scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Clinical Microbiology in 2021"


Journal ArticleDOI
TL;DR: In this paper, the authors systematically searched PubMed, Google Scholar, medRxiv, and bioRXiv (last retrieval 1 October 2020) for comparative studies of alternative sample types (saliva, oropharyngeal [OP], and nasal [NS] swabs) versus NP swabs for SARS-CoV-2 diagnosis using nucleic acid amplification testing (NAAT).
Abstract: Nasopharyngeal (NP) swabs are considered the highest-yield sample for diagnostic testing for respiratory viruses, including SARS-CoV-2. The need to increase capacity for SARS-CoV-2 testing in a variety of settings, combined with shortages of sample collection supplies, have motivated a search for alternative sample types with high sensitivity. We systematically reviewed the literature to understand the performance of alternative sample types compared to NP swabs. We systematically searched PubMed, Google Scholar, medRxiv, and bioRxiv (last retrieval 1 October 2020) for comparative studies of alternative specimen types (saliva, oropharyngeal [OP], and nasal [NS] swabs) versus NP swabs for SARS-CoV-2 diagnosis using nucleic acid amplification testing (NAAT). A logistic-normal random-effects meta-analysis was performed to calculate % positive alternative-specimen, % positive NP, and % dual positives overall and in subgroups. The QUADAS 2 tool was used to assess bias. From 1,253 unique citations, we identified 25 saliva, 11 NS, 6 OP, and 4 OP/NS studies meeting inclusion criteria. Three specimen types captured lower % positives (NS [82%, 95% CI: 73 to 90%], OP [84%, 95% CI: 57 to 100%], and saliva [88%, 95% CI: 81 to 93%]) than NP swabs, while combined OP/NS matched NP performance (97%, 95% CI: 90 to 100%). Absence of RNA extraction (saliva) and utilization of a more sensitive NAAT (NS) substantially decreased alternative-specimen yield of positive samples. NP swabs remain the gold standard for diagnosis of SARS-CoV-2, although alternative specimens are promising. Much remains unknown about the impact of variations in specimen collection, processing protocols, and population (pediatric versus adult, late versus early in disease course), such that head-to head studies of sampling strategies are urgently needed.

184 citations


Journal ArticleDOI
TL;DR: In the 31st edition of the Performance Standards for Antimicrobial Susceptibility Testing (M100) as mentioned in this paper, several new and revised breakpoints and testing recommendations were discussed.
Abstract: The Clinical and Laboratory Standards Institute (CLSI) Subcommittee on Antimicrobial Susceptibility Testing (AST) develops and publishes standards and guidelines for AST methods and results interpretation in an annual update to the Performance Standards for Antimicrobial Susceptibility Testing (M100). This minireview will discuss changes to M100 for the 31st edition, including new and revised breakpoints and testing recommendations. New MIC and disk diffusion breakpoints are described for azithromycin (Shigella spp.), imipenem-relebactam (Enterobacterales, Pseudomonas aeruginosa, and anaerobes), and lefamulin (Staphylococcus aureus, Haemophilus influenzae, and Streptococcus pneumoniae), and disk breakpoints are described for azithromycin and Neisseria gonorrhoeae. The rationale behind revised oxacillin MIC breakpoints for select staphylococci is discussed. Updates to test methods include a method for disk diffusion using positive blood culture broth and use of linezolid to predict tedizolid susceptibility. There is clarification on which drugs to suppress on bacteria isolated from the cerebrospinal fluid and clarification on the use of a caret symbol attached to the intermediate category ("I^") to indicate those antimicrobials that concentrate in the urine.

171 citations


Journal ArticleDOI
TL;DR: The diagnostic accuracy of five commercially available EIAs (Abbott, Euroimmun, EDI, ImmunoDiagnostics, and Roche) for detection of IgG or total antibodies to SARS-CoV-2 and neutralizing antibodies (nAbs) was evaluated.
Abstract: Accurate serological assays to detect antibodies to SARS-CoV-2 are needed to characterize the epidemiology of SARS-CoV-2 infection and identify potential candidates for COVID-19 convalescent plasma (CCP) donation. This study compared the performance of commercial enzyme immunoassays (EIAs) to detect IgG or total antibodies to SARS-CoV-2 and neutralizing antibodies (nAb). The diagnostic accuracy of five commercially available EIAs (Abbott, Euroimmun, EDI, ImmunoDiagnostics, and Roche) to detect IgG or total antibodies to SARS-CoV-2 was evaluated from cross-sectional samples of potential CCP donors that had prior molecular confirmation of SARS-CoV-2 infection (n=214) and pre-pandemic emergency department patients without SARS-CoV-2 infection (n=1,099). Of the 214 potential CCP donors, all were sampled >14 days since symptom onset and only a minority had been hospitalized due to COVID-19 (n=16 [7.5%]); 140 potential CCP donors were tested by all five EIAs and a microneutralization assay. When performed according to the manufacturers' protocol to detect IgG or total antibodies to SARS-CoV-2, the sensitivity of each EIA ranged from 76.4% to 93.9%, and the specificity of each EIA ranged from 87.0% to 99.6%. Using a nAb titer cutoff of ≥160 as the reference positive test (n=140 CCP donors), the empirical area under receiver operating curve of each EIA ranged from 0.66 (Roche) to 0.90 (Euroimmun). Commercial EIAs with high diagnostic accuracy to detect SARS-CoV-2 antibodies did not necessarily have high diagnostic accuracy to detect high nAbs. Some but not all commercial EIAs may be useful in the identification of individuals with high nAbs in convalescent individuals.

164 citations


Journal ArticleDOI
TL;DR: Coronavirus disease 2019 (COVID-19), declared a pandemic by the WHO on March 11th, 2020 (1), requires an early diagnosis to optimize patient management and limit further transmission.
Abstract: Coronavirus disease 2019 (COVID-19), declared a pandemic by the WHO on March 11th, 2020 (1), requires an early diagnosis to optimize patient management and limit further transmission.….

152 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the Abbott BinaxNOW COVID-19 Ag card in a high-throughput, drive-through, free community testing site in Massachusetts using anterior nasal (AN) swab reverse transcriptase PCR (RT-PCR) for clinical testing.
Abstract: Rapid diagnostic tests (RDTs) for SARS-CoV-2 antigens (Ag) that can be performed at point of care (POC) can supplement molecular testing and help mitigate the COVID-19 pandemic. Deployment of an Ag RDT requires an understanding of its operational and performance characteristics under real-world conditions and in relevant subpopulations. We evaluated the Abbott BinaxNOW COVID-19 Ag card in a high-throughput, drive-through, free community testing site in Massachusetts using anterior nasal (AN) swab reverse transcriptase PCR (RT-PCR) for clinical testing. Individuals presenting for molecular testing in two of seven lanes were offered the opportunity to also receive BinaxNOW testing. Dual AN swabs were collected from symptomatic and asymptomatic children (≤18 years of age) and adults. BinaxNOW testing was performed in a testing pod with temperature/humidity monitoring. One individual performed testing and official result reporting for each test, but most tests had a second independent reading to assess interoperator agreement. Positive BinaxNOW results were scored as faint, medium, or strong. Positive BinaxNOW results were reported to patients by phone, and they were instructed to isolate pending RT-PCR results. The paired RT-PCR result was the reference for sensitivity and specificity calculations. Of 2,482 participants, 1,380 adults and 928 children had paired RT-PCR/BinaxNOW results and complete symptom data. In this study, 974/1,380 (71%) adults and 829/928 (89%) children were asymptomatic. BinaxNOW had 96.5% (95% confidence interval [CI], 90.0 to 99.3) sensitivity and 100% (95% CI, 98.6 to 100.0) specificity in adults within 7 days of symptoms and 84.6% (95% CI, 65.1 to 95.6) sensitivity and 100% (95% CI, 94.5 to 100.0) specificity in children within 7 days of symptoms. Sensitivity and specificity in asymptomatic adults were 70.2% (95% CI, 56.6 to 81.6) and 99.6% (95% CI, 98.9 to 99.9), respectively, and in asymptomatic children, they were 65.4% (95% CI, 55.6 to 74.4) and 99.0% (95% CI, 98.0 to 99.6), respectively. By cycle threshold (CT ) value cutoff, sensitivity in all subgroups combined (n = 292 RT-PCR-positive individuals) was 99.3% with CT values of ≤25, 95.8% with CT values of ≤30, and 81.2% with CT values of ≤35. Twelve false-positive BinaxNOW results (out of 2,308 tests) were observed; in all 12, the test bands were faint but otherwise normal and were noted by both readers. One invalid BinaxNOW result was identified. Interoperator agreement (positive versus negative BinaxNOW result) was 100% (n = 2,230/2,230 double reads). Each operator was able to process 20 RDTs per hour. In a separate set of 30 specimens (from individuals with symptoms ≤7 days) run at temperatures below the manufacturer's recommended range (46 to 58.5°F), sensitivity was 66.7% and specificity 95.2%. BinaxNOW had very high specificity in both adults and children and very high sensitivity in newly symptomatic adults. Overall, 95.8% sensitivity was observed with CT values of ≤30. These data support public health recommendations for use of the BinaxNOW test in adults with symptoms for ≤7 days without RT-PCR confirmation. Excellent interoperator agreement indicates that an individual can perform and read the BinaxNOW test alone. A skilled laboratorian can perform and read 20 tests per hour. Careful attention to temperature is critical.

128 citations


Journal ArticleDOI
TL;DR: In this article, the Elecsys anti-SARS-CoV-2 S assay was used to diagnose severe acute respiratory syndrome coronavirus 2 (SARS CoV2) in COVID-19 patients.
Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Molecular-based testing is used to diagnose COVID-19, and serologic testing of antibodies specific to SARS-CoV-2 is used to detect past infection. While most serologic assays are qualitative, a quantitative serologic assay was recently developed that measures antibodies against the S protein, the target of vaccines. Quantitative antibody determination may help determine antibody titer and facilitate longitudinal monitoring of the antibody response, including antibody response to vaccines. We evaluated the quantitative Roche Elecsys anti-SARS-CoV-2 S assay. Specimens from 167 PCR-positive patients and 103 control specimens were analyzed using the Elecsys anti-SARS-CoV-2 S assay on the cobas e411 (Roche Diagnostics). Analytical evaluation included assessing linearity, imprecision, and analytical sensitivity. Clinical evaluation included assessing clinical sensitivity, specificity, cross-reactivity, positive predictive value (PPV), negative predictive value (NPV), and serial sampling from the same patient. The Elecsys anti-SARS-CoV-2 S assay exhibited its highest sensitivity (84.0%) at 15 to 30 days post-PCR positivity and exhibited no cross-reactivity, a specificity and PPV of 100%, and an NPV between 98.3% and 99.8% at ≥14 days post-PCR positivity, depending on the seroprevalence estimate. Imprecision was <2% at 9.06 U/ml across 6 days, the negative quality control (QC) was consistently negative (<0.40 U/ml), the manufacturer’s claimed limit of quantitation of 0.40 U/ml was verified, and linearity across the analytical measuring range was observed, except at the low end (<20 U/ml). Lastly, antibody response showed high interindividual variation in level and time of peak antibody titer and trends over time.

117 citations


Journal ArticleDOI
TL;DR: In this article, a surrogate virus neutralization test (sVNT) was proposed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology tests.
Abstract: Many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology tests have proven to be less accurate than expected and do not assess antibody function as neutralizing, correlating with protection from reinfection. A new assay technology measuring the interaction of the purified SARS-CoV-2 spike protein receptor binding domain (RBD) with the extracellular domain of the human angiotensin-converting enzyme 2 (hACE2) receptor detects these important antibodies. The cPass surrogate virus neutralization test (sVNT), compared directly with eight SARS-CoV-2 IgG serology and two live-cell neutralization tests, gives similar or improved accuracy for qualitative delineation between positive and negative individuals in a fast, scalable, and high-throughput assay. The combined data support the cPass sVNT as a tool for highly accurate SARS-CoV-2 immunity surveillance of infected/recovered and/or vaccinated individuals as well as drug and convalescent-phase donor screening. The data also preview a novel application for the cPass sVNT in calibrating the stringency of live-cell neutralization tests and its use in longitudinal testing of recovered and/or vaccinated patients.

104 citations


Journal ArticleDOI
TL;DR: A recently developed surrogate virus neutralization test (sVNT) in comparison to 90% plaque reduction neutralization tests (PRNT90) in human, canine, cat, and hamster sera is evaluated and the lack of cross-reactivity to other coronaviruses in SARS-CoV-2 sVNT and PRNT90 is confirmed.
Abstract: Surrogate neutralization assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can be done without biosafety level 3 containment and in multiple species are desirable. We evaluate a recently developed surrogate virus neutralization test (sVNT) in comparison to 90% plaque reduction neutralization tests (PRNT90) in human, canine, cat, and hamster sera. With PRNT90 as the reference, sVNT had sensitivity of 98.9% and specificity of 98.8%. Using a panel of immune sera corresponding to other coronaviruses, we confirm the lack of cross-reactivity to other coronaviruses in SARS-CoV-2 sVNT and PRNT90, except for cross-reactivity to SARS-CoV-1 in sVNT.

100 citations


Journal ArticleDOI
TL;DR: A recent global expansion of numerous independent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with mutation L452R in the receptor-binding domain (RBD) of the spike protein was reported in this article.
Abstract: We report that there is a recent global expansion of numerous independent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with mutation L452R in the receptor-binding domain (RBD) of the spike protein. The massive emergence of L452R variants was first linked to lineage B.1.427/B.1.429 (clade 21C) that has been spreading in California since November and December 2020, originally named CAL.20C and currently variant of interest epsilon. By PCR amplification and Sanger sequencing of a 541-base fragment coding for amino acids 414 to 583 of the RBD from a collection of clinical specimens, we identified a separate L452R variant that also recently emerged in California but derives from the lineage B.1.232, clade 20A (named CAL.20A). Notably, CAL.20A caused an infection in gorillas in the San Diego Zoo, reported in January 2021. Unlike the epsilon variant that carries two additional mutations in the N-terminal domain of spike protein, L452R is the only mutation found in the spike proteins of CAL.20A. Based on genome-wide phylogenetic analysis, emergence of both viral variants was specifically triggered by acquisition of L452R, suggesting a strong positive selection for this mutation. Global analysis revealed that L452R is nearly omnipresent in a dozen independently emerged lineages, including the most recent variants of concern/interest delta, kappa, epsilon and iota, with the lambda variant carrying L452Q. L452 is in immediate proximity to the angiotensin-converting enzyme 2 (ACE2) interaction interface of RBD. It was reported that the L452R mutation is associated with immune escape and could result in a stronger cell attachment of the virus, with both factors likely increasing viral transmissibility, infectivity, and pathogenicity.

95 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluated 15 commercial and one in-house anti-SARS-CoV-2 assays in 16 laboratories and achieved a specificity of ≥ 99% for all total-Ab and IgG assays except one, DiaSorin Liaison XL IgG (97.2%).
Abstract: Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to support clinical diagnosis and epidemiological investigations. Recently, assays for large-scale detection of total antibodies (Ab), immunoglobulin G (IgG), and IgM against SARS-CoV-2 antigens have been developed, but there are limited data on the diagnostic accuracy of these assays. This study was a Danish national collaboration and evaluated 15 commercial and one in-house anti-SARS-CoV-2 assays in 16 laboratories. Sensitivity was evaluated using 150 samples from individuals with asymptomatic, mild, or moderate COVID-19, nonhospitalized or hospitalized, confirmed by nucleic acid amplification tests (NAAT); samples were collected 13 to 73 days either from symptom onset or from positive NAAT (patients without symptoms). Specificity and cross-reactivity were evaluated in samples collected prior to the SARS-CoV-2 epidemic from >586 blood donors and patients with autoimmune diseases, cytomegalovirus or Epstein-Barr virus infections, and acute viral infections. A specificity of ≥99% was achieved by all total-Ab and IgG assays except one, DiaSorin Liaison XL IgG (97.2%). Sensitivities in descending order were Wantai ELISA total Ab (96.7%), CUH-NOVO in-house ELISA total Ab (96.0%), Ortho Vitros total Ab (95.3%), YHLO iFlash IgG (94.0%), Ortho Vitros IgG (93.3%), Siemens Atellica total Ab (93.2%), Roche Elecsys total Ab (92.7%), Abbott Architect IgG (90.0%), Abbott Alinity IgG (median 88.0%), DiaSorin Liaison XL IgG (median 84.6%), Siemens Vista total Ab (81.0%), Euroimmun/ELISA IgG (78.0%), and Snibe Maglumi IgG (median 78.0%). However, confidence intervals overlapped for several assays. The IgM results were variable, with the Wantai IgM ELISA showing the highest sensitivity (82.7%) and specificity (99%). The rate of seropositivity increased with time from symptom onset and symptom severity.

95 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the latest Abbott Alinity semi-quantitative IgM and quantitative IgG spike protein (SP) serology assays (IgMSP and IgGSP) in combination with the NC-and SP-specific serologic assays clearly differentiated naive, SARS-CoV-2 infected, and vaccinated (including both naive and recovered) individuals.
Abstract: The COVID-19 pandemic continues to impose a significant burden on global health infrastructure. While identification and containment of new cases remains important, laboratories must now pivot and consider an assessment of SARS-CoV-2 immunity in the setting of the recent availability of multiple COVID-19 vaccines. Here we have utilized the latest Abbott Alinity semi-quantitative IgM and quantitative IgG spike protein (SP) serology assays (IgMSP and IgGSP) in combination with Abbott Alinity IgG nucleocapsid (NC) antibody test (IgGNC) to assess antibody responses in a cohort of 1236 unique participants comprised of naive, SARS-CoV-2 infected, and vaccinated (including both naive and recovered) individuals. The IgMSP and IgGSP assays were highly specific (100%) with no cross-reactivity to archived samples collected prior to the emergence of SARS-CoV-2, including those from individuals with seasonal coronavirus infections. Clinical sensitivity was 96% after 15 days for both IgMSP and IgGSP assays individually. When considered together, the sensitivity was 100%. A combination of NC- and SP-specific serologic assays clearly differentiated naive, SARS-CoV-2-infected, and vaccine-related immune responses. Vaccination resulted in a significant increase in IgGSP and IgMSP values, with a major rise in IgGSP following the booster (second) dose in the naive group. In contrast, SARS-CoV-2 recovered individuals had several fold higher IgGSP responses than naive following the primary dose, with a comparatively dampened response following the booster. This work illustrates the strong clinical performance of these new serological assays and their utility in evaluating and distinguishing serological responses to infection and vaccination.

Journal ArticleDOI
TL;DR: In this article, an orthogonal pipeline called CREST (Cas13-based, rugged, equitable, scalable testing) is proposed to detect SARS-CoV-2 genetic material.
Abstract: The COVID-19 pandemic has created massive demand for widespread, distributed tools for detecting SARS-CoV-2 genetic material. The hurdles to scalable testing include reagent and instrument accessibility, availability of highly trained personnel, and large upfront investment. Here, we showcase an orthogonal pipeline we call CREST (Cas13-based, rugged, equitable, scalable testing) that addresses some of these hurdles. Specifically, CREST pairs commonplace and reliable biochemical methods (PCR) with low-cost instrumentation, without sacrificing detection sensitivity. By taking advantage of simple fluorescence visualizers, CREST allows a binary interpretation of results. CREST may provide a point-of-care solution to increase the distribution of COVID-19 surveillance.

Journal ArticleDOI
TL;DR: In this article, the performance, stability, and user acceptability of swab-independent self-collected saliva and saline mouth rinse/gargle sample types for the molecular detection of SARS-CoV-2 in adults and school-aged children were assessed.
Abstract: Background: We assessed the performance, stability, and user acceptability of swab-independent self-collected saliva and saline mouth rinse/gargle sample types for the molecular detection of SARS-CoV-2 in adults and school-aged children. Methods: Outpatients who had recently been diagnosed with COVID-19 or were presenting with suspected COVID-19 were asked to have a nasopharyngeal swab collected and provide at least one self-collected sample type. Participants were also asked about sample acceptability using a five point Likert scale. For those previously diagnosed with COVID-19, all samples underwent real-time PCR testing using a lab-developed assay, and the majority were also tested using an FDA-authorized assay. For those presenting with suspect COVID-19, only those with a positive nasopharyngeal swab sample went on to have other samples tested. Saline mouth rinse/gargle and saliva samples were tested daily at time zero, day one, and day 2 to assess nucleic acid stability at room temperature. Results: 50 participants (aged 4 to 71 years) were included; of these, 40 had at least one positive sample and were included in the primary sample yield analysis. Saline mouth rinse/gargle samples had a sensitivity of 98% (39/40) while saliva samples had a sensitivity of 79% (26/33). Both saline mouth rinse/gargle and saliva samples showed stable viral RNA detection after 2 days of room temperature storage. Mouth rinse/gargle samples had the highest (mean 4.9) and HCW-collected NP swabs had the lowest acceptability scores (mean 3.1). Conclusion: Saline mouth rinse/gargle samples demonstrated the highest combined user acceptability ratings and analytical performance when compared with saliva and HCW collected NP swabs. This sample type is a promising swab-independent option, particularly for outpatient self-collection in adults and school aged children.

Journal ArticleDOI
TL;DR: Three qSAT assays for IgM, IgA, and IgG against a panel of eight SARS-CoV-2 antigens will allow gaining insights into antibody correlates of immunity and their kinetics, required for vaccine development to combat the COVID-19 pandemic.
Abstract: Reliable serological tests are required to determine the prevalence of antibodies against SARS-CoV-2 and to characterise immunity to the disease in order to address key knowledge gaps in the COVID-19 pandemic. Quantitative suspension array technology (qSAT) assays based on the xMAP Luminex platform overcome the limitations of rapid diagnostic tests and ELISA with their higher precision, dynamic range, throughput, miniaturization, cost-efficacy and multiplexing capacity. We developed three qSAT assays for IgM, IgA and IgG to a panel of eight SARS-CoV-2 antigens including spike (S), nucleoprotein (N) and membrane (M) protein constructs. The assays were optimized to minimize processing time and maximize signal to noise ratio. We evaluated their performance using 128 pre-pandemic plasmas (negative controls) and 104 plasmas from individuals with SARS-CoV-2 diagnosis (positive controls), of whom 5 were asymptomatic, 51 had mild symptoms and 48 were hospitalized. Pre-existing IgG antibodies recognizing N, M and S proteins were detected in negative controls suggestive of cross-reactive to common cold coronaviruses. The best performing antibody/antigen signatures had specificities of 100% and sensitivities of 95.78% at ≥14 days and 95.65% at ≥21 days since the onset of symptoms, with AUC of 0.977 and 0.999, respectively. Combining multiple markers as assessed by qSAT assays has the highest efficiency, breadth and versatility to accurately detect low-level antibody responses for obtaining reliable data on prevalence of exposure to novel pathogens in a population. Our assays will allow gaining insights into antibody correlates of immunity and their kinetics, required for vaccine development to combat the COVID-19 pandemic.

Journal ArticleDOI
TL;DR: In this paper, the authors compared the performance of the Abbott BinaxNOW COVID-19 antigen card to that of a standard reverse transcription-PCR (RT)-PCR) assay for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2,645 asymptomatic students presenting for screening at the University of Utah.
Abstract: We compared the performance of the Abbott BinaxNOW COVID-19 antigen card to that of a standard reverse transcription-PCR (RT-PCR) assay (Thermo Fisher TaqPath COVID-19 Combo kit) for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2,645 asymptomatic students presenting for screening at the University of Utah. SARS-CoV-2 RNA was detected in 1.7% of the study participants by RT-PCR. BinaxNOW identified 24 infections but missed 21 infections that were detected by RT-PCR. The analytical sensitivity (positive agreement) and analytical specificity (negative agreement) for the BinaxNOW were 53.3% and 100%, respectively, compared to the RT-PCR assay. The median cycle threshold (CT ) value in the specimens that had concordant positive BinaxNOW antigen results was significantly lower than that of specimens that were discordant (CT of 17.6 versus 29.6; P < 0.001). In individuals with presumably high viral loads (CT of <23.0), a 95.8% positive agreement was observed between the RT-PCR assay and BinaxNOW. Due to the possibility of false-negative results, caution must be taken when utilizing rapid antigen testing for screening asymptomatic individuals.

Journal ArticleDOI
TL;DR: This review describes SHERLOCK and DETECTR technologies and assesses their properties, functions, and prospective to become the ultimate diagnostic tools for diagnosing infectious diseases and curbing disease outbreaks.
Abstract: Infectious diseases are one of the most intimidating threats to human race, responsible for an immense burden of disabilities and deaths. Rapid diagnosis and treatment of infectious diseases offers a better understanding of their pathogenesis. According to the World Health Organization, the ideal approach for detecting foreign pathogens should be rapid, specific, sensitive, instrument-free, and cost-effective. Nucleic acid pathogen detection methods, typically PCR, have numerous limitations, such as highly sophisticated equipment requirements, reagents, and trained personnel relying on well-established laboratories, besides being time-consuming. Thus, there is a crucial need to develop novel nucleic acid detection tools that are rapid, specific, sensitive, and cost-effective, particularly ones that can be used for versatile point-of-care diagnostic applications. Two new methods exploit unpredicted in vitro properties of CRISPR-Cas effectors, turning activated nucleases into basic amplifiers of a specific nucleic acid binding event. These effectors can be attached to a diversity of reporters and utilized in tandem with isothermal amplification approaches to create sensitive identification in multiple deployable field formats. Although still in their beginning, SHERLOCK and DETECTR technologies are potential methods for rapid detection and identification of infectious diseases, with ultrasensitive tests that do not require complicated processing. This review describes SHERLOCK and DETECTR technologies and assesses their properties, functions, and prospective to become the ultimate diagnostic tools for diagnosing infectious diseases and curbing disease outbreaks.

Journal ArticleDOI
TL;DR: In this paper, a one-step multiplex allele-specific reverse transcriptase PCR (RT-qPCR) was used to detect three nonsynonymous spike protein mutations (L452R, E484K, N501Y).
Abstract: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with concerning phenotypic mutations is of public health interest. Genomic surveillance is an important tool for a pandemic response, but many laboratories do not have the resources to support population-level sequencing. We hypothesized that a nucleic acid amplification test (NAAT) to genotype mutations in the viral spike protein could facilitate high-throughput variant surveillance. We designed and analytically validated a one-step multiplex allele-specific reverse transcriptase PCR (RT-qPCR) to detect three nonsynonymous spike protein mutations (L452R, E484K, N501Y). Assay specificity was validated with next-generation whole-genome sequencing. We then screened a large cohort of SARS-CoV-2-positive specimens from our San Francisco Bay Area population. Between 1 December 2020 and 1 March 2021, we screened 4,049 unique infections by genotyping RT-qPCR, with an assay failure rate of 2.8%. We detected 1,567 L452R mutations (38.7%), 34 N501Y mutations (0.84%), 22 E484K mutations (0.54%), and 3 (0.07%) E484K plus N501Y mutations. The assay had perfect (100%) concordance with whole-genome sequencing of a validation subset of 229 specimens and detected B.1.1.7, B.1.351, B.1.427, B.1.429, B.1.526, and P.2 variants, among others. The assay revealed the rapid emergence of the L452R variant in our population, with a prevalence of 24.8% in December 2020 that increased to 62.5% in March 2021. We developed and clinically implemented a genotyping RT-qPCR to conduct high-throughput SARS-CoV-2 variant screening. This approach can be adapted for emerging mutations and immediately implemented in laboratories already performing NAAT worldwide using existing equipment, personnel, and extracted nucleic acid.

Journal ArticleDOI
TL;DR: Evaluated data indicate that the Abbott BinaxNOW COVID-19 Ag card has an analytical sensitivity approximately equivalent to a generic qRT-PCR cycle threshold (CT) value of 29 to 30, which is less sensitive than molecular detection methods.
Abstract: Multiple rapid antigen (Ag) tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have recently received emergency-use authorization (EUA) from the U.S. Food and Drug Administration (FDA). Although less sensitive than molecular detection methods, rapid antigen testing offers the potential for inexpensive, quick, decentralized testing. Robust analytical sensitivity data in comparison to reverse transcription-quantitative PCR (qRT-PCR) are currently lacking for many rapid antigen tests. Here, we evaluated the analytical sensitivity of the Abbott BinaxNOW COVID-19 Ag card using SARS-CoV-2-positive clinical specimens quantified by reverse transcription-droplet digital PCR (RT-ddPCR) and multiple FDA EUA qRT-PCR platforms using RNA standards. Initial and confirmatory limits of detection for the BinaxNOW COVID-19 Ag card were determined to be equivalent to 4.04 × 104 to 8.06 × 104 copies/swab. We further confirmed this limit of detection with 72 additional clinical samples positive for SARS-CoV-2 in either phosphate-buffered saline or viral transport medium. One hundred percent of samples with viral loads of >40,000 copies/swab were detected by rapid antigen testing. These data indicate that the BinaxNOW COVID-19 Ag card has an analytical sensitivity approximately equivalent to a generic qRT-PCR cycle threshold (CT ) value of 29 to 30.

Journal ArticleDOI
TL;DR: Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories, and high concordance between the outcomes of cell-based assays with live and pseudotyped virions enables valid cross-study comparison using these platforms.
Abstract: Determinants of protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require the development of well-standardized, reproducible antibody assays. This need has led to the emergence of a variety of neutralization assays. Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories. Five neutralization assays were compared using 40 plasma samples from convalescent individuals with mild to moderate coronavirus disease 2019 (COVID-19): four cell-based systems using either live recombinant SARS-CoV-2 or pseudotyped viral particles created with lentivirus (LV) or vesicular stomatitis virus (VSV) packaging and one surrogate enzyme-linked immunosorbent assay (ELISA)-based test that measures inhibition of the spike protein receptor binding domain (RBD) binding its receptor human angiotensin converting enzyme 2 (hACE2). Vero cells, Vero E6 cells, HEK293T cells expressing hACE2, and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 were tested. All cell-based assays showed 50% neutralizing dilution (ND50) geometric mean titers (GMTs) that were highly correlated (Pearson r = 0.81 to 0.89) and ranged within 3.4-fold. The live virus assay and LV pseudovirus assays with HEK293T/hACE2 cells showed very similar mean titers, 141 and 178, respectively. ND50 titers positively correlated with plasma IgG targeting SARS-CoV-2 spike protein and RBD (r = 0.63 to 0.89), but moderately correlated with nucleoprotein IgG (r = 0.46 to 0.73). ND80 GMTs mirrored ND50 data and showed similar correlation between assays and with IgG concentrations. The VSV pseudovirus assay and LV pseudovirus assay with HEK293T/hACE2 cells in low- and high-throughput versions were calibrated against the WHO SARS-CoV-2 IgG standard. High concordance between the outcomes of cell-based assays with live and pseudotyped virions enables valid cross-study comparison using these platforms.

Journal ArticleDOI
TL;DR: With lower cost and self-collection capabilities, saliva can be an appropriate sample choice alternative to NPS for detection of SARS-CoV-2 in children and adults.
Abstract: Testing efforts for SARS-CoV-2 have been burdened by the scarcity of testing materials and personal protective equipment for health care workers. The simple and painless process of saliva collection allows for widespread testing, but enthusiasm is hampered by variable performance compared to nasopharyngeal swab (NPS) samples. We prospectively collected paired NPS and saliva samples from a total of 300 unique adult and pediatric patients. SARS-CoV-2 RNA was detected in 32.2% (97/300) of the individuals using the TaqPath COVID-19 Combo Kit (Thermo Fisher). Performance of saliva and NPS were compared against the total number of positives regardless of specimen type. The overall concordance for saliva and NPS was 91.0% (273/300) and 94.7% (284/300), respectively. The positive percent agreement (PPA) for saliva and NPS was 81.4% (79/97) and 89.7% (87/97), respectively. Saliva detected 10 positive cases that were negative by NPS. In symptomatic and asymptomatic pediatric patients not previously diagnosed with COVID-19, the performances of saliva and NPS were comparable (PPA: 82.4% vs 85.3%). The overall PPA for adults were 83.3% and 90.7% for saliva and NPS, respectively, with saliva detecting 4 cases less than NPS. However, saliva performance in symptomatic adults was identical to NPS (PPA of 93.8%). With lower cost and self-collection capabilities, saliva can be an appropriate alternative sample choice to NPS for detection of SARS-CoV-2 in children and adults.

Journal ArticleDOI
TL;DR: The Liat is an RT-PCR POC test that provides highly accurate SARS-CoV-2 results in 20 min with performance equivalent to that of high-throughput laboratory molecular testing.
Abstract: Highly accurate testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the point of care (POC) is an unmet diagnostic need in emergency care and time-sensitive outpatient care settings. Reverse transcription-PCR (RT-PCR) technology is the gold standard for SARS-CoV-2 diagnostics. We performed a multisite U.S. study comparing the clinical performance of the first U.S. Food and Drug Administration (FDA)-authorized POC RT-PCR for detection of SARS-CoV-2 in 20 min, the cobas Liat SARS-CoV-2 and influenza A/B nucleic acid test, to the most widely used RT-PCR laboratory test, the cobas 68/8800 SARS-CoV-2 test. Clinical nasopharyngeal swab specimens from 444 patients with 357 evaluable specimens at five U.S. clinical laboratories were enrolled from 21 September 2020 to 23 October 2020. The overall agreement between the Liat and 68/8800 systems for SARS-CoV-2 diagnostics was 98.6% (352/357). Using Liat, positive percent agreement for SARS-CoV-2 was 100% (162/162) and the negative percent agreement was 97.4% (190/195). The Liat is an RT-PCR POC test that provides highly accurate SARS-CoV-2 results in 20 min with performance equivalent to that of high-throughput laboratory molecular testing. Rapid RT-PCR testing at the POC can enable more timely infection control and individual care decisions for coronavirus disease 2019.

Journal ArticleDOI
TL;DR: In this paper, the authors reported a novel N gene mutation (C29200A) seen in 3 patients, which affected the detection of SARS-CoV-2 N gene by a commercial assay.
Abstract: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, laboratory testing to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by real-time reverse transcription PCR (RT-qPCR) has played a central role in mitigating the spread of the virus (1). Soon after the viral genome sequences were available, several RT-qPCR assays were developed and made available by World Health Organization (WHO) for public use (https://www.who.int/docs/default-source/coronaviruse/whoinhouseassays.pdf). The primer and probe sequences for these assays were chosen from multiple target genes within the viral genome such as the E gene, RdRp gene, ORF1ab and N gene. Many commercial and laboratory-developed assays were developed for SARS-CoV-2 detection based on these primer and probe sequences. The large-scale sustained person-to-person transmission of SARS-CoV-2 has led to many mutational events, some of which may affect the sensitivity and specificity of available PCR assays (2). Recently, mutations in the E gene (C26340T) and N gene (C29200T) were reported affecting the detection of target genes by two commercial assays in 8 and 1 patients, respectively. Interestingly, both mutations are of C>T type, a common single nucleotide polymorphism (SNP) that may be associated with strong host cell mRNA editing mechanisms known as APOBEC cytidine deaminase (3, 4). Another study found a G to U substitution in position 29140 that affected the sensitivity of detection of N gene-based assays (5). Here we report a novel N gene mutation (C29200A) seen in 3 patients, which affected the detection of SARS-CoV-2 N gene by a commercial assay.

Journal ArticleDOI
TL;DR: In this article, the authors reviewed 16 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection and found that half of the cases were less severe than the other half.
Abstract: Reports of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection have raised important questions about the strength and durability of the immune response to primary infection, which are key factors in predicting the course of the pandemic. Identifying reinfection requires detecting the virus at two different time points and using viral genomic data to distinguish reinfection from persistent viral carriage. This process is hindered by challenges of logistics and capacity, such as banking samples from primary infection and performing viral genome sequencing. These challenges may help to explain why very few cases have been described to date. In addition, reinfection may be a rare phenomenon, but detailed prospective studies are needed to rigorously assess its frequency. To provide context for future investigations of SARS-CoV-2 reinfection, we review 16 cases that have been published to date or are available in preprint. Reinfection occurred across demographic spectra and in patients whose initial infections were both asymptomatic/mild and moderate/severe. For cases in which severity could be compared between episodes, half of reinfections were less severe, raising the possibility of partial immune protection. Although many patients had a positive total immunoglobulin or IgG result at the time of reinfection, very little examination of their immune response was performed. Further work is needed to elucidate the frequency, determinants, and consequences of SARS-CoV-2 reinfection. Establishing the necessary frameworks for surveillance and investigation will rely heavily on clinical laboratories and clinical investigators, and we propose several considerations to guide the medical community in identifying and characterizing SARS-CoV-2 reinfections.

Journal ArticleDOI
TL;DR: Highly sensitive and specific immunological diagnostic methods for antibodies or those that directly detect viral antigens in clinical samples would be beneficial for the rapid and accurate diagnosis of SARS-CoV-2 infection.
Abstract: Coronavirus disease 2019 (COVID-19) caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally as a severe pandemic. SARS-CoV-2 infection stimulates antigen-specific antibody responses. Multiple serologic tests have been developed for SARS-CoV-2. However, which antigens are most suitable for serological testing remains poorly understood. Specifically, which antigens have the highest sensitivity and specificity for serological testing and which have the least cross-reactivity with other coronaviruses are currently unknown. Previous studies have shown that the S1 domain of the spike (S) protein has very low cross-reactivity between epidemic coronaviruses and common human coronaviruses, whereas the S2 domain of the S protein, and the nucleocapsid protein (N protein) show low-level cross-reactivity. Therefore, S1 is considered more specific than the native homotrimer of the S protein, and the receptor-binding domain as an antigen to test patient antibodies is more sensitive than the native N protein. In addition, an increasing number of studies have used multi-antigen protein arrays to screen serum from convalescent patients with COVID-19. Antigen combinations demonstrated improved performance as compared to each individual antigen. For rapid antigen detection, the sensitivity of the test is higher in the first week of onset of the disease with high viral loads. Highly sensitive and specific immunological diagnostic methods for antibodies or those that directly detect viral antigens in clinical samples would be beneficial for the rapid and accurate diagnosis of SARS-CoV-2 infection.

Journal ArticleDOI
TL;DR: The MSD S-PLEX SARS-CoV-2 N assay was used to measure Ag in clinical nasopharyngeal (NP) samples from adults and children previously tested by PCR.
Abstract: Diagnosis of COVID-19 by PCR offers high sensitivity, but the utility of detecting samples with high cycle threshold (CT ) values remains controversial. Currently available rapid diagnostic tests (RDTs) for SARS-CoV-2 nucleocapsid antigens (Ag) have sensitivity well below PCR. The correlation of Ag and RNA quantities in clinical nasopharyngeal (NP) samples is unknown. An ultrasensitive, quantitative electrochemiluminescence immunoassay for SARS-CoV-2 nucleocapsid (the MSD S-PLEX SARS-CoV-2 N assay) was used to measure Ag in clinical NP samples from adults and children previously tested by PCR. The S-PLEX Ag assay had a limit of detection (LOD) of 0.16 pg/ml and a cutoff of 0.32 pg/ml. Ag concentrations measured in clinical NP samples (collected in 3.0 ml of media) ranged from less than 160 fg/ml to 2.7 µg/ml. Log-transformed Ag concentrations correlated tightly with CT values. In 35 adult and 101 pediatric PCR-positive samples, the sensitivities were 91% (95% confidence interval, 77 to 98%) and 79% (70 to 87%), respectively. In samples with a CT of ≤35, the sensitivities were 100% (88 to 100%) and 96% (88 to 99%), respectively. In 50 adult and 40 pediatric PCR-negative specimens, the specificities were 100% (93 to 100%) and 98% (87 to 100%), respectively. Nucleocapsid concentrations in clinical NP samples span 8 orders of magnitude and correlate closely with RNA concentrations (CT values). The S-PLEX Ag assay showed 96 to 100% sensitivity in samples from children and adults with CT values of ≤35, and a specificity of 98 to 100%. These results clarify Ag concentration distributions in clinical samples, providing insight into the performance of Ag RDTs and offering a new approach to diagnosis of COVID-19.

Journal ArticleDOI
TL;DR: A set of four multiplex mutation-specific PCR-based assays with same-day reporting that can detect five VOC and three variants of interest (VOI) was developed in this article.
Abstract: The emergence of more transmissible and/or more virulent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) has triggered intensive genomic surveillance, which is costly and difficult to sustain operationally over the long term To address this problem, we developed a set of four multiplex mutation-specific PCR-based assays with same-day reporting that can detect five VOC and three variants of interest (VOI), as defined in the March 2021 guidelines from the US Centers for Disease Control and Prevention (https://wwwcdcgov/coronavirus/2019-ncov/) The screening results were compared to the whole-genome sequencing (WGS) and showed 100% concordance for strain typing for B117 (n = 25) and P1 (n = 5) variants using spike (S) mutation S-N501Y, S-E484K, and S-H69-V70del assays The S-L450R assay, designed to detect the B1427/429 VOC, also identified multiple isolates of a newly emerging multiply mutated B15261 variant that is now rapidly increasing in the eastern United States PCR approaches can be easily adopted in clinical laboratories, providing rapid screening methods to allow early detection of newly emergent variants and to efficiently triage cases for full genomic sequencing

Journal ArticleDOI
TL;DR: The Cepheid Xpert Xpress SARS-CoV-2/Flu/RSV test showed high sensitivity and accuracy for all analytes included in the test, and will provide a valuable clinical diagnostic and public health solution for detecting and differentiating SAR's coronavirus 2, influenza A and B virus, and RSV infections during the current respiratory virus season.
Abstract: With the approach of respiratory virus season in the Northern Hemisphere, clinical microbiology and public health laboratories will need rapid diagnostic assays to distinguish SARS-CoV-2 from influenza and respiratory syncytial virus (RSV) infections for diagnosis and surveillance. In this study, the clinical performance of the Xpert® Xpress SARS-CoV-2/Flu/RSV test (Cepheid, Sunnyvale, CA, USA) for nasopharyngeal swab specimens was evaluated in four centers: Johns Hopkins Medical Microbiology Laboratory, Northwell Health Laboratories, NYC Public Health Laboratory, and Los Angeles County/University of Southern California (LAC+USC) Medical Center. A total of 319 nasopharyngeal swab specimens, positive for SARS-CoV-2 (n = 75), influenza A (n = 65), influenza B (n = 50), RSV (n = 38), or negative (n = 91) by the standard of care nucleic acid amplification tests at each site were tested using the Cepheid panel test. The overall positive percent agreement for the SARS-CoV-2 target was 98.7% (n= 74/75) and the negative agreement was 100% (n= 91) with all other analytes showing 100% total agreement (n= 153). Standard of care tests to which the Cepheid panel was compared included the Cepheid Xpert Xpress SARS-CoV-2, Cepheid Xpert Xpress Flu/RSV, the GenMark ePlex respiratory panel, the BioFire Respiratory panels 2.1 and v1.7, the DiaSorin Simplexa COVID-19 Direct, and the Hologic Panther Fusion SARS-CoV-2 assays. The Xpert Xpress SARS-CoV-2/Flu/RSV test showed high sensitivity and accuracy for all analytes included in the test. This test will provide a valuable clinical diagnostic and public health solution for detecting and differentiating SARS-CoV-2, influenza A and B, and RSV infections during the current respiratory virus season.

Journal ArticleDOI
TL;DR: A review of the current state of research at the intersection of ML and AMR with an emphasis on three domains of work can be found in this paper, where the use of ML to gain insight into the cellular functions disrupted by antibiotics, which forms the basis for understanding mechanisms of action and developing novel anti-infectives.
Abstract: Antimicrobial resistance (AMR) remains one of the most challenging phenomena of modern medicine. Machine learning (ML) is a subfield of artificial intelligence that focuses on the development of algorithms that learn how to accurately predict outcome variables using large sets of predictor variables that are typically not hand selected and are minimally curated. Models are parameterized using a training dataset and then applied to a test dataset on which predictive performance is evaluated. The application of ML algorithms to the problem of AMR has garnered increasing interest in the past 5 years due to the exponential growth of experimental and clinical data, heavy investment in computational capacity, improvements in algorithm performance and increasing urgency for innovative approaches to reducing the burden of disease. Here, we review the current state of research at the intersection of ML and AMR with an emphasis on three domains of work. The first is the prediction of AMR using genomic data. The second is the use of ML to gain insight into the cellular functions disrupted by antibiotics, which forms the basis for understanding mechanisms of action and developing novel anti-infectives. The third focuses on the application of ML for antimicrobial stewardship using data extracted from the electronic health record. Though the use of ML for understanding, diagnosing, treating and preventing AMR is still in its infancy, the continued growth of data and interest ensures it will become an important tool for future translational research programs.

Journal ArticleDOI
TL;DR: Although pooled saliva testing, as collected in this study, is not quite as sensitive as NP/MT testing, saliva testing is adequate to detect individuals with higher viral loads in an asymptomatic screening program, does not require swabs or viral transport medium for collection, and may help to improve voluntary screening compliance for those individuals averse to various forms of nasal collections.
Abstract: We evaluated saliva (SAL) specimens for SARS-CoV-2 RT-PCR testing by comparison of 459 prospectively paired nasopharyngeal (NP) or mid-turbinate (MT) swabs from 449 individuals with the aim of using saliva for asymptomatic screening. Samples were collected in a drive-through car line for symptomatic individuals (N=380) and in the emergency department (ED) (N=69). The percent positive and negative agreement of saliva compared to nasopharyngeal swab were 81.1% (95% CI: 65.8% - 90.5%) and 99.8% (95% CI: 98.7% - 100%), respectively. The percent positive agreement increased to 90.0% (95% CI: 74.4% - 96.5%) when considering only samples with moderate to high viral load (Cycle threshold (Ct) for the NP <=34). Pools of five saliva specimens were also evaluated on three platforms: bioMerieux NucliSENS easyMAG with ABI 7500Fast (CDC assay), Hologic Panther Fusion®, and Roche COBAS® 6800. The average loss of signal upon pooling was 2-3 Ct values across the platforms. The sensitivity of detecting a positive specimen in a pool compared with testing individually was 94%, 90%, and 94% for CDC 2019-nCoV Real-Time RT-PCR, Panther Fusion® SARS-CoV-2 assay, and cobas® SARS-CoV-2 test respectively, with decreased sample detection trending with lower viral load. We conclude that although pooled saliva testing, as collected in this study, is not quite as sensitive as NP/MT testing, saliva testing is adequate to detect individuals with higher viral loads in an asymptomatic screening program, does not require swabs or viral transport media for collection, and may help to improve voluntary screening compliance for those individuals averse to various forms of nasal collections.

Journal ArticleDOI
TL;DR: A review of the potential for existing assays, such as real-time PCR and antigen tests, to predict active viral infection is presented in this paper, where the authors highlight what is currently known about the potential of these assays to predict an individual's likelihood of transmitting the virus to others.
Abstract: Since the beginning of the COVID-19 pandemic, molecular methods (e.g., real-time PCR) have been the primary means of diagnosing the disease. It is now well established that molecular tests can continue to detect SARS-CoV-2 genomic RNA for weeks or months following the resolution of clinical illness. This has prompted public health agencies to recommend a symptom- and/or time-based strategy for discontinuation of isolation precautions, which, for hospitalized patients, results in significant use of personal protective equipment. Due to the inability of current molecular diagnostic assays to differentiate between the presence of remnant viral RNA (i.e., noninfectious) and replication-competent (i.e., infectious) virus, there has been interest in determining whether laboratory tests can be used to predict an individual's likelihood of transmitting the virus to others. This review will highlight what is currently known about the potential for existing assays, such as real-time PCR and antigen tests, to predict active viral infection. In addition, data on the performance of new methods, such as molecular tests targeting viral RNA intermediates (e.g., subgenomic RNA), will be discussed.