scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Clinical Microbiology in 2008"


Journal ArticleDOI
TL;DR: This cross-sectional preliminary study indicated that 10% of subjects with rampant caries in permanent teeth do not have detectable levels of S. mutans, and additional species, e.g., species of the genera Atopobium, Propionibacterium, and Lactobacillus, were present at significantly higher levels than those of S mutans.
Abstract: Although Streptococcus mutans has been implicated as a major etiological agent of dental caries, our cross-sectional preliminary study indicated that 10% of subjects with rampant caries in permanent teeth do not have detectable levels of S. mutans. Our aims were to use molecular methods to detect all bacterial species associated with caries in primary and permanent teeth and to determine the bacterial profiles associated with different disease states. Plaque was collected from 39 healthy controls and from intact enamel and white-spot lesions, dentin lesions, and deep-dentin lesions in each of 51 subjects with severe caries. 16S rRNA genes were PCR amplified, cloned, and sequenced to determine species identities. In a reverse-capture checkerboard assay, 243 samples were analyzed for 110 prevalent bacterial species. A sequencing analysis of 1,285 16S rRNA clones detected 197 bacterial species/phylotypes, of which 50% were not cultivable. Twenty-two new phylotypes were identified. PROC MIXED tests revealed health- and disease-associated species. In subjects with S. mutans, additional species, e.g., species of the genera Atopobium, Propionibacterium, and Lactobacillus, were present at significantly higher levels than those of S. mutans. Lactobacillus spp., Bifidobacterium dentium, and low-pH non-S. mutans streptococci were predominant in subjects with no detectable S. mutans. Actinomyces spp. and non-S. mutans streptococci were predominant in white-spot lesions, while known acid producers were found at their highest levels later in disease. Bacterial profiles change with disease states and differ between primary and secondary dentitions. Bacterial species other than S. mutans, e.g., species of the genera Veillonella, Lactobacillus, Bifidobacterium, and Propionibacterium, low-pH non-S. mutans streptococci, Actinomyces spp., and Atopobium spp., likely play important roles in caries progression.

789 citations


Journal ArticleDOI
TL;DR: It is suggested that bacteria present within these wounds tend to be aggregated in microcolonies imbedded in a self-produced matrix, characteristic of the biofilm mode of growth, which supports the development of new diagnostic and treatment strategies for chronic wounds.
Abstract: Between 1 and 2% of the population in the developed world experiences a nonhealing or chronic wound characterized by an apparent arrest in a stage dominated by inflammatory processes. Lately, research groups have proposed that bacteria might be involved in and contribute to the lack of healing of these wounds. To investigate this, we collected and examined samples from chronic wounds obtained from 22 different patients, all selected because of suspicion of Pseudomonas aeruginosa colonization. These wound samples were investigated by standard culturing methods and peptide nucleic acid-based fluorescence in situ hybridization (PNA FISH) for direct identification of bacteria. By means of the culturing methods, Staphylococcus aureus was detected in the majority of the wounds, whereas P. aeruginosa was observed less frequently. In contrast, using PNA FISH, we found that a large fraction of the wounds contained P. aeruginosa. Furthermore, PNA FISH revealed the structural organization of bacteria in the samples. It appeared that P. aeruginosa aggregated as microcolonies imbedded in the matrix component alginate, which is a characteristic hallmark of the biofilm mode of growth. The present investigation suggests that bacteria present within these wounds tend to be aggregated in microcolonies imbedded in a self-produced matrix, characteristic of the biofilm mode of growth. Additionally, we must conclude that there exists no good correlation between bacteria detected by standard culturing methods and those detected by direct detection methods such as PNA FISH. This strongly supports the development of new diagnostic and treatment strategies for chronic wounds.

480 citations


Journal ArticleDOI
TL;DR: The MIRU-VNTRplus database is a powerful tool for high-resolution clonal identification and has little equivalent in terms of functionalities among the bacterial genotyping databases available so far.
Abstract: Because of its portable data, discriminatory power, and recently proposed standardization, mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing has become a major method for the epidemiological tracking of Mycobacterium tuberculosis complex (MTBC) clones. However, no public MIRU-VNTR database based on well-characterized reference strains has been available hitherto for easy strain identification. Therefore, a collection of 186 reference strains representing the primary MTBC lineages was used to build a database, which is freely accessible at http://www.MIRU-VNTRplus.org. The geographical origin and the drug susceptibility profile of each strain were stored together with comprehensive genetic lineage information, including the 24-locus MIRU-VNTR profile, the spoligotyping pattern, the single-nucleotide- and large-sequence-polymorphism profiles, and the IS6110 restriction fragment length polymorphism fingerprint. Thanks to flexible import functions, a single or multiple user strains can be analyzed, e.g., for lineage identification with or without the use of reference strains, by best-match or tree-based analyses with single or combined marker data sets. The results can easily be exported. In the present study, we evaluated the database consistency and various analysis parameters both by testing the reference collection against itself and by using an external population-based data set comprising 629 different strains. Under the optimal conditions found, lineage predictions based on typing by 24-locus MIRU-VNTR analysis optionally combined with spoligotyping were verified in >99% of the cases. On the basis of this evaluation, a user strategy was defined, which consisted of best-match analysis followed, if necessary, by tree-based analysis. The MIRU-VNTRplus database is a powerful tool for high-resolution clonal identification and has little equivalent in terms of functionalities among the bacterial genotyping databases available so far.

404 citations


Journal ArticleDOI
TL;DR: The in vitro activities of 10 antifungals tested against 19 isolates representing 18 species that span the breadth of the FSSC phylogeny show that members of this complex are broadly resistant to these drugs.
Abstract: Members of the species-rich Fusarium solani species complex (FSSC) are responsible for approximately two-thirds all fusarioses of humans and other animals. In addition, many economically important phytopathogenic species are nested within this complex. Due to their increasing clinical relevance and because most of the human pathogenic and plant pathogenic FSSC lack Latin binomials, we have extended the multilocus haplotype nomenclatural system introduced in a previous study (D. C. Chang, G. B. Grant, K. O9Donnell, K. A. Wannemuehler, J. Noble-Wang, C. Y. Rao, L. M. Jacobson, C. S. Crowell, R. S. Sneed, F. M. T. Lewis, J. K. Schaffzin, M. A. Kainer, C. A. Genese, E. C. Alfonso, D. B. Jones, A. Srinivasan, S. K. Fridkin, and B. J. Park, JAMA 296:953-963, 2006) to all 34 species within the medically important FSSC clade 3 to facilitate global epidemiological studies. The typing scheme is based on polymorphisms in portions of the following three genes: the internal transcribed spacer region and domains D1 plus D2 of the nuclear large-subunit rRNA, the translation elongation factor 1 alpha gene ( EF - 1 α), and the second largest subunit of RNA polymerase II gene ( RPB2 ). Of the 251 isolates subjected to multilocus DNA sequence typing, 191 sequence types were differentiated, and these were distributed among three strongly supported clades designated 1, 2, and 3. All of the mycosis-associated isolates were restricted to FSSC clade 3, as previously reported (N. Zhang, K. O9Donnell, D. A. Sutton, F. A Nalim, R. C. Summerbell, A. A. Padhye, and D. M. Geiser, J. Clin. Microbiol. 44:2186-2190, 2006), and these represent at least 20 phylogenetically distinct species. Analyses of the combined DNA sequence data by use of two separate phylogenetic methods yielded the most robust hypothesis of evolutionary relationships and genetic diversity within the FSSC to date. The in vitro activities of 10 antifungals tested against 19 isolates representing 18 species that span the breadth of the FSSC phylogeny show that members of this complex are broadly resistant to these drugs.

396 citations


Journal ArticleDOI
TL;DR: The use of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for species identification of nonfermenting bacteria provided accurate and reproducible results within 10 min without any substantial costs for consumables.
Abstract: Nonfermenting bacteria are ubiquitous environmental opportunists that cause infections in humans, especially compromised patients. Due to their limited biochemical reactivity and different morphotypes, misidentification by classical phenotypic means occurs frequently. Therefore, we evaluated the use of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for species identification. By using 248 nonfermenting culture collection strains composed of 37 genera most relevant to human infections, a reference database was established for MALDI-TOF MS-based species identification according to the manufacturer's recommendations for microflex measurement and MALDI BioTyper software (Bruker Daltonik GmbH, Leipzig, Germany), i.e., by using a mass range of 2,000 to 20,000 Da and a new pattern-matching algorithm. To evaluate the database, 80 blind-coded clinical nonfermenting bacterial strains were analyzed. As a reference method for species designation, partial 16S rRNA gene sequencing was applied. By 16S rRNA gene sequencing, 57 of the 80 isolates produced a unique species identification (>or=99% sequence similarity); 11 further isolates gave ambiguous results at this threshold and were rated as identified to the genus level only. Ten isolates were identified to the genus level (>or=97% similarity); and two isolates had similarity values below this threshold, were counted as not identified, and were excluded from further analysis. MALDI-TOF MS identified 67 of the 78 isolates (85.9%) included, in agreement with the results of the reference method; 9 were misidentified and 2 were unidentified. The identities of 10 randomly selected strains were 100% correct when three different mass spectrometers and four different cultivation media were used. Thus, MALDI-TOF MS-based species identification of nonfermenting bacteria provided accurate and reproducible results within 10 min without any substantial costs for consumables.

384 citations


Journal ArticleDOI
TL;DR: All three echinocandins have excellent in vitro activities against invasive strains of Candida isolated from centers worldwide and no difference in activity by geographic region is found.
Abstract: The echinocandins are being used increasingly as therapy for invasive candidiasis. Prospective sentinel surveillance for the emergence of in vitro resistance to the echinocandins among invasive Candida sp. isolates is indicated. We determined the in vitro activities of anidulafungin, caspofungin, and micafungin against 5,346 invasive (bloodstream or sterile-site) isolates of Candida spp. collected from over 90 medical centers worldwide from 1 January 2001 to 31 December 2006. We performed susceptibility testing according to the CLSI M27-A2 method and used RPMI 1640 broth, 24-h incubation, and a prominent inhibition endpoint for determination of the MICs. Of 5,346 invasive Candida sp. isolates, species distribution was 54% C. albicans, 14% C. parapsilosis, 14% C. glabrata, 12% C. tropicalis, 3% C. krusei, 1% C. guilliermondii, and 2% other Candida spp. Overall, all three echinocandins were very active against Candida: anidulafungin (MIC50, 0.06 μg/ml; MIC90, 2 μg/ml), caspofungin (MIC50, 0.03 μg/ml; MIC90, 0.25 μg/ml), micafungin (MIC50, 0.015 μg/ml; MIC90, 1 μg/ml). More than 99% of isolates were inhibited by ≤2 μg/ml of all three agents. Results by species (expressed as the percentages of isolates inhibited by ≤2 μg/ml of anidulafungin, caspofungin, and micafungin, respectively) were as follows: for C. albicans, 99.6%, 100%, and 100%; for C. parapsilosis, 92.5%, 99.9%, and 100%; for C. glabrata, 99.9%, 99.9%, and 100%; for C. tropicalis, 100%, 99.8%, and 100%; for C. krusei, 100%, 100%, and 100%; and for C. guilliermondii, 90.2%, 95.1%, and 100%. There was no significant change in the activities of the three echinocandins over the 6-year study period and no difference in activity by geographic region. All three echinocandins have excellent in vitro activities against invasive strains of Candida isolated from centers worldwide. Our prospective sentinel surveillance reveals no evidence of emerging echinocandin resistance among invasive clinical isolates of Candida spp.

378 citations


Journal ArticleDOI
TL;DR: A high incidence of severe S. pyogenes disease in Europe is confirmed through a European Union FP-5-funded program (Strep-EURO), and seasonal patterns of infection showed remarkable congruence between countries.
Abstract: The past 2 decades have brought worrying increases in severe Streptococcus pyogenes diseases globally To investigate and compare the epidemiological patterns of these diseases within Europe, data were collected through a European Union FP-5-funded program (Strep-EURO) Prospective population-based surveillance of severe S pyogenes infection diagnosed during 2003 and 2004 was undertaken in 11 countries across Europe (Cyprus, the Czech Republic, Denmark, Finland, France, Germany, Greece, Italy, Romania, Sweden, and the United Kingdom) using a standardized case definition A total of 5,522 cases were identified across the 11 countries during this period Rates of reported infection varied, reaching 3/100,000 population in the northern European countries Seasonal patterns of infection showed remarkable congruence between countries The risk of infection was highest among the elderly, and rates were higher in males than in females in most countries Skin lesions/wounds were the most common predisposing factor, reported in 25% of cases; 21% had no predisposing factors reported Skin and soft tissue were the most common foci of infection, with 32% of patients having cellulitis and 8% necrotizing fasciitis The overall 7-day case fatality rate was 19%; it was 44% among patients who developed streptococcal toxic shock syndrome The findings from Strep-EURO confirm a high incidence of severe S pyogenes disease in Europe Furthermore, these results have identified targets for public health intervention, as well as raising awareness of severe S pyogenes disease across Europe

373 citations


Journal ArticleDOI
TL;DR: All techniques appear to be capable of detecting outbreak strains, but only REA and MLVA showed sufficient discrimination to distinguish strains from different outbreaks.
Abstract: Using 42 isolates contributed by laboratories in Canada, The Netherlands, the United Kingdom, and the United States, we compared the results of analyses done with seven Clostridium difficile typing techniques: multilocus variable-number tandem-repeat analysis (MLVA), amplified fragment length polymorphism (AFLP), surface layer protein A gene sequence typing (slpAST), PCR-ribotyping, restriction endonuclease analysis (REA), multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). We assessed the discriminating ability and typeability of each technique as well as the agreement among techniques in grouping isolates by allele profile A (AP-A) through AP-F, which are defined by toxinotype, the presence of the binary toxin gene, and deletion in the tcdC gene. We found that all isolates were typeable by all techniques and that discrimination index scores for the techniques tested ranged from 0.964 to 0.631 in the following order: MLVA, REA, PFGE, slpAST, PCR-ribotyping, MLST, and AFLP. All the techniques were able to distinguish the current epidemic strain of C. difficile (BI/027/NAP1) from other strains. All of the techniques showed multiple types for AP-A (toxinotype 0, binary toxin negative, and no tcdC gene deletion). REA, slpAST, MLST, and PCR-ribotyping all included AP-B (toxinotype III, binary toxin positive, and an 18-bp deletion in tcdC) in a single group that excluded other APs. PFGE, AFLP, and MLVA grouped two, one, and two different non-AP-B isolates, respectively, with their AP-B isolates. All techniques appear to be capable of detecting outbreak strains, but only REA and MLVA showed sufficient discrimination to distinguish strains from different outbreaks.

349 citations


Journal ArticleDOI
TL;DR: The sharp demarcation between AP EC isolates and avian fecal E. coli isolates in their plasmid-associated virulence gene content suggests that APEC isolates are well equipped for a pathogenic lifestyle, which is contrary to the widely held belief that most APEC isolate are opportunistic pathogens.
Abstract: To identify traits that predict avian pathogenic Escherichia coli (APEC) virulence, 124 avian E. coli isolates of known pathogenicity and serogroup were subjected to virulence genotyping and phylogenetic typing. The results were analyzed by multiple-correspondence analysis. From this analysis, five genes carried by plasmids were identified as being the most significantly associated with highly pathogenic APEC strains: iutA, hlyF, iss, iroN, and ompT. A multiplex PCR panel targeting these five genes was used to screen a collection of 994 avian E. coli isolates. APEC isolates were clearly distinguished from the avian fecal E. coli isolates by their possession of these genes, suggesting that this pentaplex panel has diagnostic applications and underscoring the close association between avian E. coli virulence and the possession of ColV plasmids. Also, the sharp demarcation between APEC isolates and avian fecal E. coli isolates in their plasmid-associated virulence gene content suggests that APEC isolates are well equipped for a pathogenic lifestyle, which is contrary to the widely held belief that most APEC isolates are opportunistic pathogens. Regardless, APEC isolates remain an important problem for poultry producers and a potential concern for public health professionals, as growing evidence suggests a possible role for APEC in human disease. Thus, the pentaplex panel described here may be useful in detecting APEC-like strains occurring in poultry production, along the food chain, and in human disease. This panel may be helpful toward clarifying potential roles of APEC in human disease, ascertaining the source of APEC in animal outbreaks, and identifying effective targets of avian colibacillosis control.

338 citations


Journal ArticleDOI
TL;DR: Shellfish samples collected over 3 weeks following the outbreak showed a progressive decline in the level of virus contamination as measured by the virus diversity detected and by quantitative reverse transcription-PCR.
Abstract: Following a flooding event close to a shellfish production lagoon, 205 cases of gastroenteritis were linked to oyster consumption. Twelve stool samples from different individuals were collected. Analysis showed that eight samples were positive for multiple enteric viruses, and one stool sample had seven different enteric viruses. Analysis of shellfish implicated in the outbreak allowed detection of the same diversity of enteric viruses, with some viral genomic sequences being identical to those obtained from stool sample analysis. Shellfish were contaminated by as many as five different enteric viruses. For the first time in Europe, Aichi virus was identified in oyster samples. Shellfish samples collected over 3 weeks following the outbreak showed a progressive decline in the level of virus contamination as measured by the virus diversity detected and by quantitative reverse transcription-PCR.

288 citations


Journal ArticleDOI
TL;DR: The sensitivity and specificity of a real-time reverse transcription-PCR assay targeting the viral 5′ noncoding region defined by sequences obtained from all 100 currently recognized HRV prototype strains and 85 recently circulating field isolates was developed and clinically validated and applied in an investigation of a coincidental outbreak of HRV respiratory illness among laboratory staff.
Abstract: Human rhinoviruses (HRVs) are important contributors to respiratory disease, but their healthcare burden remains unclear, primarily because of the lack of sensitive, accurate, and convenient means of determining their causal role. To address this, we developed and clinically validated the sensitivity and specificity of a real-time reverse transcription-PCR (RT-PCR) assay targeting the viral 5' noncoding region defined by sequences obtained from all 100 currently recognized HRV prototype strains and 85 recently circulating field isolates. The assay successfully amplified all HRVs tested and could reproducibly detect 50 HRV RNA transcript copies, with a dynamic range of over 7 logs. In contrast, a quantified RNA transcript of human enterovirus 68 (HEV68) that showed the greatest sequence homology to the HRV primers and probe set was not detected below a concentration of 5 x 10(5) copies per reaction. Nucleic acid extracts of 111 coded respiratory specimens that were culture positive for HRV or HEV were tested with the HRV real-time RT-PCR assay and by two independent laboratories that used different in-house HRV/HEV RT-PCR assays. Eighty-seven HRV-culture-positive specimens were correctly identified by the real-time RT-PCR assay, and 4 of the 24 HEV-positive samples were positive for HRV. HRV-specific sequences subsequently were identified in these four specimens, suggesting HRV/HEV coinfection in these patients. The assay was successfully applied in an investigation of a coincidental outbreak of HRV respiratory illness among laboratory staff.

Journal ArticleDOI
TL;DR: The value of spa typing in combination with BURP (based upon repeat pattern) grouping analysis as a frontline tool in the epidemiological typing of S. aureus is determined, based on a random collection of clinical isolates sent to the German Reference Centre for Staphylococci within a 6-month period.
Abstract: We determined the value of spa typing in combination with BURP (based upon repeat pattern) grouping analysis as a frontline tool in the epidemiological typing of Staphylococcus aureus, based on a random collection of 1,459 clinical isolates sent to the German Reference Centre for Staphylococci within a 6-month period. The application was found to be helpful for the classification of isolates into the particular clonal lineages currently prevalent in Germany. Due to its major advantages because of the ease of interpretation and the exchangeability of the results, the use of spa typing greatly simplifies communication between laboratories on both the national and the international levels. Thus, it is an excellent tool for national and international surveillance of S. aureus as well as for analysis of the short-term local epidemiology. However, to overcome the limitations of the BURP grouping method in terms of typing accuracy and discriminatory power, the results of the default BURP grouping method must be interpreted with caution. Additional markers, like staphylococcal chromosomal cassette mec, lineage-specific genes, or alternative DNA polymorphisms, are indispensable. They should be selected by dependence on the clonal lineage indicated by spa typing and subsequent BURP analysis as well as on the basis of the particular question to be addressed.

Journal ArticleDOI
TL;DR: A set of reverse transcription-PCR assays for the detection and identification of known and novel paramyxoviruses in clinical specimens enhances the ability to look for novel viruses in outbreaks and diseases of unknown etiology.
Abstract: We have developed a set of reverse transcription-PCR assays for the detection and identification of known and novel paramyxoviruses in clinical specimens. Primers were designed from the conserved motifs of the polymerase pol gene sequences to detect members of the Paramyxovirinae or Pneumovirinae subfamily or groups of genera within the Paramyxovirinae subfamily. The consensus-degenerate hybrid oligonucleotide primer design and seminested or nested PCR assay design were used to enhance the breadth of reactivity and sensitivity of the respective assays. Using expressed RNA and 10-fold dilution series of virus-infected tissue culture isolates from different members of the family or genera, these assays were able to detect on average between 100 and 500 copies of template RNA. The assays were specific to the respective group of genera or subfamily viruses. This set of primers enhances our ability to look for novel viruses in outbreaks and diseases of unknown etiology.

Journal ArticleDOI
TL;DR: A highly sensitive and specific LAMP assay for Escherichia coli that does not require DNA extraction and can detect as few as 10 copies is developed.
Abstract: We developed a highly sensitive and specific LAMP assay for Escherichia coli. It does not require DNA extraction and can detect as few as 10 copies. It detected all 36 of 36 E. coli isolates and all 22 urine samples (out of 89 samples tested) that had E. coli. This assay is rapid, low in cost, and simple to perform.

Journal ArticleDOI
TL;DR: The CLSI subcommittee has decided to recommend a “susceptible only” breakpoint MIC of ≤2 μg/ml due to the lack of echinocandin resistance in the population of Candida isolates thus far.
Abstract: The CLSI Antifungal Subcommittee followed the M23-A2 “blueprint” to develop interpretive MIC breakpoints for anidulafungin, caspofungin, and micafungin against Candida species. MICs of ≤2 μg/ml for all three echinocandins encompass 98.8 to 100% of all clinical isolates of Candida spp. without bisecting any species group and represent a concentration that is easily maintained throughout the dosing period. Data from phase III clinical trials demonstrate that the standard dosing regimens for each of these agents may be used to treat infections due to Candida spp. for which MICs are as high as 2 μg/ml. An MIC predictive of resistance to these agents cannot be defined based on the data from clinical trials due to the paucity of isolates for which MICs exceed 2 μg/ml. The clinical data set included only three isolates from patients treated with an echinocandin (caspofungin) for which the MICs were >2 μg/ml (two C. parapsilosis isolates at 4 μg/ml and one C. rugosa isolate at 8 μg/ml). Based on these data, the CLSI subcommittee has decided to recommend a “susceptible only” breakpoint MIC of ≤2 μg/ml due to the lack of echinocandin resistance in the population of Candida isolates thus far. Isolates for which MICs exceed 2 μg/ml should be designated “nonsusceptible” (NS). For strains yielding results suggestive of an NS category, the organism identification and antimicrobial-susceptibility test results should be confirmed. Subsequently, the isolates should be submitted to a reference laboratory that will confirm the results by using a CLSI reference dilution method.

Journal ArticleDOI
TL;DR: Clostridium difficile PCR ribotype 027 comprised 0.2% of a collection of Swedish isolates in 1997-2001 (3 of 1,325 isolates), and one epidemic strain sporulated more than did other type 027 isolates, a feature that should contribute to its survival and spread.
Abstract: Clostridium difficile PCR ribotype 027 comprised 0.2% of a collection of Swedish isolates in 1997-2001 (3 of 1,325 isolates). These isolates had lower moxifloxacin MICs than the epidemic type 027 isolates, but they had the same tcdC sequence and toxin yield. Type 027 produced 3- to 13-fold more toxin than did major Swedish types. One epidemic strain (027/NAP1a) sporulated more than did other type 027 isolates, a feature that should contribute to its survival and spread.

Journal ArticleDOI
TL;DR: This robust test can differentiate in a single step all of the classical Brucella species, including those found in marine mammals and the S19, RB51, and Rev.1 vaccine strains.
Abstract: An evaluation of a multiplex PCR assay (Bruce-ladder) was performed in seven laboratories using 625 Brucella strains from different animal and geographical origins. This robust test can differentiate in a single step all of the classical Brucella species, including those found in marine mammals and the S19, RB51, and Rev.1 vaccine strains.

Journal ArticleDOI
TL;DR: Among the systemically active antifungal agents, the echinocandins appear to be the most active against this important pathogen.
Abstract: Candida krusei is well known as a fungal pathogen for patients with hematologic malignancies and for transplant recipients. Using the ARTEMIS Antifungal Surveillance Program database, we describe geographic and temporal trends in the isolation of C. krusei from clinical specimens and the in vitro susceptibilities of 3,448 isolates to voriconazole as determined by CLSI (formerly NCCLS) disk diffusion testing. In addition, we report the in vitro susceptibilities of bloodstream infection isolates of C. krusei to amphotericin B (304 isolates), flucytosine (254 isolates), anidulafungin (121 isolates), caspofungin (300 isolates), and micafungin (102 isolates) as determined by CLSI broth microdilution methods. Geographic differences in isolation were apparent; the highest frequency of isolation was seen for the Czech Republic (7.6%) and the lowest for Indonesia, South Korea, and Thailand (0 to 0.3%). Overall, 83% of isolates were susceptible to voriconazole, ranging from 74.8% in Latin America to 92.3% in North America. C. krusei was most commonly isolated from hematology-oncology services, where only 76.7% of isolates were susceptible to voriconazole. There was no evidence of increasing resistance of C. krusei to voriconazole from 2001 to 2005. Decreased susceptibilities to amphotericin B (MIC at which 90% of isolates were inhibited [MIC90], 4 μg/ml) and flucytosine (MIC90, 16 μg/ml) were noted, whereas 100% of isolates were inhibited by ≤2 μg/ml of anidulafungin (MIC90, 0.06 μg/ml), micafungin (MIC90, 0.12 μg/ml) or caspofungin (MIC90, 0.25 μg/ml). C. krusei is an uncommon but multidrug-resistant fungal pathogen. Among the systemically active antifungal agents, the echinocandins appear to be the most active against this important pathogen.

Journal ArticleDOI
TL;DR: The phylogenetic analysis based on the gap gene sequences revealed similarities between the dendrograms based on other gene sequences as well as differences, e.g., the grouping of S. arlettae and S. kloosii in the gap-based tree.
Abstract: The analysis of 16S rRNA gene sequences has been the technique generally used to study the evolution and taxonomy of staphylococci. However, the results of this method do not correspond to the results of polyphasic taxonomy, and the related species cannot always be distinguished from each other. Thus, new phylogenetic markers for Staphylococcus spp. are needed. We partially sequenced the gap gene (∼931 bp), which encodes the glyceraldehyde-3-phosphate dehydrogenase, for 27 Staphylococcus species. The partial sequences had 24.3 to 96% interspecies homology and were useful in the identification of staphylococcal species (F. Layer, B. Ghebremedhin, W. Konig, and B. Konig, J. Microbiol. Methods 70:542-549, 2007). The DNA sequence similarities of the partial staphylococcal gap sequences were found to be lower than those of 16S rRNA (∼97%), rpoB (∼86%), hsp60 (∼82%), and sodA (∼78%). Phylogenetically derived trees revealed four statistically supported groups: S. hyicus/S. intermedius, S. sciuri, S. haemolyticus/S. simulans, and S. aureus/epidermidis. The branching of S. auricularis, S. cohnii subsp. cohnii, and the heterogeneous S. saprophyticus group, comprising S. saprophyticus subsp. saprophyticus and S. equorum subsp. equorum, was not reliable. Thus, the phylogenetic analysis based on the gap gene sequences revealed similarities between the dendrograms based on other gene sequences (e.g., the S. hyicus/S. intermedius and S. sciuri groups) as well as differences, e.g., the grouping of S. arlettae and S. kloosii in the gap-based tree. From our results, we propose the partial sequencing of the gap gene as an alternative molecular tool for the taxonomical analysis of Staphylococcus species and for decreasing the possibility of misidentification.

Journal ArticleDOI
TL;DR: In comparison to the sensitivity of toxigenic culture, the sensitivities of the toxin immunoassays were unacceptably low, while the LightCycler real-time PCR assay for the detection of the tcdC gene of C. difficile is sensitive and specific.
Abstract: Received 7 January 2008/Returned for modification 25 February 2008/Accepted 11 April 2008 We have developed a rapid real-time PCR method using fluorescence resonance energy transfer probes and the LightCycler (Roche Diagnostics), which will detect the presence of the tcdC gene of Clostridium difficile in stool samples. Our PCR method also will identify the presence of base pair deletions, one of which (18 bp) has been associated with the “epidemic” toxin-hyperproducing strains. We compared the results of this PCR with those of three C. difficile toxin-detecting enzyme immunoassays (EIAs), an EIA for the detection of glutamate dehydrogenase (GDH), and culture of C. difficile. A total of 200 stool specimens were studied by the methods under comparison. C. difficile was isolated from 49 specimens by culture, and 44 of these were confirmed as containing one of the genes associated with toxin production (“toxigenic culture”). Using toxigenic culture as the “gold standard”, the sensitivities, specificities, and positive and negative predictive values, respectively, of the assays were 48%, 98%, 88%, and 87% for the Premier toxin A and B test; 48%, 99%, 91%, and 87% for the ImmunoCard toxi nAB 48%, 84%, 46%, and 85% for the Xpect C. difficile toxin A/B test; 32%, 100%, 100%, and 84% for the Triage C. difficile panel (for toxin A); and 86%, 97%, 90%, and 96% for the LightCycler PCR. Thus, in comparison to the sensitivity of toxigenic culture, the sensitivities of the toxin immunoassays were unacceptably low, while the LightCycler real-time PCR assay for the detection of the tcdC gene of C. difficile is sensitive and specific.

Journal ArticleDOI
TL;DR: The consecutive emergence of new GII.4 variants is highly indicative of immune-driven selection, and their predominance in health care settings suggests properties that facilitate transmission in settings with a high concentration of people such as higher virus loads in excreta or a higher incidence of vomiting.
Abstract: The Foodborne Viruses in Europe network has developed integrated epidemiological and virological outbreak reporting with aggregation and sharing of data through a joint database. We analyzed data from reported outbreaks of norovirus (NoV)-caused gastroenteritis from 13 European countries (July 2001 to July 2006) for trends in time and indications of different epidemiology of genotypes and variants. Of the 13 countries participating in this surveillance network, 11 were capable of collecting integrated epidemiological and virological surveillance data and 10 countries reported outbreaks throughout the entire period. Large differences in the numbers and rates of reported outbreaks per country were observed, reflecting the differences in the focus and coverage of national surveillance systems. GII.4 strains predominated throughout the 5-year surveillance period, but the proportion of outbreaks associated with GII.4 rose remarkably during years in which NoV activity was particularly high. Spring and summer peaks indicated the emergence of genetically distinct variants within GII.4 across Europe and were followed by increased NoV activity during the 2002-2003 and 2004-2005 winter seasons. GII.4 viruses predominated in health care settings and in person-to-person transmission. The consecutive emergence of new GII.4 variants is highly indicative of immune-driven selection. Their predominance in health care settings suggests properties that facilitate transmission in settings with a high concentration of people such as higher virus loads in excreta or a higher incidence of vomiting. Understanding the mechanisms driving the changes in epidemiology and clinical impact of these rapidly evolving RNA viruses is essential to design effective intervention and prevention measures.

Journal ArticleDOI
TL;DR: Results show that impairment of the gastrointestinal tracts in human immunodeficiency virus (HIV)-positive patients is present in the early phases of HIV disease, and this impairment is associated with alterations in gut microbiota and intestinal inflammatory parameters.
Abstract: Our results show that impairment of the gastrointestinal tracts in human immunodeficiency virus (HIV)-positive patients is present in the early phases of HIV disease. This impairment is associated with alterations in gut microbiota and intestinal inflammatory parameters. These findings support the hypothesis that alterations at the gastrointestinal-tract level are a key factor in HIV pathogenesis.

Journal ArticleDOI
TL;DR: MALDI-TOF-MS is a powerful tool for rapid identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis patients and correct identification for these species increased from 83 to 98% and from 94 to 100% of cases, respectively.
Abstract: The identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis (CF) patients is usually achieved by using phenotype-based techniques and eventually molecular tools. These techniques remain time-consuming, expensive, and technically demanding. We used a method based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) for the identification of these bacteria. A set of reference strains belonging to 58 species of clinically relevant nonfermenting gram-negative bacilli was used. To identify peaks discriminating between these various species, the profile of 10 isolated colonies obtained from 10 different passages was analyzed for each referenced strain. Conserved peaks with a relative intensity greater than 0.1 were retained. The spectra of 559 clinical isolates were then compared to that of each of the 58 reference strains as follows: 400 Pseudomonas aeruginosa, 54 Achromobacter xylosoxidans, 32 Stenotrophomonas maltophilia, 52 Burkholderia cepacia complex (BCC), 1 Burkholderia gladioli, 14 Ralstonia mannitolilytica, 2 Ralstonia pickettii, 1 Bordetella hinzii, 1 Inquilinus limosus, 1 Cupriavidus respiraculi, and 1 Burkholderia thailandensis. Using this database, 549 strains were correctly identified. Nine BCC strains and one R. mannnitolilytica strain were identified as belonging to the appropriate genus but not the correct species. We subsequently engineered BCC- and Ralstonia-specific databases using additional reference strains. Using these databases, correct identification for these species increased from 83 to 98% and from 94 to 100% of cases, respectively. Altogether, these data demonstrate that, in CF patients, MALDI-TOF-MS is a powerful tool for rapid identification of nonfermenting gram-negative bacilli.

Journal ArticleDOI
TL;DR: Based on the morphological, physiologic, and molecular study of 141 isolates of the Pseudallescheria boydii species complex, the new species Scedosporium dehoogii is proposed, a new name for the anamorph of the latter species.
Abstract: Based on the morphological, physiologic, and molecular (β-tubulin gene) study of 141 isolates of the Pseudallescheria boydii species complex (including several synonyms) and relatives, the new species Scedosporium dehoogii is proposed. Scedosporium apiospermum and P. boydii are considered two different species and the new name Scedosporium boydii is proposed for the anamorph of the latter species. A summary of the key morphological and physiological features for distinguishing the species of Pseudallescheria/Scedosporium is provided.

Journal ArticleDOI
TL;DR: The low frequency of detection and lack of clear disease associations indicate that HPeV1 and -6 are not major pathogens in individuals presenting with respiratory disease, however, the screening and typing methods developed will be of value in further H PeV testing.
Abstract: Infections with human parechoviruses (HPeVs) are prevalent in young children and have been associated with mild gastroenteritis and, less frequently, with meningitis and neonatal sepsis. To investigate the involvement of these viruses in respiratory disease, a highly sensitive nested PCR was used to screen a large archive of respiratory specimens, collected between January and December 2007. Respiratory samples had previously been tested for eight respiratory viruses, including respiratory syncytial virus and adenovirus, by PCR. HPeV was detected in 34 of 3,844 specimens, representing 27 of 2,220 study subjects (1.2%). HPeV types were identified by sequencing the VP3/VP1 junction amplified by PCR directly from clinical specimens. The assay could amplify all HPeV types examined with high sensitivity (types 1 and 3 to 6) and also identified HPeV types in all but one of the screen-positive study specimens (25 HPeV1 and eight HPeV6 specimens). Infections with both HPeV1 and HPeV6 were seasonal, with highest frequencies in July and August, and restricted to children aged between 6 months and 5 years. Other respiratory viruses were frequently codetected in HPeV-positive specimens, with significant overrepresentation of adenovirus coinfections (37%). Most HPeV-positive specimens were referred from emergency departments, although no association with specific respiratory symptoms or disease was found. In summary, the low frequency of detection and lack of clear disease associations indicate that HPeV1 and -6 are not major pathogens in individuals presenting with respiratory disease. However, the screening and typing methods developed will be of value in further HPeV testing, including testing for meningitis cases and other suspected HPeV-associated disease presentations.

Journal ArticleDOI
TL;DR: The bacterial profiles of RC showed considerable subject-to-subject variation, indicating that the microbial communities are more complex than previously presumed.
Abstract: Culture-based studies have shown that Streptococcus mutans and lactobacilli are associated with root caries (RC). The purpose of the present study was to assess the bacterial diversity of RC in elderly patients by use of culture-independent molecular techniques and to determine the associations of specific bacterial species or bacterial communities with healthy and carious roots. Plaque was collected from root surfaces of 10 control subjects with no RC and from 11 subjects with RC. The bacterial 16S rRNA genes from extracted DNA were PCR amplified, cloned, and sequenced to determine species identity. From a total of 3,544 clones, 245 predominant species or phylotypes were observed, representing eight bacterial phyla. The majority (54%) of the species detected have not yet been cultivated. Species of Selenomonas and Veillonella were common in all samples. The healthy microbiota included Fusobacterium nucleatum subsp. polymorphum, Leptotrichia spp., Selenomonas noxia, Streptococcus cristatus, and Kingella oralis. Lactobacilli were absent, S. mutans was present in one, and Actinomyces spp. were present in 50% of the controls. In contrast, the microbiota of the RC subjects was dominated by Actinomyces spp., lactobacilli, S. mutans, Enterococcus faecalis, Selenomonas sp. clone CS002, Atopobium and Olsenella spp., Prevotella multisaccharivorax, Pseudoramibacter alactolyticus, and Propionibacterium sp. strain FMA5. The bacterial profiles of RC showed considerable subject-to-subject variation, indicating that the microbial communities are more complex than previously presumed. The data suggest that putative etiological agents of RC include not only S. mutans, lactobacilli, and Actinomyces but also species of Atopobium, Olsenella, Pseudoramibacter, Propionibacterium, and Selenomonas.

Journal ArticleDOI
TL;DR: The species and antifungal susceptibilities of 1,929 invasive clinical isolates from the ARTEMIS antif fungus surveillance program collected between 2001 and 2006 and identified as C. parapsilosis using Vitek and conventional methods were determined.
Abstract: Candida orthopsilosis and Candida metapsilosis are recently described species, having previously been grouped with the more prevalent species Candida parapsilosis. Current literature contains very little data pertaining to the distributions and antifungal susceptibilities of these Candida species. We determined the species and antifungal susceptibilities of 1,929 invasive clinical isolates from the ARTEMIS antifungal surveillance program collected between 2001 and 2006 and identified as C. parapsilosis using Vitek and conventional methods. Of the 1,929 isolates of presumed C. parapsilosis tested, 117 (6.1%) were identified as C. orthopsilosis and 34 (1.8%) as C. metapsilosis. The percentage of presumed C. parapsilosis isolates found to be C. orthopsilosis varied greatly by region, with the highest percentage (10.9%) from South America and the lowest (0.7%) from Africa. The MIC distributions of the C. orthopsilosis and C. metapsilosis isolates were statistically significantly lower than those of C. parapsilosis for all drugs except fluconazole, for which they were significantly higher (P < 0.001 for all). No C. orthopsilosis or C. metapsilosis isolates were fluconazole resistant, and all were susceptible to caspofungin, anidulafungin, and micafungin.

Journal ArticleDOI
TL;DR: Fecal carriage of extended-spectrum-β-lactamase (ESBL)-producing organisms was detected in 70% of index cases of patients with community-acquired infections and in household contacts and was indistinguishable from isolates from household contacts by pulsed-field gel electrophoresis.
Abstract: Fecal carriage of extended-spectrum-β-lactamase (ESBL)-producing organisms was detected in 70% of index cases of patients (n = 40) with community-acquired infections due to ESBL producers and reached 16.7% in household contacts (n = 54). A total of 66% of ESBL-producing organisms from index cases were indistinguishable from isolates from household contacts by pulsed-field gel electrophoresis. Patients with community infections and members of their households represent a reservoir for ESBL producers, increasing dispersal of resistance in healthy people.

Journal ArticleDOI
TL;DR: Overall, the Xpert MRSA assay was rapid and easy to perform, but performance might be enhanced by the inclusion of an equivocal interpretive category based on analysis of all available amplification data.
Abstract: The need for rapid methods to accurately detect methicillin-resistant Staphylococcus aureus (MRSA) is widely acknowledged, and a number of molecular assays are commercially available. This study evaluated the Xpert MRSA assay, which is run on the GeneXpert real-time PCR platform (Cepheid) for use in a clinical laboratory. The following parameters were investigated: (i) the limits of detection (LoDs) for four MRSA strains; (ii) the ability to detect isolates of MRSA from a collection representative of MRSA in Ireland since 1974 (n = 114) and the ability to detect control strains with staphylococcal cassette chromosome mec types IVa (IV.1.1.1), IVb (IV.2.1.1), IVc (IV.3.1.1), IVd (IV.4.1.1), V (V.1.1.1), VT, and VI; and (iii) performance in a clinical trial with swabs from nose, throat, and groin/perineum sites from 204 patients, where results were compared with those obtained by direct and enrichment cultures. The average LoD of the four test strains was 610 CFU/ml (equivalent to 58 CFU/swab). All 114 MRSA isolates and 7 control strains tested were detected. Sensitivity, specificity, and positive and negative predictive values for clinical specimens from all sites investigated were 90%, 97%, 86%, and 98%, respectively, but throat specimens yielded poor sensitivity (75%). Sensitivity, specificity, and positive and negative predictive values for nasal specimens were 95%, 98%, 90%, and 99%, respectively. Overall, the assay was rapid and easy to perform, but performance might be enhanced by the inclusion of an equivocal interpretive category based on analysis of all available amplification data.

Journal ArticleDOI
TL;DR: Within the fecal E. coli populations of women with acute cystitis, pauciclonality, clonal dominance, virulence, and group B2 status are closely intertwined, suggesting a possible reconciliation of the prevalence and special-pathogenicity hypotheses.
Abstract: Previous epidemiological assessments of the prevalence versus special-pathogenicity hypothesis for urinary tract infection (UTI) pathogenesis in women may have been confounded by underlying host population differences between women with UTI and healthy controls and have not considered the clonal complexity of the fecal Escherichia coli population of the host. In the present study, 42 women with acute uncomplicated cystitis served as their own controls for an analysis of the causative E. coli strain and the concurrent intestinal E. coli population. Clonality among the urine isolate and 30 fecal colonies per subject was assessed by repetitive-element PCR and macrorestriction analysis. Each unique clone underwent PCR-based phylotyping and virulence genotyping. Molecular analysis resolved 109 unique clones (4 urine-only, 38 urine-fecal, and 67 fecal-only clones). Urine clones exhibited a significantly higher prevalence of group B2 than fecal-only clones (69% versus 10%; P < 0.001) and higher aggregate virulence scores (mean, 6.2 versus 2.9; P < 0.001). In multilevel regression models for predicting urine clone status, significant positive predictors included group B2, 10 individual virulence traits, the aggregate virulence score, fecal dominance, relative fecal abundance, and (unique to the present study) a pauciclonal fecal sample. In summary, within the fecal E. coli populations of women with acute cystitis, pauciclonality, clonal dominance, virulence, and group B2 status are closely intertwined. Phylogenetic group B2 status and/or associated virulence factors may promote fecal abundance and pauciclonality, thereby contributing to upstream steps in UTI pathogenesis. This relationship suggests a possible reconciliation of the prevalence and special-pathogenicity hypotheses.