scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Clinical Microbiology in 2014"


Journal ArticleDOI
TL;DR: A real-time evaluation of WGS for routine typing and surveillance of verocytotoxin-producing Escherichia coli found whole-genome sequencing typing is a superior alternative to conventional typing strategies and may also be applied to typing and Surveillance of other pathogens.
Abstract: Fast and accurate identification and typing of pathogens are essential for effective surveillance and outbreak detection. The current routine procedure is based on a variety of techniques, making the procedure laborious, time-consuming, and expensive. With whole-genome sequencing (WGS) becoming cheaper, it has huge potential in both diagnostics and routine surveillance. The aim of this study was to perform a real-time evaluation of WGS for routine typing and surveillance of verocytotoxin-producing Escherichia coli (VTEC). In Denmark, the Statens Serum Institut (SSI) routinely receives all suspected VTEC isolates. During a 7-week period in the fall of 2012, all incoming isolates were concurrently subjected to WGS using IonTorrent PGM. Real-time bioinformatics analysis was performed using web-tools (www.genomicepidemiology.org) for species determination, multilocus sequence type (MLST) typing, and determination of phylogenetic relationship, and a specific VirulenceFinder for detection of E. coli virulence genes was developed as part of this study. In total, 46 suspected VTEC isolates were characterized in parallel during the study. VirulenceFinder proved successful in detecting virulence genes included in routine typing, explicitly verocytotoxin 1 (vtx1), verocytotoxin 2 (vtx2), and intimin (eae), and also detected additional virulence genes. VirulenceFinder is also a robust method for assigning verocytotoxin (vtx) subtypes. A real-time clustering of isolates in agreement with the epidemiology was established from WGS, enabling discrimination between sporadic and outbreak isolates. Overall, WGS typing produced results faster and at a lower cost than the current routine. Therefore, WGS typing is a superior alternative to conventional typing strategies. This approach may also be applied to typing and surveillance of other pathogens.

977 citations


Journal ArticleDOI
TL;DR: It is demonstrated that urine contains communities of living bacteria that comprise a resident female urine microbiota that are cultivable using an expanded quantitative urine culture (EQUC) protocol.
Abstract: Our previous study showed that bacterial genomes can be identified using 16S rRNA sequencing in urine specimens of both symptomatic and asymptomatic patients who are culture negative according to standard urine culture protocols. In the present study, we used a modified culture protocol that included plating larger volumes of urine, incubation under varied atmospheric conditions, and prolonged incubation times to demonstrate that many of the organisms identified in urine by 16S rRNA gene sequencing are, in fact, cultivable using an expanded quantitative urine culture (EQUC) protocol. Sixty-five urine specimens (from 41 patients with overactive bladder and 24 controls) were examined using both the standard and EQUC culture techniques. Fifty-two of the 65 urine samples (80%) grew bacterial species using EQUC, while the majority of these (48/52 [92%]) were reported as no growth at 103 CFU/ml by the clinical microbiology laboratory using the standard urine culture protocol. Thirty-five different genera and 85 different species were identified by EQUC. The most prevalent genera isolated were Lactobacillus (15%), followed by Corynebacterium (14.2%), Streptococcus (11.9%), Actinomyces (6.9%), and Staphylococcus (6.9%). Other genera commonly isolated include Aerococcus, Gardnerella, Bifidobacterium, and Actinobaculum. Our current study demonstrates that urine contains communities of living bacteria that comprise a resident female urine microbiota.

621 citations


Journal ArticleDOI
TL;DR: A publicly available bioinformatic tool to overcome the major bottleneck to clinical implementation of WGS directly on clinical samples and to develop easy-to-use bio informatic tools for the analysis of sequencing data was developed.
Abstract: Whole-genome sequencing (WGS) is becoming available as a routine tool for clinical microbiology. If applied directly on clinical samples, this could further reduce diagnostic times and thereby improve control and treatment. A major bottleneck is the availability of fast and reliable bioinformatic tools. This study was conducted to evaluate the applicability of WGS directly on clinical samples and to develop easy-to-use bioinformatic tools for the analysis of sequencing data. Thirty-five random urine samples from patients with suspected urinary tract infections were examined using conventional microbiology, WGS of isolated bacteria, and direct sequencing on pellets from the urine samples. A rapid method for analyzing the sequence data was developed. Bacteria were cultivated from 19 samples but in pure cultures from only 17 samples. WGS improved the identification of the cultivated bacteria, and almost complete agreement was observed between phenotypic and predicted antimicrobial susceptibilities. Complete agreement was observed between species identification, multilocus sequence typing, and phylogenetic relationships for Escherichia coli and Enterococcus faecalis isolates when the results of WGS of cultured isolates and urine samples were directly compared. Sequencing directly from the urine enabled bacterial identification in polymicrobial samples. Additional putative pathogenic strains were observed in some culture-negative samples. WGS directly on clinical samples can provide clinically relevant information and drastically reduce diagnostic times. This may prove very useful, but the need for data analysis is still a hurdle to clinical implementation. To overcome this problem, a publicly available bioinformatic tool was developed in this study.

400 citations


Journal ArticleDOI
TL;DR: Two PEDV isolates are described, successfully obtained from the small intestines of piglets from sow farms in Indiana and Iowa, respectively, which were genetically closely related to each other and were most genetically similar to Chinese strains reported in 2011 to 2012.
Abstract: Porcine epidemic diarrhea virus (PEDV) was detected in May 2013 for the first time in U.S. swine and has since caused significant economic loss. Obtaining a U.S. PEDV isolate that can grow efficiently in cell culture is critical for investigating pathogenesis and developing diagnostic assays and for vaccine development. An additional objective was to determine which gene(s) of PEDV is most suitable for studying the genetic relatedness of the virus. Here we describe two PEDV isolates (ISU13-19338E and ISU13-22038) successfully obtained from the small intestines of piglets from sow farms in Indiana and Iowa, respectively. The two isolates have been serially propagated in cell culture for over 30 passages and were characterized for the first 10 passages. Virus production in cell culture was confirmed by PEDV-specific real-time reverse-transcription PCR (RT-PCR), immunofluorescence assays, and electron microscopy. The infectious titers of the viruses during the first 10 passages ranged from 6 × 102 to 2 × 105 50% tissue culture infective doses (TCID50)/ml. In addition, the full-length genome sequences of six viruses (ISU13-19338E homogenate, P3, and P9; ISU13-22038 homogenate, P3, and P9) were determined. Genetically, the two PEDV isolates were relatively stable during the first 10 passages in cell culture. Sequences were also compared to those of 4 additional U.S. PEDV strains and 23 non-U.S. strains. All U.S. PEDV strains were genetically closely related to each other (≥99.7% nucleotide identity) and were most genetically similar to Chinese strains reported in 2011 to 2012. Phylogenetic analyses using different genes of PEDV suggested that the full-length spike gene or the S1 portion is appropriate for sequencing to study the genetic relatedness of these viruses.

365 citations


Journal ArticleDOI
Wei Wang1, Liping Chen1, Rui Zhou1, Xiaobing Wang1, Lu Song1, Sha Huang1, Ge Wang1, Bing Xia1 
TL;DR: Bifidobacterium and the Lactobacillus group were increased in active IBD patients and should be used more cautiously as probiotics during the active phase of IBD.
Abstract: Dysbiosis in the intestinal microbiota of persons with inflammatory bowel disease (IBD) has been described, but there are still varied reports on changes in the abundance of Bifidobacterium and Lactobacillus organisms in patients with IBD. The aim of this investigation was to compare the compositions of mucosa-associated and fecal bacteria in patients with IBD and in healthy controls (HCs). Fecal and biopsy samples from 21 HCs, 21 and 15 Crohn's disease (CD) patients, and 34 and 29 ulcerative colitis (UC) patients, respectively, were analyzed by quantitative real-time PCR targeting the 16S rRNA gene. The bacterial numbers were transformed into relative percentages for statistical analysis. The proportions of bacteria were uniformly distributed along the colon regardless of the disease state. Bifidobacterium was significantly increased in the biopsy specimens of active UC patients compared to those in the HCs (4.6% versus 2.1%, P = 0.001), and the proportion of Bifidobacterium was significantly higher in the biopsy specimens than in the fecal samples in active CD patients (2.7% versus 2.0%, P = 0.012). The Lactobacillus group was significantly increased in the biopsy specimens of active CD patients compared to those in the HCs (3.4% versus 2.3%, P = 0.036). Compared to the HCs, Faecalibacterium prausnitzii was sharply decreased in both the fecal and biopsy specimens of the active CD patients (0.3% versus 14.0%, P < 0.0001 for fecal samples; 0.8% versus 11.4%, P < 0.0001 for biopsy specimens) and the active UC patients (4.3% versus 14.0%, P = 0.001 for fecal samples; 2.8% versus 11.4%, P < 0.0001 for biopsy specimens). In conclusion, Bifidobacterium and the Lactobacillus group were increased in active IBD patients and should be used more cautiously as probiotics during the active phase of IBD. Butyrate-producing bacteria might be important to gut homeostasis.

332 citations


Journal ArticleDOI
TL;DR: WGS was as sensitive and specific as routine antimicrobial susceptibility testing methods and is a promising alternative to culture methods for resistance prediction in S. aureus and ultimately other major bacterial pathogens.
Abstract: Whole-genome sequencing (WGS) could potentially provide a single platform for extracting all the information required to predict an organism's phenotype. However, its ability to provide accurate predictions has not yet been demonstrated in large independent studies of specific organisms. In this study, we aimed to develop a genotypic prediction method for antimicrobial susceptibilities. The whole genomes of 501 unrelated Staphylococcus aureus isolates were sequenced, and the assembled genomes were interrogated using BLASTn for a panel of known resistance determinants (chromosomal mutations and genes carried on plasmids). Results were compared with phenotypic susceptibility testing for 12 commonly used antimicrobial agents (penicillin, methicillin, erythromycin, clindamycin, tetracycline, ciprofloxacin, vancomycin, trimethoprim, gentamicin, fusidic acid, rifampin, and mupirocin) performed by the routine clinical laboratory. We investigated discrepancies by repeat susceptibility testing and manual inspection of the sequences and used this information to optimize the resistance determinant panel and BLASTn algorithm. We then tested performance of the optimized tool in an independent validation set of 491 unrelated isolates, with phenotypic results obtained in duplicate by automated broth dilution (BD Phoenix) and disc diffusion. In the validation set, the overall sensitivity and specificity of the genomic prediction method were 0.97 (95% confidence interval [95% CI], 0.95 to 0.98) and 0.99 (95% CI, 0.99 to 1), respectively, compared to standard susceptibility testing methods. The very major error rate was 0.5%, and the major error rate was 0.7%. WGS was as sensitive and specific as routine antimicrobial susceptibility testing methods. WGS is a promising alternative to culture methods for resistance prediction in S. aureus and ultimately other major bacterial pathogens.

306 citations


Journal ArticleDOI
TL;DR: There is not enough evidence to endorse synergy testing for routine clinical use, and the four primary methods used to assess synergy, as well as the data that exist for testing of cystic fibrosis are discussed.
Abstract: In this age of emerging antibiotic resistance, limited therapeutic options exist for treating multidrug-resistant organisms. Combination therapy is commonly employed to manage these infections despite little laboratory guidance as to the efficacy of this approach. Synergy testing methods have been used to assess the interaction of antibiotic combinations in vitro. This review will discuss the four primary methods used to assess synergy, as well as the data that exist for testing of cystic fibrosis. In the final analysis, this review concludes that there is not enough evidence to endorse synergy testing for routine clinical use.

294 citations


Journal ArticleDOI
TL;DR: Phylogeographic analysis identified three major dispersions from two geographic locations that were responsible for the GI.6 outbreaks from 2011 to 2013 and demonstrated the cyclic emergence of new (non-GII.4) norovirus strains, and several genotypes are more often associated with food-borne outbreaks.
Abstract: Noroviruses are the leading cause of epidemic acute gastroenteritis in the United States. From September 2009 through August 2013, 3,960 norovirus outbreaks were reported to CaliciNet. Of the 2,895 outbreaks with a known transmission route, person-to-person and food-borne transmissions were reported for 2,425 (83.7%) and 465 (16.1%) of the outbreaks, respectively. A total of 2,475 outbreaks (62.5%) occurred in long-term care facilities (LTCF), 389 (9.8%) in restaurants, and 227 (5.7%) in schools. A total of 435 outbreaks (11%) were typed as genogroup I (GI) and 3,525 (89%) as GII noroviruses. GII.4 viruses caused 2,853 (72%) of all outbreaks, of which 94% typed as either GII.4 New Orleans or GII.4 Sydney. In addition, three non-GII.4 viruses, i.e., GII.12, GII.1, and GI.6, caused 528 (13%) of all outbreaks. Several non-GII.4 genotypes (GI.3, GI.6, GI.7, GII.3, GII.6, and GII.12) were significantly more associated with food-borne transmission (odds ratio, 1.9 to 7.1; P < 0.05). Patients in LTCF and people ≥65 years of age were at higher risk for GII.4 infections than those in other settings and with other genotypes (P < 0.05). Phylogeographic analysis identified three major dispersions from two geographic locations that were responsible for the GI.6 outbreaks from 2011 to 2013. In conclusion, our data demonstrate the cyclic emergence of new (non-GII.4) norovirus strains, and several genotypes are more often associated with food-borne outbreaks. These surveillance data can be used to improve viral food-borne surveillance and to help guide studies to develop and evaluate targeted prevention methods such as norovirus vaccines, antivirals, and environmental decontamination methods.

280 citations


Journal ArticleDOI
TL;DR: In this paper, temporal changes in the airway microbiome before, at the onset of, and after an acute exacerbation were examined in 60 sputum samples collected from subjects enrolled in a longitudinal study of bacterial infection in COPD Microbiome composition and predicted functions were examined using 16S rRNA-based culture-independent profiling methods Shifts in the abundance (≥ 2-fold, P < 005) of many taxa at exacerbation and after treatment were observed Microbiota members that were increased at exacerbations were primarily of the Proteobacteria ph
Abstract: Specific bacterial species are implicated in the pathogenesis of exacerbations of chronic obstructive pulmonary disease (COPD) However, recent studies of clinically stable COPD patients have demonstrated a greater diversity of airway microbiota, whose role in acute exacerbations is unclear In this study, temporal changes in the airway microbiome before, at the onset of, and after an acute exacerbation were examined in 60 sputum samples collected from subjects enrolled in a longitudinal study of bacterial infection in COPD Microbiome composition and predicted functions were examined using 16S rRNA-based culture-independent profiling methods Shifts in the abundance (≥ 2-fold, P < 005) of many taxa at exacerbation and after treatment were observed Microbiota members that were increased at exacerbation were primarily of the Proteobacteria phylum, including nontypical COPD pathogens Changes in the bacterial composition after treatment for an exacerbation differed significantly among the therapy regimens clinically prescribed (antibiotics only, oral corticosteroids only, or both) Treatment with antibiotics alone primarily decreased the abundance of Proteobacteria, with the prolonged suppression of some microbiota members being observed In contrast, treatment with corticosteroids alone led to enrichment for Proteobacteria and members of other phyla Predicted metagenomes of particular microbiota members involved in these compositional shifts indicated exacerbation-associated loss of functions involved in the synthesis of antimicrobial and anti-inflammatory products, alongside enrichment in functions related to pathogen-elicited inflammation These trends reversed upon clinical recovery Further larger studies will be necessary to determine whether specific compositional or functional changes detected in the airway microbiome could be useful indicators of exacerbation development or outcome

265 citations


Journal ArticleDOI
TL;DR: Both multiplex panels demonstrated high sensitivity (>90%) for the majority of targets, with the exception of several pathogens, notably Aeromonas sp.
Abstract: The detection of pathogens associated with gastrointestinal disease may be important in certain patient populations, such as immunocompromised hosts, the critically ill, or individuals with prolonged disease that is refractory to treatment. In this study, we evaluated two commercially available multiplex panels (the FilmArray gastrointestinal [GI] panel [BioFire Diagnostics, Salt Lake City, UT] and the Luminex xTag gastrointestinal pathogen panel [GPP] [Luminex Corporation, Toronto, Canada]) using Cary-Blair stool samples (n = 500) submitted to our laboratory for routine GI testing (e.g., culture, antigen testing, microscopy, and individual real-time PCR). At the time of this study, the prototype (non-FDA-cleared) FilmArray GI panel targeted 23 pathogens (14 bacterial, 5 viral, and 4 parasitic), and testing of 200 μl of Cary-Blair stool was recommended. In contrast, the Luminex GPP assay was FDA cleared for the detection of 11 pathogens (7 bacterial, 2 viral, and 2 parasitic), but had the capacity to identify 4 additional pathogens using a research-use-only protocol. Importantly, the Luminex assay was FDA cleared for 100 μl raw stool; however, 100 μl Cary-Blair stool was tested by the Luminex assay in this study. Among 230 prospectively collected samples, routine testing was positive for one or more GI pathogens in 19 (8.3%) samples, compared to 76 (33.0%) by the FilmArray and 69 (30.3%) by the Luminex assay. Clostridium difficile (12.6 to 13.9% prevalence) and norovirus genogroup I (GI)/GII (5.7 to 13.9% prevalence) were two of the pathogens most commonly detected by both assays among prospective samples. Sapovirus was also commonly detected (5.7% positive rate) by the FilmArray assay. Among 270 additional previously characterized samples, both multiplex panels demonstrated high sensitivity (>90%) for the majority of targets, with the exception of several pathogens, notably Aeromonas sp. (23.8%) by FilmArray and Yersinia enterocolitica (48.1%) by the Luminex assay. Interestingly, the FilmArray and Luminex panels identified mixed infections in 21.1% and 13.0% of positive prospective samples, respectively, compared to only 8.3% by routine methods.

227 citations


Journal ArticleDOI
TL;DR: Five methods for whole-genome sequence-based prokaryotic species identification on a common data set of complete genomes are trained and benchmarked and the KmerFinder method had the overall highest accuracy.
Abstract: One of the first issues that emerges when a prokaryotic organism of interest is encountered is the question of what it is--that is, which species it is The 16S rRNA gene formed the basis of the first method for sequence-based taxonomy and has had a tremendous impact on the field of microbiology Nevertheless, the method has been found to have a number of shortcomings In the current study, we trained and benchmarked five methods for whole-genome sequence-based prokaryotic species identification on a common data set of complete genomes: (i) SpeciesFinder, which is based on the complete 16S rRNA gene; (ii) Reads2Type that searches for species-specific 50-mers in either the 16S rRNA gene or the gyrB gene (for the Enterobacteraceae family); (iii) the ribosomal multilocus sequence typing (rMLST) method that samples up to 53 ribosomal genes; (iv) TaxonomyFinder, which is based on species-specific functional protein domain profiles; and finally (v) KmerFinder, which examines the number of cooccurring k-mers (substrings of k nucleotides in DNA sequence data) The performances of the methods were subsequently evaluated on three data sets of short sequence reads or draft genomes from public databases In total, the evaluation sets constituted sequence data from more than 11,000 isolates covering 159 genera and 243 species Our results indicate that methods that sample only chromosomal, core genes have difficulties in distinguishing closely related species which only recently diverged The KmerFinder method had the overall highest accuracy and correctly identified from 93% to 97% of the isolates in the evaluations sets

Journal ArticleDOI
TL;DR: The cohabitation of healthy and diseased fish demonstrated that the disease is contagious and that mortalities occur within a few days, suggesting the mounting of a protective immune response.
Abstract: Tilapines are important for the sustainability of ecological systems and serve as the second most important group of farmed fish worldwide. Significant mortality of wild and cultured tilapia has been observed recently in Israel. The etiological agent of this disease, a novel RNA virus, is described here, and procedures allowing its isolation and detection are revealed. The virus, denominated tilapia lake virus (TiLV), was propagated in primary tilapia brain cells or in an E-11 cell line, and it induced a cytopathic effect at 5 to 10 days postinfection. Electron microscopy revealed enveloped icosahedral particles of 55 to 75 nm. Low-passage TiLV, injected intraperitoneally in tilapia, induced a disease resembling the natural disease, which typically presents with lethargy, ocular alterations, and skin erosions, with >80% mortality. Histological changes included congestion of the internal organs (kidneys and brain) with foci of gliosis and perivascular cuffing of lymphocytes in the brain cortex; ocular inflammation included endophthalmitis and cataractous changes of the lens. The cohabitation of healthy and diseased fish demonstrated that the disease is contagious and that mortalities (80 to 100%) occur within a few days. Fish surviving the initial mortality were immune to further TiLV infections, suggesting the mounting of a protective immune response. Screening cDNA libraries identified a TiLV-specific sequence, allowing the design of a PCR-based diagnostic test. This test enables the specific identification of TiLV in tilapines and should help control the spread of this virus worldwide.

Journal ArticleDOI
TL;DR: In this paper, a whole-genome sequencing (WGS) was applied retrospectively to an unusual spike in MRSA cases in two intensive care units (ICUs) over the course of four weeks.
Abstract: Multidrug-resistant nosocomial pathogens present a major burden for hospitals. Rapid cluster identification and pathogen profiling, i.e., of antibiotic resistance and virulence genes, are crucial for effective infection control. Methicillin-resistant Staphylococcus aureus (MRSA), in particular, is now one of the leading causes of nosocomial infections. In this study, whole-genome sequencing (WGS) was applied retrospectively to an unusual spike in MRSA cases in two intensive care units (ICUs) over the course of 4 weeks. While the epidemiological investigation concluded that there were two separate clusters, each associated with one ICU, S. aureus protein A gene (spa) typing data suggested that they belonged to single clonal cluster (all cases shared spa type t001). Standardized gene sets were used to extract an allele-based profile for typing and an antibiotic resistance and toxin gene profile. The WGS results produced high-resolution allelic profiles, which were used to discriminate the MRSA clusters, corroborating the epidemiological investigation and identifying previously unsuspected transmission events. The antibiotic resistance profile was in agreement with the original clinical laboratory susceptibility profile, and the toxin profile provided additional, previously unknown information. WGS coupled with allelic profiling provided a high-resolution method that can be implemented as regular screening for effective infection control.

Journal ArticleDOI
TL;DR: Established and novel diagnostic methods for IPA are evaluated and it is found that the Aspergillus PCR, LFD, and GM tests were the most useful methods for diagnosing the disease by using BAL fluid samples.
Abstract: Galactomannan detection in bronchoalveolar lavage (BAL) fluid samples (GM test) is currently considered the gold standard test for diagnosing invasive pulmonary aspergillosis (IPA). The limitations, however, are the various turnaround times and availability of testing. We compared the performance of GM testing with that of conventional culture, an Aspergillus lateral-flow-device (LFD) test, a beta-d-glucan (BDG) test, and an Aspergillus PCR assay by using BAL fluid samples from immunocompromised patients. A total of 78 BAL fluid samples from 78 patients at risk for IPA (74 samples from Graz and 4 from Mannheim) collected between December 2012 and May 2013 at two university hospitals in Austria and Germany were included. Three patients had proven IPA, 14 probable IPA, and 17 possible IPA, and 44 patients had no IPA. The diagnostic accuracies of the different methods for probable/proven IPA were evaluated. The diagnostic odds ratios were the highest for the GM, PCR, and LFD tests. The sensitivities for the four methods (except culture) were between 70 and 88%. The combination of the GM (cutoff optical density index [ODI], >1.0) and LFD tests increased the sensitivity to 94%, while the combination of the GM test (>1.0) and PCR resulted in 100% sensitivity (specificity for probable/proven IPA, 95 to 98%). The performance of conventional culture was limited by low sensitivity, while that of the BDG test was limited by low specificity. We evaluated established and novel diagnostic methods for IPA and found that the Aspergillus PCR, LFD, and GM tests were the most useful methods for diagnosing the disease by using BAL fluid samples. In particular, the combination of the GM test and PCR or, if PCR is not available, the LFD test, allows for sensitive and specific diagnosis of IPA.

Journal ArticleDOI
TL;DR: A very sensitive and specific high-throughput high-volume qPCR method for the detection of low-density parasitemias (>20 parasites/ml) was developed and validated.
Abstract: The epidemiology of malaria in "low-transmission" areas has been underestimated. Molecular detection methods have revealed higher prevalences of malaria than conventional microscopy or rapid diagnostic tests, but these typically evaluate finger-prick capillary blood samples (∼5 μl) and therefore cannot detect parasite densities of 20 parasites/ml) was developed and validated.

Journal ArticleDOI
TL;DR: The GeneXpert MTB/RIF test is a rapid and specific test for the diagnosis of tuberculous meningitis and represents a significant advance in the early diagnosis of this devastating condition.
Abstract: Tuberculous meningitis (TBM) is the most severe form of tuberculosis. Microbiological confirmation is rare, and treatment is often delayed, increasing mortality and morbidity. The GeneXpert MTB/RIF test was evaluated in a large cohort of patients with suspected tuberculous meningitis. Three hundred seventy-nine patients presenting with suspected tuberculous meningitis to the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam, between 17 April 2011 and 31 December 2012 were included in the study. Cerebrospinal fluid samples were tested by Ziehl-Neelsen smear, mycobacterial growth indicator tube (MGIT) culture, and Xpert MTB/RIF. Rifampin (RIF) resistance results by Xpert were confirmed by an MTBDR-Plus line probe assay and all positive cultures were tested by phenotypic MGIT drug susceptibility testing. Overall, 182/379 included patients (48.0%) were diagnosed with tuberculous meningitis. Sensitivities of Xpert, smear, and MGIT culture among patients diagnosed with TBM were 59.3% (108/182 [95% confidence interval {CI}, 51.8 to 66.5%]), 78.6% (143/182 [95% CI, 71.9 to 84.3%]) and 66.5% (121/182 [95% CI, 59.1 to 73.3%]), respectively. There was one false-positive Xpert MTB/RIF test (99.5% specificity). Four cases of RIF resistance (4/109; 3.7%) were identified by Xpert, of which 3 were confirmed to be multidrug-resistant (MDR) TBM and one was culture negative. Xpert MTB/RIF is a rapid and specific test for the diagnosis of tuberculous meningitis. The addition of a vortexing step to sample processing increased sensitivity for confirmed TBM by 20% (P = 0.04). Meticulous examination of a smear from a large volume of cerebrospinal fluid (CSF) remains the most sensitive technique but is not practical in most laboratories. The Xpert MTB/RIF represents a significant advance in the early diagnosis of this devastating condition.

Journal ArticleDOI
TL;DR: A core genome multilocus sequence typing (cgMLST) scheme for clinical MTBC isolates is developed using the Ridom SeqSphere+ software, which enables standardized WGS genotyping for epidemiological investigations and the creation of web-accessible databases for global TB surveillance with an integrated early warning system.
Abstract: Whole-genome sequencing (WGS) allows for effective tracing of Mycobacterium tuberculosis complex (MTBC) (tuberculosis pathogens) transmission. However, it is difficult to standardize and, therefore, is not yet employed for interlaboratory prospective surveillance. To allow its widespread application, solutions for data standardization and storage in an easily expandable database are urgently needed. To address this question, we developed a core genome multilocus sequence typing (cgMLST) scheme for clinical MTBC isolates using the Ridom SeqSphere(+) software, which transfers the genome-wide single nucleotide polymorphism (SNP) diversity into an allele numbering system that is standardized, portable, and not computationally intensive. To test its performance, we performed WGS analysis of 26 isolates with identical IS6110 DNA fingerprints and spoligotyping patterns from a longitudinal outbreak in the federal state of Hamburg, Germany (notified between 2001 and 2010). The cgMLST approach (3,041 genes) discriminated the 26 strains with a resolution comparable to that of SNP-based WGS typing (one major cluster of 22 identical or closely related and four outlier isolates with at least 97 distinct SNPs or 63 allelic variants). Resulting tree topologies are highly congruent and grouped the isolates in both cases analogously. Our data show that SNP- and cgMLST-based WGS analyses facilitate high-resolution discrimination of longitudinal MTBC outbreaks. cgMLST allows for a meaningful epidemiological interpretation of the WGS genotyping data. It enables standardized WGS genotyping for epidemiological investigations, e.g., on the regional public health office level, and the creation of web-accessible databases for global TB surveillance with an integrated early warning system.

Journal ArticleDOI
TL;DR: A single multiplex PCR assay targeting seven virulence factors and the wzi gene specific for the K1 and K2 capsular serotypes of Klebsiella pneumoniae was developed and tested on 65 clinical isolates, which included 45 isolates responsible for community-acquired severe human infections.
Abstract: A single multiplex PCR assay targeting seven virulence factors and the wzi gene specific for the K1 and K2 capsular serotypes of Klebsiella pneumoniae was developed and tested on 65 clinical isolates, which included 45 isolates responsible for community-acquired severe human infections. The assay is useful for the surveillance of emerging highly virulent strains.

Journal ArticleDOI
TL;DR: This minireview describes canonical approaches for the detection of pathogenic intestinal protozoa, while highlighting recent developments and FDA-approved tools for clinical diagnosis of common intestinal protZoa.
Abstract: Despite recent advances in diagnostic technology, microscopic examination of stool specimens remains central to the diagnosis of most pathogenic intestinal protozoa. Microscopy is, however, labor-intensive and requires a skilled technologist. New, highly sensitive diagnostic methods have been developed for protozoa endemic to developed countries, including Giardia lamblia (syn. G. intestinalis/G. duodenalis) and Cryptosporidium spp., using technologies that, if expanded, could effectively complement or even replace microscopic approaches. To date, the scope of such novel technologies is limited and may not include common protozoa such as Dientamoeba fragilis, Entamoeba histolytica, or Cyclospora cayetanensis. This minireview describes canonical approaches for the detection of pathogenic intestinal protozoa, while highlighting recent developments and FDA-approved tools for clinical diagnosis of common intestinal protozoa.

Journal ArticleDOI
TL;DR: The higher severity that characterizes advanced COPD is paralleled by a decrease in the diversity of the bronchial microbiome, with a loss of part of the resident flora that is replaced by a more restricted microbiota that includes PPMs.
Abstract: Bronchial colonization by potentially pathogenic microorganisms (PPMs) is often demonstrated in chronic obstructive pulmonary disease (COPD), but culture-based techniques identify only a portion of the bacteria in mucosal surfaces. The aim of the study was to determine changes in the bronchial microbiome of COPD associated with the severity of the disease. The bronchial microbiome of COPD patients was analyzed by 16S rRNA gene amplification and pyrosequencing in sputum samples obtained during stable disease. Seventeen COPD patients were studied (forced expiratory volume in the first second expressed as a percentage of the forced vital capacity [FEV1%] median, 35.0%; interquartile range [IQR], 31.5 to 52.0), providing a mean of 4,493 (standard deviation [SD], 2,598) sequences corresponding to 47 operational taxonomic units (OTUs) (SD, 17) at a 97% identity level. Patients were dichotomized according to their lung function as moderate to severe when their FEV1% values were over the median and as advanced when FEV1% values were lower. The most prevalent phyla in sputum were Proteobacteria (44%) and Firmicutes (16%), followed by Actinobacteria (13%). A greater microbial diversity was found in patients with moderate-to-severe disease, and alpha diversity showed a statistically significant decrease in patients with advanced disease when assessed by Shannon (ρ = 0.528; P = 0.029, Spearman correlation coefficient) and Chao1 (ρ = 0.53; P = 0.028, Spearman correlation coefficient) alpha-diversity indexes. The higher severity that characterizes advanced COPD is paralleled by a decrease in the diversity of the bronchial microbiome, with a loss of part of the resident flora that is replaced by a more restricted microbiota that includes PPMs.

Journal ArticleDOI
TL;DR: Two real-time reverse transcription-PCR assays targeting the MERS-CoV nucleocapsid (N) gene were developed and evaluated as a panel with a previously published assay targeting the region upstream of the MSPV envelope gene (upE) for the detection and confirmation of MERS -CoV infection.
Abstract: A new human coronavirus (CoV), subsequently named Middle East respiratory syndrome (MERS)-CoV, was first reported in Saudi Arabia in September 2012. In response, we developed two real-time reverse transcription-PCR (rRT-PCR) assays targeting the MERS-CoV nucleocapsid (N) gene and evaluated these assays as a panel with a previously published assay targeting the region upstream of the MERS-CoV envelope gene (upE) for the detection and confirmation of MERS-CoV infection. All assays detected ≤10 copies/reaction of quantified RNA transcripts, with a linear dynamic range of 8 log units and 1.3 × 10(-3) 50% tissue culture infective doses (TCID50)/ml of cultured MERS-CoV per reaction. All assays performed comparably with respiratory, serum, and stool specimens spiked with cultured virus. No false-positive amplifications were obtained with other human coronaviruses or common respiratory viral pathogens or with 336 diverse clinical specimens from non-MERS-CoV cases; specimens from two confirmed MERS-CoV cases were positive with all assay signatures. In June 2012, the U.S. Food and Drug Administration authorized emergency use of the rRT-PCR assay panel as an in vitro diagnostic test for MERS-CoV. A kit consisting of the three assay signatures and a positive control was assembled and distributed to public health laboratories in the United States and internationally to support MERS-CoV surveillance and public health responses.

Journal ArticleDOI
TL;DR: Evaluated spa typing of methicillin-resistant Staphylococcus aureus isolates from new MRSA patients in Denmark found a 97% agreement between spa types obtained by the two methods, showing that WGS is a reliable method to determine the spa type of MRSA.
Abstract: spa typing of methicillin-resistant Staphylococcus aureus (MRSA) has traditionally been done by PCR amplification and Sanger sequencing of the spa repeat region. At Hvidovre Hospital, Denmark, whole-genome sequencing (WGS) of all MRSA isolates has been performed routinely since January 2013, and an in-house analysis pipeline determines the spa types. Due to national surveillance, all MRSA isolates are sent to Statens Serum Institut, where the spa type is determined by PCR and Sanger sequencing. The purpose of this study was to evaluate the reliability of the spa types obtained by 150-bp paired-end Illumina WGS. MRSA isolates from new MRSA patients in 2013 (n = 699) in the capital region of Denmark were included. We found a 97% agreement between spa types obtained by the two methods. All isolates achieved a spa type by both methods. Nineteen isolates differed in spa types by the two methods, in most cases due to the lack of 24-bp repeats in the whole-genome-sequenced isolates. These related but incorrect spa types should have no consequence in outbreak investigations, since all epidemiologically linked isolates, regardless of spa type, will be included in the single nucleotide polymorphism (SNP) analysis. This will reveal the close relatedness of the spa types. In conclusion, our data show that WGS is a reliable method to determine the spa type of MRSA.

Journal ArticleDOI
TL;DR: A prospective multicenter study to assess the contributions of 16S rRNA gene assays in PJI diagnosis showed a lack of sensitivity in the diagnosis of PJI on a multicenter routine basis.
Abstract: There is no standard method for the diagnosis of prosthetic joint infection (PJI). The contribution of 16S rRNA gene PCR sequencing on a routine basis remains to be defined. We performed a prospective multicenter study to assess the contributions of 16S rRNA gene assays in PJI diagnosis. Over a 2-year period, all patients suspected to have PJIs and a few uninfected patients undergoing primary arthroplasty (control group) were included. Five perioperative samples per patient were collected for culture and 16S rRNA gene PCR sequencing and one for histological examination. Three multicenter quality control assays were performed with both DNA extracts and crushed samples. The diagnosis of PJI was based on clinical, bacteriological, and histological criteria, according to Infectious Diseases Society of America guidelines. A molecular diagnosis was modeled on the bacteriological criterion (≥ 1 positive sample for strict pathogens and ≥ 2 for commensal skin flora). Molecular data were analyzed according to the diagnosis of PJI. Between December 2010 and March 2012, 264 suspected cases of PJI and 35 control cases were included. PJI was confirmed in 215/264 suspected cases, 192 (89%) with a bacteriological criterion. The PJIs were monomicrobial (163 cases [85%]; staphylococci, n = 108; streptococci, n = 22; Gram-negative bacilli, n = 16; anaerobes, n = 13; others, n = 4) or polymicrobial (29 cases [15%]). The molecular diagnosis was positive in 151/215 confirmed cases of PJI (143 cases with bacteriological PJI documentation and 8 treated cases without bacteriological documentation) and in 2/49 cases without confirmed PJI (sensitivity, 73.3%; specificity, 95.5%). The 16S rRNA gene PCR assay showed a lack of sensitivity in the diagnosis of PJI on a multicenter routine basis.

Journal ArticleDOI
TL;DR: This study establishes a correlation between the mutations and the MICs of RIF and, also, RFB in M. tuberculosis and identifies several rpoB mutations identified in RIF- and RFB-susceptible isolates.
Abstract: Resistance to rifampin (RIF) and rifabutin (RFB) in Mycobacterium tuberculosis is associated with mutations within an 81-bp region of the rpoB gene (RIF resistance-determining region [RRDR]). Previous studies have shown that certain mutations in this region are more likely to confer high levels of RIF resistance, while others may be found in phenotypically susceptible isolates. In this study, we sought to determine the relationship between the MICs of RIF and RFB and rpoB RRDR mutations in 32 multidrug-resistant (MDR), 4 RIF-monoresistant, and 5 susceptible M. tuberculosis clinical isolates. The MICs were determined using the MGIT 960 system. Mutations in the rpoB RRDR were determined by Sanger sequencing. RpoB proteins with mutations S531L (a change of S to L at position 531), S531W, H526Y, and H526D and the double mutation D516A-R529Q were associated with high MICs for RIF and RFB. Five isolates carrying the mutations L511P, H526L, H526N, and D516G-S522L were found to be susceptible to RIF. Several mutations were associated with resistance to RIF and susceptibility to RFB (F514FF, D516V, and S522L). Whole-genome sequencing of two MDR isolates without rpoB RRDR mutations revealed a mutation outside the RRDR (V146F; RIF MIC of 50 μg/ml). The implications of the polymorphisms identified in the second of these isolates in RIF resistance need to be further explored. Our study further establishes a correlation between the mutations and the MICs of RIF and, also, RFB in M. tuberculosis. Several rpoB mutations were identified in RIF- and RFB-susceptible isolates. The clinical significance of these findings requires further exploration. Until then, a combination of phenotypic and molecular testing is advisable for drug susceptibility testing.

Journal ArticleDOI
TL;DR: In this article, the authors determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria.
Abstract: In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD.

Journal ArticleDOI
TL;DR: A new integrated specimen preparation technology is described that substantially improves the sensitivity of PCR/ESI-MS analysis and has the potential to provide rapid detection and identification of organisms responsible for bloodstream infections.
Abstract: The rapid identification of bacteria and fungi directly from the blood of patients with suspected bloodstream infections aids in diagnosis and guides treatment decisions. The development of an automated, rapid, and sensitive molecular technology capable of detecting the diverse agents of such infections at low titers has been challenging, due in part to the high background of genomic DNA in blood. PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) allows for the rapid and accurate identification of microorganisms but with a sensitivity of about 50% compared to that of culture when using 1-ml whole-blood specimens. Here, we describe a new integrated specimen preparation technology that substantially improves the sensitivity of PCR/ESI-MS analysis. An efficient lysis method and automated DNA purification system were designed for processing 5 ml of whole blood. In addition, PCR amplification formulations were optimized to tolerate high levels of human DNA. An analysis of 331 specimens collected from patients with suspected bloodstream infections resulted in 35 PCR/ESI-MS-positive specimens (10.6%) compared to 18 positive by culture (5.4%). PCR/ESI-MS was 83% sensitive and 94% specific compared to culture. Replicate PCR/ESI-MS testing from a second aliquot of the PCR/ESI-MS-positive/culture-negative specimens corroborated the initial findings in most cases, resulting in increased sensitivity (91%) and specificity (99%) when confirmed detections were considered true positives. The integrated solution described here has the potential to provide rapid detection and identification of organisms responsible for bloodstream infections.

Journal ArticleDOI
TL;DR: The results showed that two of the three modern Beijing strains were highly pathogenic, exhibiting levels of virulence comparable with that of the epidemic Russian strain, and suggest that genetic alterations characteristic of the modern Beijing sublineage favor selection of highly virulent bacteria.
Abstract: Strains of the Beijing genotype family of Mycobacterium tuberculosis are a cause of particular concern because of their increasing dissemination in the world and their association with drug resistance. Phylogenetically, this family includes distinct ancient and modern sublineages. The modern strains, contrary to the ancestral counterparts, demonstrated increasing prevalence in many world regions that suggest an enhanced bacterial pathogenicity. We therefore evaluated virulence of modern versus ancient Beijing strains with similar epidemiological and genotype characteristics. For this, we selected six strains that had very similar 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing profiles and belonged to the region of difference 181 (RD181) subgroup but differed using markers (mutT2 and mutT4 genes and NTF locus) that discriminate between modern and ancient Beijing sublineages. The strains were isolated from native patients in Brazil and Mozambique, countries with a low prevalence of Beijing strains. The virulence levels of these strains were determined in models of pulmonary infection in mice and in vitro macrophage infection and compared with that of a strain from Russia, part of the epidemic and hypervirulent Beijing clone B0/W148, and of the laboratory strain H37Rv. The results showed that two of the three modern Beijing strains were highly pathogenic, exhibiting levels of virulence comparable with that of the epidemic Russian strain. In contrast, all isolates of the ancient sublineage displayed intermediate or low virulence. The data obtained demonstrate that the strains of the modern Beijing sublineage are more likely to exhibit highly virulent phenotypes than ancient strains and suggest that genetic alterations characteristic of the modern Beijing sublineage favor selection of highly virulent bacteria.

Journal ArticleDOI
TL;DR: The newly designed CarbAcineto NP test, which is rapid and reproducible, detects all types of carbapenemases with a sensitivity of 94.7% and a specificity of 100%.
Abstract: Multidrug-resistant Acinetobacter baumannii isolates, particularly those that produce carbapenemases, are increasingly reported worldwide. The biochemically based Carba NP test, extensively validated for the detection of carbapenemase producers among Enterobacteriaceae and Pseudomonas spp., has been modified to detect carbapenemase production in Acinetobacter spp. A collection of 151 carbapenemase-producing and 69 non-carbapenemase-producing Acinetobacter spp. were tested using the Carba NP test and a modified Carba NP protocol (the CarbAcineto NP test) in this study. The CarbAcineto NP test requires modified lysis conditions and an increased bacterial inoculum compared to those of the original Carba NP test. The Carba NP test detects metallo-β-lactamase producers but failed to detect the production of other carbapenemase types among Acinetobacter spp. In contrast, the newly designed CarbAcineto NP test, which is rapid and reproducible, detects all types of carbapenemases with a sensitivity of 94.7% and a specificity of 100%. This cost-effective technique offers a reliable and affordable technique for identifying carbapenemase production in Acinetobacter spp., which is a marker of multidrug resistance in those species. Its use will facilitate the recognition of these carbapenemases and prevent their spread.

Journal ArticleDOI
TL;DR: Rothia spp.
Abstract: Rothia spp. are Gram-positive cocco-bacilli that cause a wide range of serious infections, especially in immunocompromised hosts. Risk factors for Rothia mucilaginosa (previously known as Stomatococcus mucilaginosus) bacteremia include prolonged and profound neutropenia, malignancy, and an indwelling vascular foreign body. Here, we describe 67 adults at the Mayo Clinic in Rochester, MN, from 2002 to 2012 with blood cultures positive for Rothia. Twenty-five of these patients had multiple positive blood cultures, indicating true clinical infection. Among these, 88% (22/25) were neutropenic, and 76% (19/25) had leukemia. Common sources of bacteremia were presumed gut translocation, mucositis, and catheter-related infection. One patient died with Rothia infection. Neutropenic patients were less likely to have a single positive blood culture than were nonneutropenic patients. Antimicrobial susceptibility testing was performed on 21% of the isolates. All of the tested isolates were susceptible to vancomycin and most beta-lactams; however, four of six tested isolates were resistant to oxacillin. There was no difference between the neutropenic and nonneutropenic patients in need of intensive care unit care, mortality, or attributable mortality.

Journal ArticleDOI
TL;DR: This pilot study provides a proof of principle for disease monitoring using personal metagenomic sequencing and traditional clinical microbiology by focusing on three adults with cystic fibrosis, revealing a significant amount of species diversity not seen in routine clinical laboratory cultures.
Abstract: As DNA sequencing becomes faster and cheaper, genomics-based approaches are being explored for their use in personalized diagnoses and treatments. Here, we provide a proof of principle for disease monitoring using personal metagenomic sequencing and traditional clinical microbiology by focusing on three adults with cystic fibrosis (CF). The CF lung is a dynamic environment that hosts a complex ecosystem composed of bacteria, viruses, and fungi that can vary in space and time. Not surprisingly, the microbiome data from the induced sputum samples we collected revealed a significant amount of species diversity not seen in routine clinical laboratory cultures. The relative abundances of several species changed as clinical treatment was altered, enabling the identification of the climax and attack communities that were proposed in an earlier work. All patient microbiomes encoded a diversity of mechanisms to resist antibiotics, consistent with the characteristics of multidrug-resistant microbial communities that are commonly observed in CF patients. The metabolic potentials of these communities differed by the health status and recovery route of each patient. Thus, this pilot study provides an example of how metagenomic data might be used with clinical assessments for the development of treatments tailored to individual patients.