scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Climate in 2016"


Journal ArticleDOI
TL;DR: In this article, the Pacific decadal oscillation (PDO) is not a single phenomenon, but is instead the result of a combination of different physical processes, including remote tropical forcing and local North Pacific atmosphere-ocean interactions, which operate on different time scales to drive similar PDO-like SST anomaly patterns.
Abstract: The Pacific decadal oscillation (PDO), the dominant year-round pattern of monthly North Pacific sea surface temperature (SST) variability, is an important target of ongoing research within the meteorological and climate dynamics communities and is central to the work of many geologists, ecologists, natural resource managers, and social scientists. Research over the last 15 years has led to an emerging consensus: the PDO is not a single phenomenon, but is instead the result of a combination of different physical processes, including both remote tropical forcing and local North Pacific atmosphere–ocean interactions, which operate on different time scales to drive similar PDO-like SST anomaly patterns. How these processes combine to generate the observed PDO evolution, including apparent regime shifts, is shown using simple autoregressive models of increasing spatial complexity. Simulations of recent climate in coupled GCMs are able to capture many aspects of the PDO, but do so based on a balance of ...

874 citations


Journal ArticleDOI
TL;DR: The ERA-20C water cycle features stable precipitation minus evaporation global averages and no spurious jumps or trends as mentioned in this paper, and the assimilation of observations adds realism on synoptic time scales.
Abstract: The ECMWF twentieth century reanalysis (ERA-20C; 1900–2010) assimilates surface pressure and marine wind observations. The reanalysis is single-member, and the background errors are spatiotemporally varying, derived from an ensemble. The atmospheric general circulation model uses the same configuration as the control member of the ERA-20CM ensemble, forced by observationally based analyses of sea surface temperature, sea ice cover, atmospheric composition changes, and solar forcing. The resulting climate trend estimations resemble ERA-20CM for temperature and the water cycle. The ERA-20C water cycle features stable precipitation minus evaporation global averages and no spurious jumps or trends. The assimilation of observations adds realism on synoptic time scales as compared to ERA-20CM in regions that are sufficiently well observed. Comparing to nighttime ship observations, ERA-20C air temperatures are 1 K colder. Generally, the synoptic quality of the product and the agreement in terms of climat...

827 citations


Journal ArticleDOI
TL;DR: In this paper, the impact of Ural blocking on the warm Arctic-cold Eurasian (WACE) pattern associated with the winter (DJF) arctic sea ice loss during 1979-2013 is examined by dividing the arctic reduction region into two dominant subregions: the Barents and Kara Seas (BKS) and the North American high-latitude (NAH) region (Baffin and Hudson Bay, Davis Strait, and Labrador Sea).
Abstract: In Part I of this study, the impact of Ural blocking (UB) on the warm Arctic–cold Eurasian (WACE) pattern associated with the winter (DJF) arctic sea ice loss during 1979–2013 is examined by dividing the arctic sea ice reduction region into two dominant subregions: the Barents and Kara Seas (BKS) and the North American high-latitude (NAH) region (Baffin and Hudson Bay, Davis Strait, and Labrador Sea). It is found that atmospheric response to arctic sea ice loss resembles a negative Arctic response oscillation with a dominant positive height anomaly over the Eurasian subarctic region. Regression analyses of the two subregions further show that the sea ice loss over the BKS corresponds to the UB pattern together with a positive North Atlantic Oscillation (NAO+) and is followed by a WACE anomaly, while the sea ice reduction in the NAH region corresponds to a negative NAO (NAO−) pattern with a cold anomaly over northern Eurasia.Further analyses reveal that the UB pattern is more persistent during the ...

271 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the trajectories followed by intense intrusions of moist air into the Arctic polar region during autumn and winter and their impact on local temperature and sea ice concentration.
Abstract: This paper examines the trajectories followed by intense intrusions of moist air into the Arctic polar region during autumn and winter and their impact on local temperature and sea ice concentration. It is found that the vertical structure of the warming associated with moist intrusions is bottom amplified, corresponding to a transition of local conditions from a “cold clear” state with a strong inversion to a “warm opaque” state with a weaker inversion. In the marginal sea ice zone of the Barents Sea, the passage of an intrusion also causes a retreat of the ice margin, which persists for many days after the intrusion has passed. The authors find that there is a positive trend in the number of intrusion events crossing 70°N during December and January that can explain roughly 45% of the surface air temperature and 30% of the sea ice concentration trends observed in the Barents Sea during the past two decades.

269 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated both the underlying mechanisms for and climate impacts of the Southern Ocean ASR bias within the Community Earth System Model, version 1, with the Community Atmosphere Model version 5 [CESM1(CAM5)].
Abstract: A large, long-standing, and pervasive climate model bias is excessive absorbed shortwave radiation (ASR) over the midlatitude oceans, especially the Southern Ocean. This study investigates both the underlying mechanisms for and climate impacts of this bias within the Community Earth System Model, version 1, with the Community Atmosphere Model, version 5 [CESM1(CAM5)]. Excessive Southern Ocean ASR in CESM1(CAM5) results in part because low-level clouds contain insufficient amounts of supercooled liquid. In a present-day atmosphere-only run, an observationally motivated modification to the shallow convection detrainment increases supercooled cloud liquid, brightens low-level clouds, and substantially reduces the Southern Ocean ASR bias. Tuning to maintain global energy balance enables reduction of a compensating tropical ASR bias. In the resulting preindustrial fully coupled run with a brighter Southern Ocean and dimmer tropics, the Southern Ocean cools and the tropics warm. As a result of the enhan...

238 citations


Journal ArticleDOI
TL;DR: In this article, a causal effect network (CEN) based on graphical models is introduced to assess causal relationships and their time delays between different processes in the Northern Hemisphere midlatitudes.
Abstract: In recent years, the Northern Hemisphere midlatitudes have suffered from severe winters like the extreme 2012/13 winter in the eastern United States. These cold spells were linked to a meandering upper-tropospheric jet stream pattern and a negative Arctic Oscillation index (AO). However, the nature of the drivers behind these circulation patterns remains controversial. Various studies have proposed different mechanisms related to changes in the Arctic, most of them related to a reduction in sea ice concentrations or increasing Eurasian snow cover.Here, a novel type of time series analysis, called causal effect networks (CEN), based on graphical models is introduced to assess causal relationships and their time delays between different processes. The effect of different Arctic actors on winter circulation on weekly to monthly time scales is studied, and robust network patterns are found. Barents and Kara sea ice concentrations are detected to be important external drivers of the midlatitude circula...

219 citations


Journal ArticleDOI
TL;DR: In this paper, the physical mechanisms underlying internal and forced components of winter surface air temperature (SAT) trends over North America during the past 50 years (1963-2012) using a combined observational and modeling framework.
Abstract: This study elucidates the physical mechanisms underlying internal and forced components of winter surface air temperature (SAT) trends over North America during the past 50 years (1963–2012) using a combined observational and modeling framework. The modeling framework consists of 30 simulations with the Community Earth System Model (CESM) at 1° latitude–longitude resolution, each of which is subject to an identical scenario of historical radiative forcing but starts from a slightly different atmospheric state. Hence, any spread within the ensemble results from unpredictable internal variability superimposed upon the forced climate change signal. Constructed atmospheric circulation analogs are used to estimate the dynamical contribution to forced and internal components of SAT trends: thermodynamic contributions are obtained as a residual. Internal circulation trends are estimated to account for approximately one-third of the observed wintertime warming trend over North America and more than half l...

197 citations


Journal ArticleDOI
TL;DR: In this article, an all-season analysis of AR incidence in the North Pacific basin is performed for the period spanning 1979-2014 using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis dataset.
Abstract: Recent work on atmospheric rivers (ARs) has led to a characterization of these impactful features as primarily cold-season phenomena. Here, an all-season analysis of AR incidence in the North Pacific basin is performed for the period spanning 1979–2014 using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis dataset. An occurrence-based detection algorithm is developed and employed to identify and characterize ARs in instantaneous fields of anomalous vertically integrated water vapor transport. The all-season climatology and variability of AR frequencies due to the seasonal cycle, the El Nino–Southern Oscillation (ENSO), the Madden–Julian oscillation (MJO), and their interactions are presented based on composites of the detected features. The results highlight that ARs exist throughout the year over the North Pacific, although their preferred locations shift substantially throughout the year. This seasonal cycle manifests itself as northward and westward di...

191 citations


Journal ArticleDOI
TL;DR: The average latitude where tropical cyclones reach their peak intensity has been observed to be shifting poleward in some regions over the past 30 years, apparently in concert with the independently observed expansion of the tropical belt as discussed by the authors.
Abstract: The average latitude where tropical cyclones (TCs) reach their peak intensity has been observed to be shifting poleward in some regions over the past 30 years, apparently in concert with the independently observed expansion of the tropical belt. This poleward migration is particularly well observed and robust in the western North Pacific Ocean (WNP). Such a migration is expected to cause systematic changes, both increases and decreases, in regional hazard exposure and risk, particularly if it persists through the present century. Here, it is shown that the past poleward migration in the WNP has coincided with decreased TC exposure in the region of the Philippine and South China Seas, including the Marianas, the Philippines, Vietnam, and southern China, and increased exposure in the region of the East China Sea, including Japan and its Ryukyu Islands, the Korea Peninsula, and parts of eastern China. Additionally, it is shown that projections of WNP TCs simulated by, and downscaled from, an ensemble...

178 citations


Journal ArticleDOI
TL;DR: In this paper, a new approach of coordinated global and regional climate modeling is presented, which is applied to the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) and its parent global climate model CanESM2.
Abstract: A new approach of coordinated global and regional climate modeling is presented. It is applied to the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) and its parent global climate model CanESM2. CanRCM4 was developed specifically to downscale climate predictions and climate projections made by its parent global model. The close association of a regional climate model (RCM) with a parent global climate model (GCM) offers novel avenues of model development and application that are not typically available to independent regional climate modeling centers. For example, when CanRCM4 is driven by its parent model, driving information for all of its prognostic variables is available (including aerosols and chemical species), significantly improving the quality of their simulation. Additionally, CanRCM4 can be driven by its parent model for all downscaling applications by employing a spectral nudging procedure in CanESM2 designed to constrain its evolution to follow any ...

177 citations


Journal ArticleDOI
TL;DR: In this article, a wide range of outstanding issues for understanding, monitoring, and predicting drought in the Middle East and southwest Asia are discussed, including dynamics of the region, including orography, thermodynamic influence on vertical motion, storm-track changes, and moisture transport.
Abstract: The Middle East and southwest Asia are a region that is water stressed, societally vulnerable, and prone to severe droughts. Large-scale climate variability, particularly La Nina, appears to play an important role in regionwide droughts, including the two most severe of the last 50 years—1999–2001 and 2007/08—with implications for drought forecasting. Important dynamical factors include orography, thermodynamic influence on vertical motion, storm-track changes, and moisture transport. Vegetation in the region is strongly impacted by drought and may provide an important feedback mechanism. In future projections, drying of the eastern Mediterranean region is a robust feature, as are temperature increases throughout the region, which will affect evaporation and the timing and intensity of snowmelt. Vegetation feedbacks may become more important in a warming climate. There are a wide range of outstanding issues for understanding, monitoring, and predicting drought in the region, including dynamics of ...

Journal ArticleDOI
TL;DR: This article presented a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST anomalies), land surface feedbacks, and radiative forcings.
Abstract: Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST anomalies), land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally-focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, as well as central and eastern Canada stand out as regions with little SST-forced impacts on precipitation interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s 'climate shifts' in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land/atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.

Journal ArticleDOI
TL;DR: In this paper, the uncertainty in Extended Reconstructed SST (ERSST) version 4 (v4) is reassessed based upon reconstruction uncertainties and an extended exploration of parametric uncertainties.
Abstract: The uncertainty in Extended Reconstructed SST (ERSST) version 4 (v4) is reassessed based upon 1) reconstruction uncertainties and 2) an extended exploration of parametric uncertainties. The reconstruction uncertainty (Ur) results from using a truncated (130) set of empirical orthogonal teleconnection functions (EOTs), which yields an inevitable loss of information content, primarily at a local level. The Ur is assessed based upon 32 ensemble ERSST.v4 analyses with the spatially complete monthly Optimum Interpolation SST product. The parametric uncertainty (Up) results from using different parameter values in quality control, bias adjustments, and EOT definition etc. The Up is assessed using a 1000-member ensemble ERSST.v4 analysis with different combinations of plausible settings of 24 identified internal parameter values. At the scale of an individual grid box, the SST uncertainty varies between 0.3° and 0.7°C and arises from both Ur and Up. On the global scale, the SST uncertainty is substantial...

Journal ArticleDOI
TL;DR: In this article, the Ural blocking (UB)-induced amplification role of winter warm Arctic-cold Eurasian (WACE) anomalies has been examined, and it was found that the long-lived UB together with the positive North Atlantic Oscillation (NAO+) significantly contributes to the amplification of the WACE pattern.
Abstract: In Part I of this study, the Ural blocking (UB)-induced amplification role of winter warm Arctic–cold Eurasian (WACE) anomalies has been examined. It was found that the long-lived UB together with the positive North Atlantic Oscillation (NAO+) significantly contributes to the amplification of the WACE pattern. The present study examines how the UB variability affects quasi-biweekly WACE (QB-WACE) anomalies and depends on the NAO+ and North Atlantic conditions by classifying the UB based on a case study of a cold event that occurred over southern China in January 2008. A composite analysis during 1979–2013 shows that the QB-WACE anomalies associated with the UB that often occur with the NAO+ are strong and influenced by the North Atlantic jet (NAJ) and zonal wind strengths over Eurasia. For NAO+-related UB, the QB-WACE anomaly depends strongly on the location of UB, and the UB anomalies lag the NAO+ by approximately 4–7 days.The strength of the NAJ determines whether the combined NAO+ and UB anomal...

Journal ArticleDOI
TL;DR: In this article, the authors used the Community Earth System Model Last Millennium Ensemble (CESM-LME) by examining of ensemble realizations with distinct posteruption ENSO responses.
Abstract: The hydroclimate response to volcanic eruptions depends both on volcanically induced changes to the hydrologic cycle and on teleconnections with the El Nino–Southern Oscillation (ENSO), complicating the interpretation of offsets between proxy reconstructions and model output. Here, these effects are separated, using the Community Earth System Model Last Millennium Ensemble (CESM-LME), by examination of ensemble realizations with distinct posteruption ENSO responses. Hydroclimate anomalies in monsoon Asia and the western United States resemble the El Nino teleconnection pattern after “Tropical” and “Northern” eruptions, even when ENSO-neutral conditions are present. This pattern results from Northern Hemisphere (NH) surface cooling, which shifts the intertropical convergence zone equatorward, intensifies the NH subtropical jet, and suppresses the Southeast Asian monsoon. El Nino events following an eruption can then intensify the ENSO-neutral hydroclimate signature, and El Nino probability is enhan...

Journal ArticleDOI
TL;DR: In this paper, the impact of the North Atlantic Oscillation (NAO) on the Atlantic meridional overturning circulation (AMOC) and large-scale climate is assessed using simulations with three different climate models.
Abstract: The impact of the North Atlantic Oscillation (NAO) on the Atlantic meridional overturning circulation (AMOC) and large-scale climate is assessed using simulations with three different climate models. Perturbation experiments are conducted in which a pattern of anomalous heat flux corresponding to the NAO is added to the model ocean. Differences between the perturbation experiments and a control illustrate how the model ocean and climate system respond to the NAO. A positive phase of the NAO strengthens the AMOC by extracting heat from the subpolar gyre, thereby increasing deep-water formation, horizontal density gradients, and the AMOC. The flux forcings have the spatial structure of the observed NAO, but the amplitude of the forcing varies in time with distinct periods varying from 2 to 100 yr. The response of the AMOC to NAO variations is small at short time scales but increases up to the dominant time scale of internal AMOC variability (20–30 yr for the models used). The amplitude of the AMOC r...

Journal ArticleDOI
TL;DR: In this paper, a combination of satellite observational data and detailed radiative transfer calculations is used to quantify the impact of cloud phase and cloud vertical structure on the reflected solar radiation in the Southern Hemisphere summer.
Abstract: The Southern Ocean is a critical region for global climate, yet large cloud and solar radiation biases over the Southern Ocean are a long-standing problem in climate models and are poorly understood, leading to biases in simulated sea surface temperatures. This study shows that supercooled liquid clouds are central to understanding and simulating the Southern Ocean environment. A combination of satellite observational data and detailed radiative transfer calculations is used to quantify the impact of cloud phase and cloud vertical structure on the reflected solar radiation in the Southern Hemisphere summer. It is found that clouds with supercooled liquid tops dominate the population of liquid clouds. The observations show that clouds with supercooled liquid tops contribute between 27% and 38% to the total reflected solar radiation between 40° and 70°S, and climate models are found to poorly simulate these clouds. The results quantify the importance of supercooled liquid clouds in the Southern Ocean environment and highlight the need to improve understanding of the physical processes that control these clouds in order to improve their simulation in numerical models. This is not only important for improving the simulation of present-day climate and climate variability, but also relevant for increasing confidence in climate feedback processes and future climate projections.

Journal ArticleDOI
TL;DR: The In Situ Analysis System (ISAS) was developed to produce gridded fields of temperature and salinity that preserve as much as possible the time and space sampling capabilities of the Argo network of profiling floats.
Abstract: The In Situ Analysis System (ISAS) was developed to produce gridded fields of temperature and salinity that preserve as much as possible the time and space sampling capabilities of the Argo network of profiling floats. Since the first global reanalysis performed in 2009, the system has evolved, and a careful delayed-mode processing of the 2002–12 dataset has been carried out using version 6 of ISAS and updating the statistics to produce the ISAS13 analysis. This last version is now implemented as the operational analysis tool at the Coriolis data center. The robustness of the results with respect to the system evolution is explored through global quantities of climatological interest: the ocean heat content and the steric height. Estimates of errors consistent with the methodology are computed. This study shows that building reliable statistics on the fields is fundamental to improve the monthly estimates and to determine the absolute error bars. The new mean fields and variances deduced from the ...

Journal ArticleDOI
TL;DR: In this paper, the authors found that the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillations (AMO) are two major drivers of the interdecadal variability of summer rainfall over East Asia.
Abstract: In this study, it was found that the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO) are shown to be the two major drivers of the interdecadal variability of summer rainfall over East Asia. The first leading mode (PC1) of this interdecadal variability—associated with an in-phase variation of rainfall anomalies along the Yangtze River valley and Huanghe–Huaihe River valley in China—is attributed to the PDO, while the second leading mode (PC2)—associated with seesawlike rainfall anomalies between the Yangtze River valley and Huanghe–Huaihe River valley—is attributed to the AMO. The AMO teleconnects its influence to the East Asian region, and beyond, through a circumglobal stationary baroclinic wave train extending from the Atlantic Ocean, through the Eurasian continent, and extending to North America. The AMO also altered the nature of the PDO through this atmospheric teleconnection, resulting in the occurrence of a different PDO pattern (“pseudo-PDO”) between the 1...

Journal ArticleDOI
TL;DR: In this paper, a multivariate bias correction (MBC) algorithm is introduced as a multidimensional analog of univariate quantile mapping, which corrects Pearson correlation and Spearman rank correlation dependence structure.
Abstract: Univariate bias correction algorithms, such as quantile mapping, are used to address systematic biases in climate model output. Intervariable dependence structure (e.g., between different quantities like temperature and precipitation or between sites) is typically ignored, which can have an impact on subsequent calculations that depend on multiple climate variables. A novel multivariate bias correction (MBC) algorithm is introduced as a multidimensional analog of univariate quantile mapping. Two variants are presented. MBCp and MBCr respectively correct Pearson correlation and Spearman rank correlation dependence structure, with marginal distributions in both constrained to match observed distributions via quantile mapping. MBC is demonstrated on two case studies: 1) bivariate bias correction of monthly temperature and precipitation output from a large ensemble of climate models and 2) multivariate correction of vertical humidity and wind profiles, including subsequent calculation of vertically in...

Journal ArticleDOI
TL;DR: In this article, the authors investigated interannual variability in winter [December-February (DJF)] Barents Sea enhanced turbulent heat flux (THF) and its relationship to barents sea ice and the large-scale atmospheric flow.
Abstract: The decline in Barents Sea ice has been implicated in forcing the “warm-Arctic cold-Siberian” (WACS) anomaly pattern via enhanced turbulent heat flux (THF). This study investigates interannual variability in winter [December–February (DJF)] Barents Sea THF and its relationship to Barents Sea ice and the large-scale atmospheric flow. ERA-Interim and observational data from 1979/80 to 2011/12 are used. The leading pattern (EOF1: 33%) of winter Barents Sea THF variability is relatively weakly correlated (r = 0.30) with Barents Sea ice and appears to be driven primarily by atmospheric variability. The sea ice–related THF variability manifests itself as EOF2 (20%, r = 0.60). THF EOF2 is robust over the entire winter season, but its link to the WACS pattern is not. However, the WACS pattern emerges consistently as the second EOF (20%) of Eurasian surface air temperature (SAT) variability in all winter months. When Eurasia is cold, there are indeed weak reductions in Barents Sea ice, but the associated T...

Journal ArticleDOI
TL;DR: In this paper, composites of North Pacific, North Atlantic, and European blocking are generated relative to the Madden-Julian oscillation (MJO) phase, and a significant decrease in east Pacific and Atlantic blocking occurs following phase 3 of the MJO.
Abstract: The persistent and quasi-stationary nature of atmospheric blocking is associated with long-lasting extreme weather conditions that influence much of the Northern Hemisphere during boreal winter. The Madden–Julian oscillation (MJO) has been previously shown to influence important factors for blocking, including Rossby wave breaking and the North Atlantic Oscillation (NAO). However, the extent to which the MJO influences blocking across the Northern Hemisphere is not yet fully understood.Utilizing a two-dimensional blocking index, composites of North Pacific, North Atlantic, and European blocking are generated relative to MJO phase. In the west and central Pacific, all MJO phases demonstrate significant changes in blocking, particularly at high latitudes. A significant decrease in east Pacific and Atlantic blocking occurs following phase 3 of the MJO, characterized by enhanced convection over the tropical East Indian Ocean and suppressed convection in the west Pacific. The opposite-signed MJO heatin...

Journal ArticleDOI
TL;DR: In this paper, synoptic situations associated with extreme hourly precipitation over China are investigated using rain gauge data, weather maps, and composite radar reflectivity data, and the 99.9th percentile is thus used as the threshold to define the extreme hourly rainfall for each station.
Abstract: In this study, synoptic situations associated with extreme hourly precipitation over China are investigated using rain gauge data, weather maps, and composite radar reflectivity data. Seasonal variations of hourly precipitation (>0.1 mm h−1) suggest complicated regional features in the occurrence frequency and intensity of rainfall. The 99.9th percentile is thus used as the threshold to define the extreme hourly rainfall for each station. The extreme rainfall is the most intense over the south coastal areas and the North China Plain. About 77% of the extreme rainfall records occur in summer with a peak in July (30.4%) during 1981–2013.Nearly 5800 extreme hourly rainfall records in 2011–15 are classified into four types according to the synoptic situations under which they occur: the tropical cyclone (TC), surface front, vortex/shear line, and weak-synoptic forcing. They contribute 8.0%, 13.9%, 39.1%, and 39.0%, respectively, to the total occurrence and present distinctive characteristics in region...

Journal ArticleDOI
TL;DR: The authors compared three global high-resolution precipitation products (HRPPs), four global climate data records (CDRs), and four reanalyses, and found that HRPPs are intended to produce the best snapshot of the precipitation estimate locally.
Abstract: Characteristics of precipitation estimates for rate and amount from three global high-resolution precipitation products (HRPPs), four global climate data records (CDRs), and four reanalyses are compared. All datasets considered have at least daily temporal resolution. Estimates of global precipitation differ widely from one product to the next, with some differences likely due to differing goals in producing the estimates. HRPPs are intended to produce the best snapshot of the precipitation estimate locally. CDRs of precipitation emphasize homogeneity over instantaneous accuracy. Precipitation estimates from global reanalyses are dynamically consistent with the large-scale circulation but tend to compare poorly to rain gauge estimates since they are forecast by the reanalysis system and precipitation is not assimilated. Regional differences among the estimates in the means and variances are as large as the means and variances, respectively. Even with similar monthly totals, precipitation rates var...

Journal ArticleDOI
TL;DR: In this article, the ITCZ position is shown to be proportional to the cross-equatorial atmospheric energy flux and inversely proportional to atmospheric net energy input at the equator.
Abstract: In the zonal mean, the ITCZ lies at the foot of the ascending branch of the tropical mean meridional circulation, close to where the near-surface meridional mass flux vanishes. The ITCZ also lies near the energy flux equator (EFE), where the column-integrated meridional energy flux vanishes. This latter observation makes it possible to relate the ITCZ position to the energy balance, specifically the atmospheric net energy input near the equator and the cross-equatorial energy flux. Here the validity of the resulting relations between the ITCZ position and energetic quantities is examined with reanalysis data for the years 1979–2014. In the reanalysis data, the EFE and ITCZ position indeed covary on time scales of seasons and longer. Consistent with theory, the ITCZ position is proportional to the cross-equatorial atmospheric energy flux and inversely proportional to atmospheric net energy input at the equator. Variations of the cross-equatorial energy flux dominate seasonal variations of the ITCZ position. By contrast, variations of the equatorial net energy input, driven by ocean energy uptake variations, dominate interannual variations of the ITCZ position (e.g., those associated with ENSO).

Journal ArticleDOI
TL;DR: The authors used a developmental version of the next-generation Geophysical Fluid Dynamics Laboratory global climate model (GCM) to construct a tightly controlled set of GCMs where only the formulation of convective precipitation is changed.
Abstract: Uncertainty in equilibrium climate sensitivity impedes accurate climate projections. While the intermodel spread is known to arise primarily from differences in cloud feedback, the exact processes responsible for the spread remain unclear. To help identify some key sources of uncertainty, the authors use a developmental version of the next-generation Geophysical Fluid Dynamics Laboratory global climate model (GCM) to construct a tightly controlled set of GCMs where only the formulation of convective precipitation is changed. The different models provide simulation of present-day climatology of comparable quality compared to the model ensemble from phase 5 of CMIP (CMIP5). The authors demonstrate that model estimates of climate sensitivity can be strongly affected by the manner through which cumulus cloud condensate is converted into precipitation in a model’s convection parameterization, processes that are only crudely accounted for in GCMs. In particular, two commonly used methods for converting ...

Journal ArticleDOI
TL;DR: In this paper, the individual and combined roles of thermodynamic and dynamic ocean-atmosphere coupling in the equilibrium global climate response to projected Arctic sea ice loss using a suite of experiments conducted with Community Climate System Model, version 4, at 1° latitude-longitude spatial resolution.
Abstract: The purpose of this study is to elucidate the individual and combined roles of thermodynamic and dynamic ocean–atmosphere coupling in the equilibrium global climate response to projected Arctic sea ice loss using a suite of experiments conducted with Community Climate System Model, version 4, at 1° latitude–longitude spatial resolution. The results highlight the contrasting spatial structures and partially compensating effects of thermodynamic and dynamic coupling. In combination, thermodynamic and dynamic coupling produce a response pattern that is largely symmetric about the equator, whereas thermodynamic coupling alone yields an antisymmetric response. The latter is characterized by an interhemispheric sea surface temperature (SST) gradient, with maximum warming at high northern latitudes decreasing toward the equator, which displaces the intertropical convergence zone (ITCZ) and Hadley circulation northward. In contrast, the fully coupled response shows enhanced warming at high latitudes of bo...

Journal ArticleDOI
TL;DR: In this article, the authors identified the Silk Road pattern as having a significant relationship with the meridional displacement of the Asian jet (JMD), which manifests as the leading mode of upper-tropospheric zonal wind anomalies.
Abstract: The Silk Road pattern (SRP), which depicts the teleconnection pattern along the Asian jet, has been extensively investigated and commonly described as the leading mode of upper-tropospheric meridional wind anomalies in summer. In this study, the SRP is identified as having a significant relationship with the meridional displacement of the Asian jet (JMD), which manifests as the leading mode of upper-tropospheric zonal wind anomalies. This significant relationship is confirmed by the correlation coefficient between the indices for JMD and SRP, which is 0.39 and reaches statistical significance at the 0.01 level. When the Asian jet is in a northward (southward) displacement, the phase of SRP tends to be shown as anticyclonic (cyclonic) anomalies over western Asia and East Asia and cyclonic (anticyclonic) anomalies over Europe and central Asia. The authors propose an internal atmospheric mechanism for this relationship. In addition, it is found that the JMD is significantly affected by the tropical s...

Journal ArticleDOI
TL;DR: In this paper, an analytic Schmidt transformation is used to create locally refined global model grids capable of efficient climate simulation with gridcell widths as small as 10 km in the GFDL High-Resolution Atmosphere Model (HiRAM).
Abstract: An analytic Schmidt transformation is used to create locally refined global model grids capable of efficient climate simulation with gridcell widths as small as 10 km in the GFDL High-Resolution Atmosphere Model (HiRAM). This method of grid stretching produces a grid that varies very gradually into the region of enhanced resolution without changing the topology of the model grid and does not require radical changes to the solver. AMIP integrations were carried out with two grids stretched to 10-km minimum gridcell width: one centered over East Asia and the western Pacific warm pool, and the other over the continental United States. Robust improvements to orographic precipitation, the diurnal cycle of warm-season continental precipitation, and tropical cyclone maximum intensity were found in the region of enhanced resolution, compared to 25-km uniform-resolution HiRAM. The variations in grid size were not found to create apparent grid artifacts, and in some measures the global-mean climate improved...

Journal ArticleDOI
TL;DR: In this article, the authors investigated the relationship between snow cover and the East Asian summer monsoon (EASM) and found that the effect of winter snow cover is limited to the period from winter to spring over most parts of the central and eastern Tibet Plateau.
Abstract: The relationship between Tibetan Plateau (TP) snow cover and the East Asian summer monsoon (EASM) has long been discussed, but the underlying mechanism remains controversial. In this paper, the snow–albedo and snow–hydrology feedbacks over the TP are investigated based on multiple sources of snow data for the period 1979–2011. The results indicate that winter snow cover plays an important role in cooling local air temperature through the snow–albedo effect; the TP surface net solar radiation in years with above-normal snow cover is approximately 18 W m−2 less than that in below-normal snow cover years. However, data analysis demonstrates that persistent effects of winter snow cover are limited to the period from winter to spring over most parts of the central and eastern TP. Therefore, the preceding snow cover over the central and eastern TP exerts little influence over either the in situ summer atmospheric heat source or the EASM, because of its limited persistence. In contrast, the effects of wi...