArticleDOI
TL;DR: In this paper, the authors examined some aspects of the hydrological cycle that are robust across the models, including the decrease in convective mass fluxes, the increase in horizontal moisture transport, the associated enhancement of the pattern of evaporation minus precipitation and its temporal variance, and decrease in the horizontal sensible heat transport in the extratropics.
Abstract: Using the climate change experiments generated for the Fourth Assessment of the Intergovernmental Panel on Climate Change, this study examines some aspects of the changes in the hydrological cycle that are robust across the models. These responses include the decrease in convective mass fluxes, the increase in horizontal moisture transport, the associated enhancement of the pattern of evaporation minus precipitation and its temporal variance, and the decrease in the horizontal sensible heat transport in the extratropics. A surprising finding is that a robust decrease in extratropical sensible heat transport is found only in the equilibrium climate response, as estimated in slab ocean responses to the doubling of CO2, and not in transient climate change scenarios. All of these robust responses are consequences of the increase in lower-tropospheric water vapor.

3,811 citations


Journal ArticleDOI
TL;DR: In this article, eleven coupled climate-carbon cycle models were used to study the coupling between climate change and the carbon cycle. But, there was still a large uncertainty on the magnitude of these sensitivities.
Abstract: Eleven coupled climate–carbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 anthropogenic emissions of CO2 for the 1850–2100 time period. For each model, two simulations were performed in order to isolate the impact of climate change on the land and ocean carbon cycle, and therefore the climate feedback on the atmospheric CO2 concentration growth rate. There was unanimous agreement among the models that future climate change will reduce the efficiency of the earth system to absorb the anthropogenic carbon perturbation. A larger fraction of anthropogenic CO2 will stay airborne if climate change is accounted for. By the end of the twenty-first century, this additional CO2 varied between 20 and 200 ppm for the two extreme models, the majority of the models lying between 50 and 100 ppm. The higher CO2 levels led to an additional climate warming ranging between 0.1° and 1.5°C. All models simulated a negative sensitivity for both the land and the ocean carbon cycle to future climate. However, there was still a large uncertainty on the magnitude of these sensitivities. Eight models attributed most of the changes to the land, while three attributed it to the ocean. Also, a majority of the models located the reduction of land carbon uptake in the Tropics. However, the attribution of the land sensitivity to changes in net primary productivity versus changes in respiration is still subject to debate; no consensus emerged among the models.

2,630 citations


Journal ArticleDOI
TL;DR: The Community Climate System Model version 3 (CCSM3) as discussed by the authors is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler.
Abstract: The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol ...

2,500 citations


Journal ArticleDOI
TL;DR: In this paper, the formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described and two versions of the coupled model are described.
Abstract: The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved. Two versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2° latitude × 2.5° longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1° in latitude and longitude, wi...

1,711 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe the creation of a global, 50-yr, 3-hourly, 1.0° dataset of meteorological forcings that can be used to drive models of land surface hydrology.
Abstract: Understanding the variability of the terrestrial hydrologic cycle is central to determining the potential for extreme events and susceptibility to future change. In the absence of long-term, large-scale observations of the components of the hydrologic cycle, modeling can provide consistent fields of land surface fluxes and states. This paper describes the creation of a global, 50-yr, 3-hourly, 1.0° dataset of meteorological forcings that can be used to drive models of land surface hydrology. The dataset is constructed by combining a suite of global observation-based datasets with the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis. Known biases in the reanalysis precipitation and near-surface meteorology have been shown to exert an erroneous effect on modeled land surface water and energy budgets and are thus corrected using observation-based datasets of precipitation, air temperature, and radiation. Corrections are also made to the ra...

1,660 citations


Journal ArticleDOI
TL;DR: The Climate Forecast System (CFS) as discussed by the authors is a fully coupled ocean-land-atmosphere dynamical seasonal prediction system, which became operational at NCEP in August 2004.
Abstract: The Climate Forecast System (CFS), the fully coupled ocean–land–atmosphere dynamical seasonal prediction system, which became operational at NCEP in August 2004, is described and evaluated in this paper. The CFS provides important advances in operational seasonal prediction on a number of fronts. For the first time in the history of U.S. operational seasonal prediction, a dynamical modeling system has demonstrated a level of skill in forecasting U.S. surface temperature and precipitation that is comparable to the skill of the statistical methods used by the NCEP Climate Prediction Center (CPC). This represents a significant improvement over the previous dynamical modeling system used at NCEP. Furthermore, the skill provided by the CFS spatially and temporally complements the skill provided by the statistical tools. The availability of a dynamical modeling tool with demonstrated skill should result in overall improvement in the operational seasonal forecasts produced by CPC. The atmospheric compon...

1,220 citations


Journal ArticleDOI
TL;DR: The most recent version of the Max Planck Institute for Meteorology atmospheric general circulation model, ECHAM5, is used to study the impact of changes in horizontal and vertical resolution on seasonal mean climate as mentioned in this paper.
Abstract: The most recent version of the Max Planck Institute for Meteorology atmospheric general circulation model, ECHAM5, is used to study the impact of changes in horizontal and vertical resolution on seasonal mean climate. In a series of Atmospheric Model Intercomparison Project (AMIP)-style experiments with resolutions ranging between T21L19 and T159L31, the systematic errors and convergence properties are assessed for two vertical resolutions. At low vertical resolution (L19) there is no evidence for convergence to a more realistic climate state for horizontal resolutions higher than T42. At higher vertical resolution (L31), on the other hand, the root-mean-square errors decrease monotonically with increasing horizontal resolution. Furthermore, except for T42, the L31 versions are superior to their L19 counterparts, and the improvements become more evident at increasingly higher horizontal resolutions. This applies, in particular, to the zonal mean climate state and to the stationary wave patterns i...

1,086 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed the mean spatial patterns, intraseasonal-to-interannual and ENSO-related variability, convective versus stratiform precipitation ratio, precipitation frequency and intensity for different precipitation categories, and diurnal cycle.
Abstract: Monthly and 3-hourly precipitation data from twentieth-century climate simulations by the newest generation of 18 coupled climate system models are analyzed and compared with available observations. The characteristics examined include the mean spatial patterns, intraseasonal-to-interannual and ENSO-related variability, convective versus stratiform precipitation ratio, precipitation frequency and intensity for different precipitation categories, and diurnal cycle. Although most models reproduce the observed broad patterns of precipitation amount and year-to-year variability, models without flux corrections still show an unrealistic double-ITCZ pattern over the tropical Pacific, whereas the flux-corrected models, especially the Meteorological Research Institute (MRI) Coupled Global Climate Model (CGCM; version 2.3.2a), produce realistic rainfall patterns at low latitudes. As in previous generations of coupled models, the rainfall double ITCZs are related to westward expansion of the cold tongue of...

1,013 citations


Journal ArticleDOI
TL;DR: In this article, the climate feedbacks in coupled ocean-atmosphere models are compared using a coordinated set of twenty-first-century climate change experiments, and it is found that water vapor is the largest positive feedback in all models and its strength is consistent with that expected from constant relative humidity changes in the water vapor mixing ratio.
Abstract: The climate feedbacks in coupled ocean–atmosphere models are compared using a coordinated set of twenty-first-century climate change experiments Water vapor is found to provide the largest positive feedback in all models and its strength is consistent with that expected from constant relative humidity changes in the water vapor mixing ratio The feedbacks from clouds and surface albedo are also found to be positive in all models, while the only stabilizing (negative) feedback comes from the temperature response Large intermodel differences in the lapse rate feedback are observed and shown to be associated with differing regional patterns of surface warming Consistent with previous studies, it is found that the vertical changes in temperature and water vapor are tightly coupled in all models and, importantly, demonstrate that intermodel differences in the sum of lapse rate and water vapor feedbacks are small In contrast, intermodel differences in cloud feedback are found to provide the largest

983 citations


Journal ArticleDOI
TL;DR: In this paper, a review of recent observational, numerical, and theoretical studies of climate feedbacks is presented, showing that there has been progress since the Third Assessment Report of the Intergovernmental Panel on Climate Change in (i) the understanding of the physical mechanisms involved in these feedbacks, (ii) the interpretation of intermodel differences in global estimates of the feedbacks associated with water vapor, lapse rate, clouds, snow, and sea ice, and (iii) the development of methodologies of evaluation of these inputs using observations.
Abstract: Processes in the climate system that can either amplify or dampen the climate response to an external perturbation are referred to as climate feedbacks. Climate sensitivity estimates depend critically on radiative feedbacks associated with water vapor, lapse rate, clouds, snow, and sea ice, and global estimates of these feedbacks differ among general circulation models. By reviewing recent observational, numerical, and theoretical studies, this paper shows that there has been progress since the Third Assessment Report of the Intergovernmental Panel on Climate Change in (i) the understanding of the physical mechanisms involved in these feedbacks, (ii) the interpretation of intermodel differences in global estimates of these feedbacks, and (iii) the development of methodologies of evaluation of these feedbacks ( or of some components) using observations. This suggests that continuing developments in climate feedback research will progressively help make it possible to constrain the GCMs' range of climate feedbacks and climate sensitivity through an ensemble of diagnostics based on physical understanding and observations.

963 citations


Journal ArticleDOI
TL;DR: A new version of the Community Atmosphere Model (CAM) has been developed and released to the climate community as discussed by the authors, which is an atmospheric general circulation model that includes the Community Land Model (CLM3), an optional slab ocean model, and a thermodynamic sea ice model.
Abstract: A new version of the Community Atmosphere Model (CAM) has been developed and released to the climate community. CAM Version 3 (CAM3) is an atmospheric general circulation model that includes the Community Land Model (CLM3), an optional slab ocean model, and a thermodynamic sea ice model. The dynamics and physics in CAM3 have been changed substantially compared to implementations in previous versions. CAM3 includes options for Eulerian spectral, semi-Lagrangian, and finite-volume formulations of the dynamical equations. It supports coupled simulations using either finite-volume or Eulerian dynamics through an explicit set of adjustable parameters governing the model time step, cloud parameterizations, and condensation processes. The model includes major modifications to the parameterizations of moist processes, radiation processes, and aerosols. These changes have improved several aspects of the simulated climate, including more realistic tropical tropopause temperatures, boreal winter land surfac...

Journal ArticleDOI
TL;DR: The ModelE version of the GISS atmospheric general circulation model (GCM) and results for present-day climate simulations (ca. 1979) were presented in this article, where the model top is now above the stratopause, the number of vertical layers has increased, a new cloud microphysical scheme is used, vegetation biophysics now incorporates a sensitivity to humidity, atmospheric turbulence is calculated over the whole column, and new land snow and lake schemes are introduced.
Abstract: A full description of the ModelE version of the Goddard Institute for Space Studies (GISS) atmospheric general circulation model (GCM) and results are presented for present-day climate simulations (ca. 1979). This version is a complete rewrite of previous models incorporating numerous improvements in basic physics, the stratospheric circulation, and forcing fields. Notable changes include the following: the model top is now above the stratopause, the number of vertical layers has increased, a new cloud microphysical scheme is used, vegetation biophysics now incorporates a sensitivity to humidity, atmospheric turbulence is calculated over the whole column, and new land snow and lake schemes are introduced. The performance of the model using three configurations with different horizontal and vertical resolutions is compared to quality-controlled in situ data, remotely sensed and reanalysis products. Overall, significant improvements over previous models are seen, particularly in upper-atmosphere te...

Journal ArticleDOI
TL;DR: In this article, the authors describe the mean ocean circulation and the tropical variability simulated by the Max Planck Institute for Meteorology (MPI-M) coupled atmosphere-ocean general circulation model (AOGCM).
Abstract: This paper describes the mean ocean circulation and the tropical variability simulated by the Max Planck Institute for Meteorology (MPI-M) coupled atmosphere–ocean general circulation model (AOGCM). Results are presented from a version of the coupled model that served as a prototype for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) simulations. The model does not require flux adjustment to maintain a stable climate. A control simulation with present-day greenhouse gases is analyzed, and the simulation of key oceanic features, such as sea surface temperatures (SSTs), large-scale circulation, meridional heat and freshwater transports, and sea ice are compared with observations. A parameterization that accounts for the effect of ocean currents on surface wind stress is implemented in the model. The largest impact of this parameterization is in the tropical Pacific, where the mean state is significantly improved: the strength of the trade winds and the associated...

Journal ArticleDOI
TL;DR: In this article, the authors compare the performance of different models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere-ocean general circulation models (AOGCMs) to document and improve understanding of the causes of wide variations in the modeled THC response.
Abstract: The Atlantic thermohaline circulation (THC) is an important part of the earth’s climate system. Previous research has shown large uncertainties in simulating future changes in this critical system. The simulated THC response to idealized freshwater perturbations and the associated climate changes have been intercompared as an activity of World Climate Research Program (WCRP) Coupled Model Intercomparison Project/Paleo-Modeling Intercomparison Project (CMIP/PMIP) committees. This intercomparison among models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere–ocean general circulation models (AOGCMs) seeks to document and improve understanding of the causes of the wide variations in the modeled THC response. The robustness of particular simulation features has been evaluated across the model results. In response to 0.1-S v( 1 Sv 10 6 m 3 s 1 ) freshwater input in the northern North Atlantic, the multimodel ensemble mean THC weakens by 30% after 100 yr. All models simulate some weakening of the THC, but no model simulates a complete shutdown of the THC. The multimodel ensemble indicates that the surface air temperature could present a complex anomaly pattern with cooling south of Greenland and warming over the Barents and Nordic Seas. The Atlantic ITCZ tends to shift southward. In response to 1.0-Sv freshwater input, the THC switches off rapidly in all model simulations. A large cooling occurs over the North Atlantic. The annual mean Atlantic ITCZ moves into the Southern Hemisphere. Models disagree in terms of the reversibility of the THC after its shutdown. In general, the EMICs and AOGCMs obtain similar THC responses and climate changes with more pronounced and sharper patterns in the AOGCMs.

Journal ArticleDOI
TL;DR: The Second Hadley Centre Sea Surface Temperature dataset (HadSST2) as mentioned in this paper is based on data contained within the recently created International Comprehensive Ocean-Atmosphere Data Set (ICOADS) database and has smaller uncertainties.
Abstract: A new flexible gridded dataset of sea surface temperature (SST) since 1850 is presented and its uncertainties are quantified. This analysis [the Second Hadley Centre Sea Surface Temperature dataset (HadSST2)] is based on data contained within the recently created International Comprehensive Ocean–Atmosphere Data Set (ICOADS) database and so is superior in geographical coverage to previous datasets and has smaller uncertainties. Issues arising when analyzing a database of observations measured from very different platforms and drawn from many different countries with different measurement practices are introduced. Improved bias corrections are applied to the data to account for changes in measurement conditions through time. A detailed analysis of uncertainties in these corrections is included by exploring assumptions made in their construction and producing multiple versions using a Monte Carlo method. An assessment of total uncertainty in each gridded average is obtained by combining these bias-...

Journal ArticleDOI
TL;DR: In this paper, a regional trend toward smaller ratios of winter total snowfall water equivalent (SFE) to winter total precipitation (P) during the period 1949-2004 was documented, with the most significant reductions occurring where winter wet-day minimum temperatures averaged over the study period, were warmer than 5°C.
Abstract: The water resources of the western United States depend heavily on snowpack to store part of the wintertime precipitation into the drier summer months. A well-documented shift toward earlier runoff in recent decades has been attributed to 1) more precipitation falling as rain instead of snow and 2) earlier snowmelt. The present study addresses the former, documenting a regional trend toward smaller ratios of winter-total snowfall water equivalent (SFE) to winter-total precipitation (P) during the period 1949–2004. The trends toward reduced SFE are a response to warming across the region, with the most significant reductions occurring where winter wet-day minimum temperatures, averaged over the study period, were warmer than 5°C. Most SFE reductions were associated with winter wet-day temperature increases between 0° and 3°C over the study period. Warmings larger than this occurred mainly at sites where the mean temperatures were cool enough that the precipitation form was less susceptible to warming trends. The trends toward reduced SFE/P ratios were most pronounced in March regionwide and in January near the West Coast, corresponding to widespread warming in these months. While mean temperatures in March were sufficiently high to allow the warming trend to produce SFE/P declines across the study region, mean January temperatures were cooler, with the result that January SFE/P impacts were restricted to the lower elevations near the West Coast. Extending the analysis back to 1920 shows that although the trends presented here may be partially attributable to interdecadal climate variability associated with the Pacific decadal oscillation, they also appear to result from still longer-term climate shifts.

Journal ArticleDOI
Rob Allan1, Tara Ansell1
TL;DR: HadSLP2 as mentioned in this paper is an upgraded version of the Hadley Centre's monthly historical mean sea level pressure (MSLP) dataset (HadSLp2) which covers the period from 1850 to date, and is based on numerous terrestrial and marine data compilations.
Abstract: An upgraded version of the Hadley Centre’s monthly historical mean sea level pressure (MSLP) dataset (HadSLP2) is presented. HadSLP2 covers the period from 1850 to date, and is based on numerous terrestrial and marine data compilations. Each terrestrial pressure series used in HadSLP2 underwent a series of quality control tests, and erroneous or suspect values were either corrected, where possible, or removed. Marine observations from the International Comprehensive Ocean Atmosphere Data Set were quality controlled (assessed against climatology and near neighbors) and then gridded. The final gridded form of HadSLP2 was created by blending together the processed terrestrial and gridded marine MSLP data. MSLP fields were made spatially complete using reduced-space optimal interpolation. Gridpoint error estimates were also produced. HadSLP2 was found to have generally stronger subtropical anticyclones and higher-latitude features across the Northern Hemisphere than an earlier product (HadSLP1). Duri...

Journal ArticleDOI
TL;DR: In this paper, the authors evaluate the tropical intraseasonal variability, especially the fidelity of Madden-Julian oscillation (MJO) simulations, in 14 coupled general circulation models participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4).
Abstract: This study evaluates the tropical intraseasonal variability, especially the fidelity of Madden–Julian oscillation (MJO) simulations, in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of daily precipitation from each model’s twentieth-century climate simulation are analyzed and compared with daily satellite-retrieved precipitation. Space–time spectral analysis is used to obtain the variance and phase speed of dominant convectively coupled equatorial waves, including the MJO, Kelvin, equatorial Rossby (ER), mixed Rossby–gravity (MRG), and eastward inertio–gravity (EIG) and westward inertio–gravity (WIG) waves. The variance and propagation of the MJO, defined as the eastward wavenumbers 1–6, 30–70-day mode, are examined in detail. The results show that current state-of-the-art GCMs still have significant problems and display a wide range of skill in simulating the tropical intraseasonal va...

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the ECHAM5 coupled climate model for the current and a future climate scenario and found that the statistical distribution of storm intensities is virtually preserved under climate change using the International Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario until the end of this century.
Abstract: Extratropical and tropical transient storm tracks are investigated from the perspective of feature tracking in the ECHAM5 coupled climate model for the current and a future climate scenario. The atmosphere-only part of the model, forced by observed boundary conditions, produces results that agree well with analyses from the 40-yr ECMWF Re-Analysis (ERA-40), including the distribution of storms as a function of maximum intensity. This provides the authors with confidence in the use of the model for the climate change experiments. The statistical distribution of storm intensities is virtually preserved under climate change using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario until the end of this century. There are no indications in this study of more intense storms in the future climate, either in the Tropics or extratropics, but rather a minor reduction in the number of weaker storms. However, significant changes occur on a regional ...

Journal ArticleDOI
TL;DR: This paper reviewed recent progress in the understanding of the American monsoon systems and identified some of the future challenges that remain to improve warm season climate prediction, including new insights into moisture transport processes, description of the structure and variability of the South American low level jet, and resolution of the diurnal cycle of precipitation in the core monsoon regions.
Abstract: An important goal of the Climate Variability and Predictability (CLIVAR) research on the American monsoon systems is to determine the sources and limits of predictability of warm season precipitation, with emphasis on weekly to interannual time scales. This paper reviews recent progress in the understanding of the American monsoon systems and identifies some of the future challenges that remain to improve warm season climate prediction. Much of the recent progress is derived from complementary international programs in North and South America, namely, the North American Monsoon Experiment (NAME) and the Monsoon Experiment South America (MESA), with the following common objectives: 1) to understand the key components of the American monsoon systems and their variability, 2) to determine the role of these systems in the global water cycle, 3) to improve observational datasets, and 4) to improve simulation and monthly-to-seasonal prediction of the monsoons and regional water resources. Among the recent observational advances highlighted in this paper are new insights into moisture transport processes, description of the structure and variability of the South American low-level jet, and resolution of the diurnal cycle of precipitation in the core monsoon regions. NAME and MESA are also driving major efforts in model development and hydrologic applications. Incorporated into the postfield phases of these projects are assessments of atmosphere–land surface interactions and model-based climate predictability experiments. As CLIVAR research on American monsoon systems evolves, a unified view of the climatic processes modulating continental warm season precipitation is beginning to emerge.

Journal ArticleDOI
TL;DR: The Integrated Global Radiosonde Archive (IGRA) as discussed by the authors is a dataset of radiosonde and balloon observations from the National Climatic Data Center (NCDC) that includes pressure, temperature, geopotential height, dewpoint depression, wind direction and wind speed at standard, surface, tropopause, and significant levels.
Abstract: This paper provides a general description of the Integrated Global Radiosonde Archive (IGRA), a new radiosonde dataset from the National Climatic Data Center (NCDC). IGRA consists of radiosonde and pilot balloon observations at more than 1500 globally distributed stations with varying periods of record, many of which extend from the 1960s to present. Observations include pressure, temperature, geopotential height, dewpoint depression, wind direction, and wind speed at standard, surface, tropopause, and significant levels. IGRA contains quality-assured data from 11 different sources. Rigorous procedures are employed to ensure proper station identification, eliminate duplicate levels within soundings, and select one sounding for every station, date, and time. The quality assurance algorithms check for format problems, physically implausible values, internal inconsistencies among variables, runs of values across soundings and levels, climatological outliers, and temporal and vertical inconsistencies in temperature. The performance of the various checks was evaluated by careful inspection of selected soundings and time series. In its final form, IGRA is the largest and most comprehensive dataset of quality-assured radiosonde observations freely available. Its temporal and spatial coverage is most complete over the United States, western Europe, Russia, and Australia. The vertical resolution and extent of soundings improve significantly over time, with nearly three-quarters of all soundings reaching up to at least 100 hPa by 2003. IGRA data are updated on a daily basis and are available online from NCDC as both individual soundings and monthly means.

Journal ArticleDOI
TL;DR: A weeklong workshop in Brazil in August 2004 provided the opportunity for 28 scientists from southern South America to examine daily rainfall observations to determine changes in both total and extreme rainfall as mentioned in this paper.
Abstract: A weeklong workshop in Brazil in August 2004 provided the opportunity for 28 scientists from southern South America to examine daily rainfall observations to determine changes in both total and extreme rainfall. Twelve annual indices of daily rainfall were calculated over the period 1960 to 2000, examining changes to both the entire distribution as well as the extremes. Maps of trends in the 12 rainfall indices showed large regions of coherent change, with many stations showing statistically significant changes in some of the indices. The pattern of trends for the extremes was generally the same as that for total annual rainfall, with a change to wetter conditions in Ecuador and northern Peru and the region of southern Brazil, Paraguay, Uruguay, and northern and central Argentina. A decrease was observed in southern Peru and southern Chile, with the latter showing significant decreases in many indices. A canonical correlation analysis between each of the indices and sea surface temperatures (SSTs) revealed two large-scale patterns that have contributed to the observed trends in the rainfall indices. A coupled pattern with ENSO-like SST loadings and rainfall loadings showing similarities with the pattern of the observed trend reveals that the change to a generally more negative Southern Oscillation index (SOI) has had an important effect on regional rainfall trends. A significant decrease in many of the rainfall indices at several stations in southern Chile and Argentina can be explained by a canonical pattern reflecting a weakening of the continental trough leading to a southward shift in storm tracks. This latter signal is a change that has been seen at similar latitudes in other parts of the Southern Hemisphere. A similar analysis was carried out for eastern Brazil using gridded indices calculated from 354 stations from the Global Historical Climatology Network (GHCN) database. The observed trend toward wetter conditions in the southwest and drier conditions in the northeast could again be explained by changes in ENSO.

Journal ArticleDOI
TL;DR: In this paper, the climate sensitivity of the Community Climate System Model version 3 (CCSM3) is studied for two past climate forcings, the Last Glacial Maximum (LGM) and the mid-Holocene.
Abstract: The climate sensitivity of the Community Climate System Model version 3 (CCSM3) is studied for two past climate forcings, the Last Glacial Maximum (LGM) and the mid-Holocene. The LGM, approximately 21 000 yr ago, is a glacial period with large changes in the greenhouse gases, sea level, and ice sheets. The mid-Holocene, approximately 6000 yr ago, occurred during the current interglacial with primary changes in the seasonal solar irradiance. The LGM CCSM3 simulation has a global cooling of 4.5°C compared to preindustrial (PI) conditions with amplification of this cooling at high latitudes and over the continental ice sheets present at LGM. Tropical sea surface temperature (SST) cools by 1.7°C and tropical land temperature cools by 2.6°C on average. Simulations with the CCSM3 slab ocean model suggest that about half of the global cooling is explained by the reduced LGM concentration of atmospheric CO2 (∼50% of present-day concentrations). There is an increase in the Antarctic Circumpolar Current an...

Journal ArticleDOI
TL;DR: In this paper, a state-of-the-art global coupled model is used to examine the Southern Hemisphere annular mode trends in comparison to observations, in an attempt to isolate the response of the climate system to each individual forcing.
Abstract: An observed trend in the Southern Hemisphere annular mode (SAM) during recent decades has involved an intensification of the polar vortex. The source of this trend is a matter of scientific debate with stratospheric ozone losses, greenhouse gas increases, and natural variability all being possible contenders. Because it is difficult to separate the contribution of various external forcings to the observed trend, a state-of-the-art global coupled model is utilized here. Ensembles of twentieth-century simulations forced with the observed time series of greenhouse gases, tropospheric and stratospheric ozone, sulfate aerosols, volcanic aerosols, solar variability, and various combinations of these are used to examine the annular mode trends in comparison to observations, in an attempt to isolate the response of the climate system to each individual forcing. It is found that ozone changes are the biggest contributor to the observed summertime intensification of the southern polar vortex in the second ...

Journal ArticleDOI
TL;DR: In this article, a new formulation, called the estimated inversion strength (EIS), was proposed to estimate the strength of the planetary boundary layer inversion given the temperatures at 700 hPa and at the surface.
Abstract: Observations in subtropical regions show that stratiform low cloud cover is well correlated with the lower-troposphere stability (LTS), defined as the difference in potential temperature θ between the 700-hPa level and the surface. The LTS can be regarded as a measure of the strength of the inversion that caps the planetary boundary layer (PBL). A stronger inversion is more effective at trapping moisture within the marine boundary layer (MBL), permitting greater cloud cover. This paper presents a new formulation, called the estimated inversion strength (EIS), to estimate the strength of the PBL inversion given the temperatures at 700 hPa and at the surface. The EIS accounts for the general observation that the free-tropospheric temperature profile is often close to a moist adiabat and its lapse rate is strongly temperature dependent. Therefore, for a given LTS, the EIS is greater at colder temperatures. It is demonstrated that while the seasonal cycles of LTS and low cloud cover fraction (CF) are...

Journal ArticleDOI
TL;DR: The spatial patterns, time history, and seasonality of African rainfall trends since 1950 are deducible from the atmosphere's response to known variations of global sea surface temperatures (SSTs) as mentioned in this paper.
Abstract: The spatial patterns, time history, and seasonality of African rainfall trends since 1950 are found to be deducible from the atmosphere’s response to the known variations of global sea surface temperatures (SSTs). The robustness of the oceanic impact is confirmed through the diagnosis of 80 separate 50-yr climate simulations across a suite of atmospheric general circulation models. Drying over the Sahel during boreal summer is shown to be a response to warming of the South Atlantic relative to North Atlantic SST, with the ensuing anomalous interhemispheric SST contrast favoring a more southern position of the Atlantic intertropical convergence zone. Southern African drying during austral summer is shown to be a response to Indian Ocean warming, with enhanced atmospheric convection over those warm waters driving subsidence drying over Africa. The ensemble of greenhouse-gas-forced experiments, conducted as part of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, fails to simulate the pattern or amplitude of the twentieth-century African drying, indicating that the drought conditions were likely of natural origin. For the period 2000–49, the ensemble mean of the forced experiments yields a wet signal over the Sahel and a dry signal over southern Africa. These rainfall changes are physically consistent with a projected warming of the North Atlantic Ocean compared with the South Atlantic Ocean, and a further warming of the Indian Ocean. However, considerable spread exists among the individual members of the multimodel ensemble.

Journal ArticleDOI
TL;DR: The Hadley Centre Global Environmental Model version 1 (HadGEM1) is built around a new atmospheric dynamical core and uses higher resolution than the previous Hadley Center model, HadCM3; and contains several improvements in its formulation including interactive atmospheric aerosols as discussed by the authors.
Abstract: A new coupled general circulation climate model developed at the Met Office's Hadley Centre is presented, and aspects of its performance in climate simulations run for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) documented with reference to previous models. The Hadley Centre Global Environmental Model version 1 (HadGEM1) is built around a new atmospheric dynamical core; uses higher resolution than the previous Hadley Centre model, HadCM3; and contains several improvements in its formulation including interactive atmospheric aerosols (sulphate, black carbon, biomass burning, and sea salt) plus their direct and indirect effects. The ocean component also has higher resolution and incorporates a sea ice component more advanced than HadCM3 in terms of both dynamics and thermodynamics. HadGEM1 thus permits experiments including some interactive processes not feasible with HadCM3. The simulation of present-day mean climate in HadGEM1 is significantly better overall ...

Journal ArticleDOI
TL;DR: In this paper, the authors examined the 1 April snow water equivalent (SWE) using multiple linear regression against reference time series of temperature and precipitation, and found that the contribution of modes of Pacific climate variability was responsible for about 10% to 60% of the trends in SWE, depending on the period of record and climate index.
Abstract: Records of 1 April snow water equivalent (SWE) are examined here using multiple linear regression against reference time series of temperature and precipitation. This method permits 1) an examination of the separate roles of temperature and precipitation in determining the trends in SWE; 2) an estimation of the sensitivity of SWE to warming trends, and its distribution across western North America and as a function of elevation; and 3) inferences about responses of SWE to future warming. These results emphasize the sensitivity to warming of the mountains of northern California and the Cascades of Oregon and Washington. In addition, the contribution of modes of Pacific climate variability is examined and found to be responsible for about 10%–60% of the trends in SWE, depending on the period of record and climate index.

Journal ArticleDOI
TL;DR: Fish population variability and fisheries activities are closely linked to weather and climate dynamics as mentioned in this paper, and the close link between climate and fisheries is best illustrated by the effect of "unexpected" events such as those associated with the El Nino-Southern Oscillation (ENSO) on fish exploitation.
Abstract: Fish population variability and fisheries activities are closely linked to weather and climate dynamics. While weather at sea directly affects fishing, environmental variability determines the distribution, migration, and abundance of fish. Fishery science grew up during the last century by integrating knowledge from oceanography, fish biology, marine ecology, and fish population dynamics, largely focused on the great Northern Hemisphere fisheries. During this period, understanding and explaining interannual fish recruitment variability became a major focus for fisheries oceanographers. Yet, the close link between climate and fisheries is best illustrated by the effect of “unexpected” events—that is, nonseasonal, and sometimes catastrophic—on fish exploitation, such as those associated with the El Nino–Southern Oscillation (ENSO). The observation that fish populations fluctuate at decadal time scales and show patterns of synchrony while being geographically separated drew attention to oceanograph...

Journal ArticleDOI
TL;DR: In this paper, temperature data for seven instrumental records in the Karakoram and Hindu Kush Mountains of the Upper Indus Basin (UIB) have been analyzed for seasonal and annual trends over the period 1961-2000 and compared with neighboring mountain regions and the Indian subcontinent.
Abstract: Temperature data for seven instrumental records in the Karakoram and Hindu Kush Mountains of the Upper Indus Basin (UIB) have been analyzed for seasonal and annual trends over the period 1961–2000 and compared with neighboring mountain regions and the Indian subcontinent. Strong contrasts are found between the behavior of winter and summer temperatures and between maximum and minimum temperatures. Winter mean and maximum temperature show significant increases while mean and minimum summer temperatures show consistent decline. Increase in diurnal temperature range (DTR) is consistently observed in all seasons and the annual dataset, a pattern shared by much of the Indian subcontinent but in direct contrast to both GCM projections and the narrowing of DTR seen worldwide. This divergence commenced around the middle of the twentieth century and is thought to result from changes in large-scale circulation patterns and feedback processes associated with the Indian monsoon. The impact of observed season...