scispace - formally typeset
Search or ask a question
JournalISSN: 0976-5662

Journal of clinical orthopaedics and trauma 

Elsevier BV
About: Journal of clinical orthopaedics and trauma is an academic journal published by Elsevier BV. The journal publishes majorly in the area(s): Medicine & Internal fixation. It has an ISSN identifier of 0976-5662. Over the lifetime, 1873 publications have been published receiving 13414 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review suggests that the further improvement in the area of bone drilling is possible and several consequential factors affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated are identified.
Abstract: Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted.

282 citations

Journal ArticleDOI
TL;DR: The possibilities of confronting the ongoing COVID-19 pandemic by implementing the IoMT approach while offering treatment to orthopaedic patients with a superior level of care and more satisfaction are explored.
Abstract: Internet of Medical Things (IoMT) is an innovative mean of amalgamating medical devices and their applications to connect with the healthcare information technology systems by using networking technologies. We have explored the possibilities of confronting the ongoing COVID-19 pandemic by implementing the IoMT approach while offering treatment to orthopaedic patients. The data sharing, report monitoring, patients tracking, information gathering and analysis, hygiene medical care, etc. are the various cloud and connected network-based services of IoMT. It can completely change the working layout of the healthcare facilities while treating orthopaedic patients with a superior level of care and more satisfaction, especially during this pandemic COVID-19 lockdown. Remote-location healthcare has also become feasible with the proposed IoMT approach.

159 citations

Journal ArticleDOI
TL;DR: All over the world, orthopaedic Surgeon's and allied professionals and scientists are enthusiastically using 3D printing technology for designing patient specific models, instrumentation, implants, orthosis and prosthesis, besides 3D bioprinting of bone and cartilage scaffolding, and the same has been applied for nearly all areas of orthopedic trauma surgery, from head to foot.
Abstract: Background With rapid emergence of 3D printing technology, surgeons have recently started to apply this for nearly all areas of orthopaedic trauma surgery. Computed tomography or magnetic resonance images of trauma patients can be utilized for making graspable objects from 3D reconstructed images. Patient specific anatomical models can thereby be created. They enhance surgeon's knowledge of their patients' precise patho-anatomy, regarding both traumatized bones and soft tissue as well as normal areas, and therefore help in accurate preoperative planning. 3D printed patient specific instrumentation can help to achieve precise implant placement, and better surgical results. Most importantly, customized implants, casts, orthoses and prosthetics can be manufactured to match an individual's anatomy. Three dimensional (3D) printing, also called as ‘additive manufacturing’ and ‘rapid prototyping’ is considered as the “second industrial revolution”, and this appears to be especially true for orthopaedic trauma surgery. Methods A literature search was performed for extracting all papers related to 3D Printing applications in orthopaedics and allied sciences on the Pubmed, and SCOPUS; using suitable key terms and Boolean operators (“3D Printing” OR “3 dimensional printing” OR “3D printed” OR “additive manufacturing” OR “rapid prototyping”) AND (‘‘Orthopaedics” OR “Orthopaedics’’) AND (“Trauma” OR “Injury”)in June 2018. Search was also performed in Web of Science, Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews. No limits were set on the time period or evidence level, as 3D printing in orthopaedics is relatively recent and mainly low level evidence is available. Titles and abstracts were screened and all duplicate and unrelated papers were excluded. Papers related to orthopaedic trauma were manually selected for this review. Results The search on Pubmed retrieved 144 Papers and similar search on SCOPUS retrieved 94 papers. Additional searches did not reveal more relevant papers. After excluding duplicates and unrelated papers, and on screening of titles and abstracts, 59 papers were considered for review. Papers related to spine fractures only were not included, as they have been covered in another paper in this journal issue. Conclusion All over the world, orthopaedic Surgeon's and allied professionals and scientists are enthusiastically using 3D printing technology for designing patient specific models, instrumentation, implants, orthosis and prosthesis, besides 3D bioprinting of bone and cartilage scaffolding, and the same has been applied for nearly all areas of orthopaedic trauma surgery, from head to foot.

154 citations

Journal ArticleDOI
TL;DR: The purpose of this paper is to identify the best possible usage of additive manufacturing applications in orthopaedics field, and presents the steps used to prepare a 3D printed model by using this technology and details applications in the field of orthipaedics.
Abstract: The applications of Additive Manufacturing (AM) have increased extensively in the area of orthopaedics. The AM applications are for making anatomic models, surgical instruments & tool design, splints, implants and prosthesis. A brief review of various research articles shows that patient-specific orthopaedic procedures provide multiple applications areas and provide directions for future developments. The purpose of this paper is to identify the best possible usage of additive manufacturing applications in orthopaedics field. It also presents the steps used to prepare a 3D printed model by using this technology and details applications in the field of orthopaedics. AM gives a flexible solution in orthopaedics area, where customised implants can be formed as per the required shape and size and can help substitution with customised products. A 3D model created by this technology gain an accurate perception of patient's anatomy which is used to perform mock surgeries and is helpful for highly complex surgical pathologies. It makes surgeon's job accessible and increases the success rate of the operation. AM provides a perfect fit implant for the specific patient by unlimited geometric freedom. Various scanning technologies capture the status of bone defects, and printing of the model is done with the help of this technology. It gives an exact generation of a physical model which is also helpful for medical education, surgical planning and training. This technology can help to solve present-day challenges as data of every patient is different from another.

143 citations

Journal ArticleDOI
TL;DR: Screening of vitamin D deficiency by measuring serum 25(OH)D is recommended in individuals at risk such as patients with diseases affecting vitamin D metabolism and absorption, osteoporosis, and older adults with a history of falls or nontraumatic fracture.
Abstract: Vitamin D plays an essential role in regulating calcium and phosphate metabolism and maintaining a healthy mineralized skeleton. Humans obtain vitamin D from sunlight exposure, dietary foods and supplements. There are two forms of vitamin D: vitamin D3 and vitamin D2. Vitamin D3 is synthesized endogenously in the skin and found naturally in oily fish and cod liver oil. Vitamin D2 is synthesized from ergosterol and found in yeast and mushrooms. Once vitamin D enters the circulation it is converted by 25-hydroxylase in the liver to 25-hydroxyvitamin D [25(OH)D], which is further converted by the 25-hydroxyvitamin D-1α-hydroxylase in the kidneys to the active form, 1,25-dihydroxyvitamin D [1,25(OH)2D]. 1,25(OH)2D binds to its nuclear vitamin D receptor to exert its physiologic functions. These functions include: promotion of intestinal calcium and phosphate absorption, renal tubular calcium reabsorption, and calcium mobilization from bone. The Endocrine Society's Clinical Practice Guideline defines vitamin D deficiency, insufficiency, and sufficiency as serum concentrations of 25(OH)D of

139 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202355
2022205
2021418
2020376
2019237
201841