scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cognitive Neuroscience in 2000"


Journal ArticleDOI
TL;DR: Analysis of regional activations across cognitive domains suggested that several brain regions, including the cerebellum, are engaged by a variety of cognitive challenges.
Abstract: Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have been extensively used to explore the functional neuroanatomy of cognitive functions. Here we review 275 PET and fMRI studies of attention (sustained, selective, Stroop, orientation, divided), perception (object, face, space/motion, smell), imagery (object, space/ motion), language (written/spoken word recognition, spoken/ no spoken response), working memory (verbal/numeric, object, spatial, problem solving), semantic memory retrieval (categorization, generation), episodic memory encoding (verbal, object, spatial), episodic memory retrieval (verbal, nonverbal, success, effort, mode, context), priming (perceptual, conceptual), and procedural memory (conditioning, motor, and nonmotor skill learning). To identify consistent activation patterns associated with these cognitive operations, data from 412 contrasts were summarized at the level of cortical Brodmann's areas, insula, thalamus, medial-temporal lobe (including hippocampus), basal ganglia, and cerebellum. For perception and imagery, activation patterns included primary and secondary regions in the dorsal and ventral pathways. For attention and working memory, activations were usually found in prefrontal and parietal regions. For language and semantic memory retrieval, typical regions included left prefrontal and temporal regions. For episodic memory encoding, consistently activated regions included left prefrontal and medial-temporal regions. For episodic memory retrieval, activation patterns included prefrontal, medial-temporal, and posterior midline regions. For priming, deactivations in prefrontal (conceptual) or extrastriate (perceptual) regions were consistently seen. For procedural memory, activations were found in motor as well as in non-motor brain areas. Analysis of regional activations across cognitive domains suggested that several brain regions, including the cerebellum, are engaged by a variety of cognitive challenges. These observations are discussed in relation to functional specialization as well as functional integration.

3,407 citations


Journal ArticleDOI
TL;DR: Positron emission tomography was used to investigate verbal and spatial short-term storage in older and younger adults to consider several mechanisms that could account for these age differences including the possibility that bilateral activation reflects recruitment to compensate for neural decline.
Abstract: Age-related decline in working memory figures prominently in theories of cognitive aging. However, the effects of aging on the neural substrate of working memory are largely unknown. Positron emission tomography (PET) was used to investigate verbal and spatial short-term storage (3 sec) in older and younger adults. Previous investigations with younger subjects performing these same tasks have revealed asymmetries in the lateral organization of verbal and spatial working memory. Using volume of interest (VOI) analyses that specifically compared activation at sites identified with working memory to their homologous twin in the opposite hemisphere, we show pronounced age differences in this organization, particularly in the frontal lobes: In younger adults, activation is predominantly left lateralized for verbal working memory, and right lateralized for spatial working memory, whereas older adults show a global pattern of anterior bilateral activation for both types of memory. Analyses of frontal subregions indicate that several underlying patterns contribute to global bilaterality in older adults: most notably, bilateral activation in areas associated with rehearsal, and paradoxical laterality in dorsolateral prefrontal sites (DLPFC; greater left activation for spatial and greater right activation for verbal). We consider several mechanisms that could account for these age differences including the possibility that bilateral activation reflects recruitment to compensate for neural decline.

982 citations


Journal ArticleDOI
TL;DR: The results suggest that amygdala and behavioral responses to Black-versus-White faces in White subjects reflect cultural evaluations of social groups modified by individual experience.
Abstract: We used fMRI to explore the neural substrates involved in the unconscious evaluation of Black and White social groups. Specifically, we focused on the amygdala, a subcortical structure known to play a role in emotional learning and evaluation. In Experiment 1, White American subjects observed faces of unfamiliar Black and White males. The strength of amygdala activation to Black-versus-White faces was correlated with two indirect (unconscious) measures of race evaluation (Implicit Association Test lIATr and potentiated startle), but not with the direct (conscious) expression of race attitudes. In Experiment 2, these patterns were not obtained when the stimulus faces belonged to familiar and positively regarded Black and White individuals. Together, these results suggest that amygdala and behavioral responses to Black-versus-White faces in White subjects reflect cultural evaluations of social groups modified by individual experience.

968 citations


Journal ArticleDOI
TL;DR: Evidence that imagery and perception share common processing mechanisms is strengthened, and it is demonstrated that the specific brain regions activated during mental imagery depend on the content of the visual image.
Abstract: What happens in the brain when you conjure up a mental image in your mind's eye? We tested whether the particular regions of extrastriate cortex activated during mental imagery depend on the content of the image. Using functional magnetic resonance imaging (fMRRI), we demonstrated selective activation within a region of cortex specialized for face perception during mental imagery of faces, and selective activation within a place-selective cortical region during imagery of places. In a further study, we compared the activation for imagery and perception in these regions, and found greater response magnitudes for perception than for imagery of the same items. Finally, we found that it is possible to determine the content of single cognitive events from an inspection of the fMRI data from individual imagery trials. These findings strengthen evidence that imagery and perception share common processing mechanisms, and demonstrate that the specific brain regions activated during mental imagery depend on the content of the visual image.

905 citations


Journal ArticleDOI
TL;DR: Consistent with earlier neuroimaging and single-unit studies, this pattern of results points to the existence of neural mechanisms specialized for analysis of the kinematics defining biological motion.
Abstract: These experiments use functional magnetic resonance imaging (fMRI) to reveal neural activity uniquely associated with perception of biological motion. We isolated brain areas activated during the viewing of point-light figures, then compared those areas to regions known to be involved in coherent-motion perception and kinetic-boundary perception. Coherent motion activated a region matching previous reports of human MT/MST complex located on the temporo-parieto-occipital junction. Kinetic boundaries activated a region posterior and adjacent to human MT previously identified as the kinetic-occipital (KO) region or the lateral-occipital (LO) complex. The pattern of activation during viewing of biological motion was located within a small region on the ventral bank of the occipital extent of the superior-temporal sulcus (STS). This region is located lateral and anterior to human MT/MST, and anterior to KO. Among our observers, we localized this region more frequently in the right hemisphere than in the left. This was true regardless of whether the point-light figures were presented in the right or left hemifield. A small region in the medial cerebellum was also active when observers viewed biological-motion sequences. Consistent with earlier neuroimaging and single-unit studies, this pattern of results points to the existence of neural mechanisms specialized for analysis of the kinematics defining biological motion.

894 citations


Journal ArticleDOI
TL;DR: It is suggested that face- selective areas may be involved in the perception of faces at the individual level, whereas letter-selective regions may be tuning themselves to font information in order to recognize letters more efficiently.
Abstract: According to modular models of cortical organization, many areas of the extrastriate cortex are dedicated to object categories. These models often assume an early processing stage for the detection of category membership. Can functional imaging isolate areas responsible for detection of members of a category, such as faces or letters? We consider whether responses in three different areas (two selective for faces and one selective for letters) support category detection. Activity in these areas habituates to the repeated presentation of one exemplar more than to the presentation of different exemplars of the same category, but only for the category for which the area is selective. Thus, these areas appear to play computational roles more complex than detection, processing stimuli at the individual level. Drawing from prior work, we suggest that face-selective areas may be involved in the perception of faces at the individual level, whereas letter-selective regions may be tuning themselves to font information in order to recognize letters more efficiently.

817 citations



Journal ArticleDOI
TL;DR: fMRI activation within MT/MST is found during viewing of static photographs with implied motion compared to viewing of photographs without implied motion, suggesting that brain regions involved in the visual analysis of motion are also engaged in processing implied dynamic information from static images.
Abstract: A still photograph of an object in motion may convey dynamic information about the position of the object immediately before and after the photograph was taken (implied motion). Medial temporal/medial superior temporal cortex (MT/MST) is one of the main brain regions engaged in the perceptual analysis of visual motion. In two experiments we examined whether MT/MST is also involved in representing implied motion from static images. We found stronger functional magnetic resonance imaging (fMRI) activation within MT/MST during viewing of static photographs with implied motion compared to viewing of photographs without implied motion. These results suggest that brain regions involved in the visual analysis of motion are also engaged in processing implied dynamic information from static images.

708 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the coding of space as far and near is not only determined by the hand-reaching distance, but it is also dependent on how the brain represents the extension of the body space.
Abstract: Far (extrapersonal) and near (peripersonal) spaces are behaviorally defined as the space outside the hand-reaching distance and the space within the hand-reaching distance. Animal and human studies have confirmed this distinction, showing that space is not homogeneously represented in the brain. In this paper we demonstrate that the coding of space as "far" and "near" is not only determined by the hand-reaching distance, but it is also dependent on how the brain represents the extension of the body space. We will show that when the cerebral representation of body space is extended to include objects or tools used by the subject, space previously mapped as far can be remapped as near. Patient P.P., after a right hemisphere stroke, showed a dissociation between near and far spaces in the manifestation of neglect. Indeed, in a line bisection task, neglect was apparent in near space, but not in far space when bisection in the far space was performed with a projection lightpen. However, when in the far space bisection was performed with a stick, used by the patient to reach the line, neglect appeared and was as severe as neglect in the near space. An artificial extension of the patient's body (the stick) caused a remapping of far space as near space.

655 citations


Journal ArticleDOI
TL;DR: The rare, genetically based disorder, Williams syndrome, produces a constellation of distinctive cognitive, neuroanatomical, and electrophysiological features which are explored through the series of studies reported here.
Abstract: The rare, genetically based disorder, Williams syndrome (WMS), produces a constellation of distinctive cognitive, neuroanatomical, and electrophysiological features which we explore through the series of studies reported here. In this paper, we focus primarily on the cognitive characteristics of WMS and begin to forge links among these characteristics, the brain, and the genetic basis of the disorder. The distinctive cognitive profile of individuals with WMS includes relative strengths in language and facial processing and profound impairment in spatial cognition. The cognitive profile of abilities, including what is ‘typical’ for individuals with WMS is discussed, but we also highlight areas of variability across the group of individuals with WMS that we have studied. Although the overall cognitive abilities (IQs) of individuals with WMS are typically in the mild-to-moderate range of mental retardation, the peaks and valleys within different cognitive domains make this syndrome especially intriguing to study across levels. Understanding the brain basis (and ultimately the genetic basis) for higher cognitive functioning is the goal we have begun to undertake with this line of interdisciplinary research.

650 citations


Journal ArticleDOI
TL;DR: The results suggest that, in the case of this visual discrimination task, both SWS and REM are required to consolidate experience-dependent neuronal changes into a form that supports improved task performance.
Abstract: Performance on a visual discrimination task shows long-term improvement after a single training session. When tested within 24 hr of training, improvement was not observed unless subjects obtained at least 6 hr of post-training sleep prior to retesting, in which case improvement was proportional to the amount of sleep in excess of 6 hr. For subjects averaging 8 hr of sleep, overnight improvement was proportional to the amount of slow wave sleep (SWS) in the first quarter of the night, as well as the amount of rapid eye movement sleep (REM) in the last quarter. REM during the intervening 4 hr did not appear to contribute to improvement. A two-step process, modeling throughput as the product of the amount of early SWS and late REM, accounts for 80 percent of intersubject variance. These results suggest that, in the case of this visual discrimination task, both SWS and REM are required to consolidate experience-dependent neuronal changes into a form that supports improved task performance.

Journal ArticleDOI
TL;DR: It is proposed that the PFC may contribute to the control of attentional-set by modulating attentional processes mediated by occipito-temporal pathways in distinct cortical and subcortical neural stations.
Abstract: Much evidence suggests that lesions of the prefrontal cortex (PFC) produce marked impairments in the ability of subjects to shift cognitive set, as exemplified by performance of the Wisconsin Card Sorting Test (WCST). However, studies with humans and experimental primates have suggested that damage to different regions of PFC induce dissociable impairments in two forms of shift learning implicit in the WCST (that is, extradimensional (ED) shift learning and reversal shift learning), with similar deficits also being apparent after damage to basal ganglia structures, especially the caudate nucleus. In this study, we used the same visual discrimination learning paradigm over multidimensional stimuli, and the H215O positron emission tomography (PET) technique, to examine regional cerebral blood flow (rCBF) changes associated with these subcomponent processes of the WCST. In three conditions, subjects were scanned while acquiring visual discriminations involving either (i) the same stimulus dimension as preceding discriminations (intradimensional (ID) shifts); (ii) different stimulus dimensions from previous discriminations (ED shifts) or (iii) reversed stimulus-reward contingencies (reversal shifts). Additionally, subjects were scanned while responding to already learnt discriminations (‘performance baseline’). ED shift learning, relative to ID shift learning, produced activations in prefrontal regions, including left anterior PFC and right dorsolateral PFC (BA 10 and 9/46). By contrast, reversal learning, relative to ID shift learning, produced activations of the left caudate nucleus. Additionally, compared to reversal and ID shift learning, ED shift learning was associated with relative deactivations in occipito-temporal pathways (for example, BA 17 and 37). These results confirm that, in the context of visual discrimination learning over multidimensional stimuli, the control of an acquired attentional bias or ‘set’, and the control of previously acquired stimulus-reinforcement associations, activate distinct cortical and subcortical neural stations. Moreover, we propose that the PFC may contribute to the control of attentional-set by modulating attentional processes mediated by occipito-temporal pathways.

Journal ArticleDOI
TL;DR: The amplitudes of both early and late negativities were found to be sensitive to the degree of musical expectancy induced by the preceding harmonic context, and to the probability for deviant acoustic events.
Abstract: Only little systematic research has examined event-related brain potentials (ERPs) elicited by the cognitive processing of music. The present study investigated how music processing is influenced by a preceding musical context, affected by the task relevance of unexpected chords, and influenced by the degree and the probability of violation. Four experiments were conducted in which "nonmusicians" listened to chord sequences, which infrequently contained a chord violating the sound expectancy of listeners. Integration of in-key chords into the musical context was reflected as a late negative-frontal deflection in the ERPs. This negative deflection declined towards the end of a chord sequence, reflecting normal buildup of musical context. Brain waves elicited by chords with unexpected notes revealed two ERP effects: an early right-hemispheric preponderant-anterior negativity, which was taken to reflect the violation of sound expectancy; and a late bilateral-frontal negativity. The late negativity was larger compared to in-key chords and taken to reflect the higher degree of integration needed for unexpected chords. The early right-anterior negativity (ERAN) was unaffected by the task relevance of unexpected chords. The amplitudes of both early and late negativities were found to be sensitive to the degree of musical expectancy induced by the preceding harmonic context, and to the probability for deviant acoustic events. The employed experimental design opens a new field for the investigation of music processing. Results strengthen the hypothesis of an implicit musical ability of the human brain.

Journal ArticleDOI
TL;DR: Four studies measuring distinct aspects of hypersocial behavior in Williams syndrome are presented, each probing specific aspects in WMS infants, toddlers, school age children, and adults and promise to provide the ground-work for crossdisciplinary analyses of gene-brain-behavior relationships.
Abstract: Studies of abnormal populations provide a rare opportunity for examining relationships between cognition, genotype and brain neurobiology, permitting comparisons across these different levels of analysis. In our studies, we investigate individuals with a rare, genetically based disorder called Williams syndrome (WMS) to draw links among these levels. A critical component of such a cross-domain undertaking is the clear delineation of the phenotype of the disorder in question. Of special interest in this paper is a relatively unexplored unusual social phenotype in WMS that includes an overfriendly and engaging personality. Four studies measuring distinct aspects of hypersocial behavior in WMS are presented, each probing specific aspects in WMS infants, toddlers, school age children, and adults. The abnormal profile of excessively social behavior represents an important component of the phenotype that may distinguish WMS from other developmental disorders. Furthermore, the studies show that the profile is observed across a wide range of ages, and emerges consistently across multiple experimental paradigms. These studies of hypersocial behavior in WMS promise to provide the groundwork for crossdisciplinary analyses of gene–brain–behavior relationships.

Journal ArticleDOI
TL;DR: The present PET study identifies the anatomical localization of these effects in well-defined regions of the middle fusiform gyri of both hemispheres as a double dissociation between two modes of face processing.
Abstract: Behavioral studies indicate a right hemisphere advantage for processing a face as a whole and a left hemisphere superiority for processing based on face features. The present PET study identifies the anatomical localization of these effects in well-defined regions of the middle fusiform gyri of both hemispheres. The right middle fusiform gyrus, previously described as a face-specific region, was found to be more activated when matching whole faces than face parts whereas this pattern of activity was reversed in the left homologous region. These lateralized differences appeared to be specific to faces since control objects processed either as wholes or parts did not induce any change of activity within these regions. This double dissociation between two modes of face processing brings new evidence regarding the lateralized localization of face individualization mechanisms in the human brain.

Journal ArticleDOI
TL;DR: The results of this second experiment indicate that attentional selection in tasks such as the Stroop task, which contain multiple potential sources of relevant information, acts more by modulating the processing of task-irrelevant information than by modulated processing oftask-relevant information.
Abstract: The brain's attentional system identifies and selects information that is task-relevant while ignoring information that is task-irrelevant. In two experiments using functional magnetic resonance imaging, we examined the effects of varying task-relevant information compared to task-irrelevant information. In the first experiment, we compared patterns of activation as attentional demands were increased for two Stroop tasks that differed in the task-relevant information, but not the task-irrelevant information: a color–word task and a spatial–word task. Distinct subdivisions of dorsolateral prefrontal cortex and the precuneus became activated for each task, indicating differential sensitivity of these regions to task-relevant information (e.g., spatial information vs. color). In the second experiment, we compared patterns of activation with increased attentional demands for two Stroop tasks that differed in task-irrelevant information, but not task-relevant information: a color–word task and color–object task. Little differentiation in activation for dorsolateral prefrontal and precuneus regions was observed, indicating a relative insensitivity of these regions to task-irrelevant information. However, we observed a differentiation in the pattern of activity for posterior regions. There were unique areas of activation in parietal regions for the color–word task and in occipitotemporal regions for the color–object task. No increase in activation was observed in regions responsible for processing the perceptual attribute of color. The results of this second experiment indicate that attentional selection in tasks such as the Stroop task, which contain multiple potential sources of relevant information (e.g., the word vs. its ink color), acts more by modulating the processing of task-irrelevant information than by modulating processing of task-relevant information.

Journal ArticleDOI
TL;DR: Comparison and simple addition fact retrieval revealed a fronto-parietal network involving mainly the left intraparietal sulcus, the superior parietal lobule and the precentral gyrus, whereas addition also activated the orbito-frontal areas and the anterior insula in the right hemisphere.
Abstract: Positron emission tomography was used to localize the cerebral networks specifically involved in three basic numerical processes: arabic numeral processing, numerical magnitude comparison, and retrieval of simple addition facts. Relative cerebral blood flow changes were measured while normal volunteers were resting with eyes closed, making physical judgment on nonnumerical characters or arabic digits, comparing, or adding the same digits. Processing arabic digits bilaterally produced a large nonspecific activation of occipito-parietal areas, as well as a specific activation of the right anterior insula. Comparison and simple addition fact retrieval revealed a fronto-parietal network involving mainly the left intraparietal sulcus, the superior parietal lobule and the precentral gyrus. Comparison also activated, but to a lesser extent, the right superior parietal lobe, whereas addition also activated the orbito-frontal areas and the anterior insula in the right hemisphere. Implications for current anatomo-functional models of numerical cognition are drawn.

Journal ArticleDOI
TL;DR: This finding indicates that syntactic and semantic processes are autonomous during an early processing stage, whereas these information types interact during a later processing phase.
Abstract: This experiment explored the effect of semantic expectancy on the processing of grammatical gender, and vice versa, in German using event-related-potentials (ERPs). Subjects were presented with correct sentences and sentences containing an article-noun gender agreement violation. The cloze probability of the nouns was either high or low. ERPs were measured on the nouns. The low-cloze nouns evoked a larger N400 than the high-cloze nouns. Gender violations elicited a left-anterior negativity (LAN, 300–600 msec) for all nouns. An additional P600 component was found only in high-cloze nouns. The N400 was independent of the gender mismatch variable; the LAN was independent of the semantic variable, whereas an interaction of the two variables was found in the P600. This finding indicates that syntactic and semantic processes are autonomous during an early processing stage, whereas these information types interact during a later processing phase.

Journal ArticleDOI
TL;DR: The results of Experiments 1 and 2 suggest that phonological processing per se does not necessarily recruit frontal areas, and postulate that frontal activation is a product of segmentation processes in speech perception, or alternatively, working memory demands required for such processing.
Abstract: Phonological processes map sound information onto higher levels of language processing and provide the mechanisms by which verbal information can be temporarily stored in working memory. Despite a strong convergence of data suggesting both left lateralization and distributed encoding in the anterior and posterior perisylvian language areas, the nature and brain encoding of phonological subprocesses remain ambiguous. The present study used functional magnetic resonance imaging (fMRI) to investigate the conditions under which anterior (lateral frontal) areas are activated during speech-discrimination tasks that differ in segmental processing demands. In two experiments, subjects performed "same/ different" judgments on the first sound of pairs of words. In the first experiment, the speech stimuli did not require overt segmentation of the initial consonant from the rest of the word, since the "different" pairs only varied in the phonetic voicing of the initial consonant (e.g., dip-tip). In the second experiment, the speech stimuli required segmentation since "different" pairs both varied in initial consonant voicing and contained different vowels and final consonants (e.g., dip-ten). These speech conditions were compared to a tone-discrimination control condition. Behavioral data showed that subjects were highly accurate in both experiments, but revealed different patterns of reaction-time latencies between the two experiments. The imaging data indicated that whereas both speech conditions showed superior temporal activation when compared to tone discrimination, only the second experiment showed consistent evidence of frontal activity. Taken together, the results of Experiments 1 and 2 suggest that phonological processing per se does not necessarily recruit frontal areas. We postulate that frontal activation is a product of segmentation processes in speech perception, or alternatively, working memory demands required for such processing.

Journal ArticleDOI
TL;DR: It is found that the superior parietal lobule, lateral premotor area, and supplementary motor area likely participate in the very act of mental rotation, and an activation in the left primary motor cortex seems to be associated with the right-hand button press at the end of the task period.
Abstract: The functional equivalence of overt movements and dynamic imagery is of fundamental importance in neuroscience. Here, we investigated the participation of the neocortical motor areas in a classic task of dynamic imagery, Shepard and Metzler’s mental rotation task, by time-resolved single-trial functional Magnetic Resonance Imaging (fMRI). The subjects performed the mental-rotation task 16 times, each time with different object pairs. Functional images were acquired for each pair separately, and the onset times and widths of the activation peaks in each area of interest were compared to the response times. We found a bilateral involvement of the superior parietal lobule, lateral premotor area, and supplementary motor area in all subjects; we found, furthermore, that those areas likely participate in the very act of mental rotation. We also found an activation in the left primary motor cortex, which seemed to be associated with the right-hand button press at the end of the task period.

Journal ArticleDOI
TL;DR: The results suggest that sex steroids can modulate working memory in men and can act as modulators of cognition throughout life.
Abstract: In the last ten years, numerous mechanisms by which sex steroids modify cortical function have been described. For example, estrogen replacement improves verbal memory in women, and animal studies have shown effects of estrogen on hippocampal synaptogenesis and function. Little is known about sex steroid effects on other aspects of memory, such as frontal lobe-mediated working memory. We examined the relationships between working memory and sex steroid concentrations and whether sex steroid supplementation would modify age-related loss of working memory in older men and women. Before hormone supplementation, working memory, tested with the Subject Ordered Pointing Test (SOP), was worse in older subjects than younger subjects, and there was no evidence of gender differences at either age. Testosterone supplementation improved working memory in older men, but a similar enhancement of working memory was not found in older women supplemented with estrogen. In men, testosterone and estrogen effects were reciprocal - with better working memory related to a higher testosterone to estrogen ratio. These results suggest that sex steroids can modulate working memory in men and can act as modulators of cognition throughout life.

Journal ArticleDOI
TL;DR: These results further support the proposal that different subregions of the prefrontal cortex subserve different functions during episodic retrieval, and are discussed in relation to a monitoring process, which operates when familiarity levels are close to response criterion and is associated with nonconfident judgements, and a recollective process which isassociated with the confident recognition of old words.
Abstract: We used event-related functional magnetic resonance imaging (efMRI) to investigate brain regions showing differential responses as a function of confidence in an episodic word recognition task. Twelve healthy volunteers indicated whether their old-new judgments were made with high or low confidence. Hemodynamic responses associated with each judgment were modeled with an "early" and a "late" response function. As predicted by the monitoring hypothesis generated from a previous recognition study [Henson, R. N. A., Rugg, M. D., Shallice, T., Josephs, O., & Dolan, R. J. (1999a). Recollection and familiarity in recognition memory: An event-related fMRI study. Journal of Neuroscience, 19, 3962-3972], a right dorsolateral prefrontal region showed a greater response to correct low- versus correct high-confidence judgements. Several regions, including the precuneus, posterior cingulate, and left lateral parietal cortex, showed greater responses to correct old than correct new judgements. The anterior left and right prefrontal regions also showed an old-new difference, but for these regions the difference emerged relatively later in time. These results further support the proposal that different subregions of the prefrontal cortex subserve different functions during episodic retrieval. These functions are discussed in relation to a monitoring process, which operates when familiarity levels are close to response criterion and is associated with nonconfident judgements, and a recollective process, which is associated with the confident recognition of old words.

Journal ArticleDOI
TL;DR: The present experiment explores the feasibility of conducting fMRI studies in nondemented and demented older adults by measuring hemodynamic response properties in an event-related design and finds that, even if absolute measurement differences do exist between subject groups, relative activation change should be preserved.
Abstract: Brain imaging based on functional MRI (fMRI) provides a powerful tool for characterizing age-related changes in functional anatomy. However, between-population comparisons confront potential differences in measurement properties. The present experiment explores the feasibility of conducting fMRI studies in nondemented and demented older adults by measuring hemodynamic response properties in an event-related design. A paradigm involving repeated presentation of sensory-motor response trials was administered to 41 participants (14 young adults, 14 nondemented older adults, and 13 demented older adults). For half of the trials a single sensory-motor event was presented in isolation and in the other half in pairs. Hemodynamic response characteristics to the isolated events allowed basic response properties (e.g., amplitude and variance) between subject groups to be contrasted. The paired events further allowed the summation properties of the hemodynamic response to be characterized. Robust and qualitatively similar activation maps were produced for all subject groups. Quantitative results showed that for certain regions, such as in the visual cortex, there were marked reductions in the amplitude of the hemodynamic response in older adults. In other regions, such as in the motor cortex, relatively intact response characteristics were observed. These results suggest caution should be exhibited in interpreting simple main effects in response amplitude between subject groups. However, across all regions examined, the summation of the hemodynamic response over trials was highly similar between groups. This latter finding suggests that, even if absolute measurement differences do exist between subject groups, relative activation change should be preserved. Designs that rely on group interactions between task conditions, parametric manipulations, or group interactions between regions should provide valuable data for making inferences about functional-anatomic changes between different populations.

Journal ArticleDOI
TL;DR: The results confirm that linguistic operations in sentence processing can be isolated from nonlinguistic operations and support the hypothesis of a specialization for syntactic processing.
Abstract: Two coordinated experiments using functional Magnetic Resonance Imaging (fMRI) investigated whether the brain represents language form (grammatical structure) separately from its meaning content (semantics). While in the scanner, 14 young, unimpaired adults listened to simple sentences that were either nonanomalous or contained a grammatical error (for example, *Trees can grew.), or a semantic anomaly (for example, *Trees can eat.). A same/different tone pitch judgment task provided a baseline that isolated brain activity associated with linguistic processing from background activity generated by attention to the task and analysis of the auditory input. Sites selectively activated by sentence processing were found in both hemispheres in inferior frontal, middle, and superior frontal, superior temporal, and temporo-parietal regions. Effects of syntactic and semantic anomalies were differentiated by some nonoverlapping areas of activation: Syntactic anomaly triggered significantly increased activity in and around Broca’s area, whereas semantic anomaly activated several other sites anteriorly and posteriorly, among them Wernicke’s area. These dissociations occurred when listeners were not required to attend to the anomaly. The results confirm that linguistic operations in sentence processing can be isolated from nonlinguistic operations and support the hypothesis of a specialization for syntactic processing.

Journal ArticleDOI
TL;DR: It is proposed that the representation of objects in the ventral visual pathway, including both occipital and temporal regions, is not restricted to small, highly selective patches of cortex but, instead, is a distributed representation of information about object form within this distributed system.
Abstract: Recently, we identified, using fMRI, three bilateral regions in the ventral temporal cortex that responded preferentially to faces, houses, and chairs [Ishai, A., Ungerleider, L. G., Martin, A., Schouten, J. L., & Haxby, J. V. (1999). Distributed representation of objects in the human ventral visual pathway. Proceedings of the National Academy of Sciences, U.S.A., 96, 9379-9384]. Here, we report differential patterns of activation, similar to those seen in the ventral temporal cortex, in bilateral regions of the ventral occipital cortex. We also found category-related responses in the dorsal occipital cortex and in the superior temporal sulcus. Moreover, rather than activating discrete, segregated areas, each category was associated with its own differential pattern of response across a broad expanse of cortex. The distributed patterns of response were similar across tasks (passive viewing, delayed matching) and presentation formats (photographs, line drawings). We propose that the representation of objects in the ventral visual pathway, including both occipital and temporal regions, is not restricted to small, highly selective patches of cortex but, instead, is a distributed representation of information about object form. Within this distributed system, the representation of faces appears to be less extensive as compared to the representations of nonface objects.

Journal ArticleDOI
TL;DR: The results of this study support the extended dual-coding hypothesis that superior associative connections and the use of mental imagery both contribute to processing advantages for concrete words over abstract words.
Abstract: Words representing concrete concepts are processed more quickly and efficiently than words representing abstract concepts. Concreteness effects have also been observed in studies using event-related brain potentials (ERPs). The aim of this study was to examine concrete and abstract words using both reaction time (RT) and ERP measurements to determine (1) at what point in the stream of cognitive processing concreteness effects emerge and (2) how different types of cognitive operations influence these concreteness effects. Three groups of subjects performed a sentence verification task in which the final word of each sentence was concrete or abstract. For each group the truthfulness judgment required either (1) image generation, (2) semantic decision, or (3) evaluation of surface characteristics. Concrete and abstract words produced similar RTs and ERPs in the surface task, suggesting that postlexical semantic processing is necessary to elicit concreteness effects. In both the semantic and imagery tasks, RTs were shorter for concrete than for abstract words. This difference was greatest in the imagery task. Also, in both of these tasks concrete words elicited more negative ERPs than abstract words between 300 and 550 msec (N400). This effect was widespread across the scalp and may reflect activation in a linguistic semantic system common to both concrete and abstract words. ERPs were also more negative for concrete than abstract words between 550 and 800 msec. This effect was more frontally distributed and was most evident in the imagery task. We propose that this later anterior effect represents a distinct ERP component (N700) that is sensitive to the use of mental imagery. The N700 may reflect the a access of specific characteristics of the imaged item or activation in a working memory system specific to mental imagery. These results also support the extended dual-coding hypothesis that superior associative connections and the use of mental imagery both contribute to processing advantages for concrete words over abstract words.

Journal ArticleDOI
TL;DR: Testing of the hypothesis that anterior cingulate cortex appears to be active in task situations where there is a need to override a prepotent response tendency, when responding is underdetermined, and when errors are made extends to task situations involving underd determined responding.
Abstract: Studies of a range of higher cognitive functions consistently activate a region of anterior cingulate cortex (ACC), typically posterior to the genu and superior to the corpus collosum. In particular, this ACC region appears to be active in task situations where there is a need to override a prepotent response tendency, when responding is underdetermined, and when errors are made. We have hypothesized that the function of this ACC region is to monitor for the presence of "crosstalk" or competition between incompatible responses. In prior work, we provided initial support for this hypothesis, demonstrating ACC activity in the same region both during error trials and during correct trials in task conditions designed to elicit greater response competition. In the present study, we extend our testing of this hypothesis to task situations involving underdetermined responding. Specifically, 14 healthy control subjects performed a verb-generation task during event-related functional magnetic resonance imaging (fMRI), with the on-line acquisition of overt verbal responses. The results demonstrated that the ACC, and only the ACC, was more active in a series of task conditions that elicited competition among alternative responses. These conditions included a greater ACC response to: (1) Nouns categorized as low vs. high constraint (i.e., during a norming study, multiple verbs were produced with equal frequency vs. a single verb that produced much more frequently than any other); (2) the production of verbs that were weak associates, rather than, strong associates of particular nouns; and (3) the production of verbs that were weak associates for nouns categorized as high constraint. We discuss the implication of these results for understanding the role that the ACC plays in human cognition.

Journal ArticleDOI
TL;DR: It is suggested that the left-inferior-temporal/fusiform gyrus may play a key role in using pragmatic, semantic, and subcategorical information to construct a higher representation of meaning of sentences.
Abstract: Extracting meaning from speech requires the use of pragmatic, semantic, and syntactic information. A central question is: Does the processing of these different types of linguistic information have common or distinct neuroanatomical substrates? We addressed this issue using functional magnetic resonance imaging (fMRI) to measure neural activity when subjects listened to spoken normal sentences contrasted with sentences that had either (A) pragmatical, (B) semantic (selection restriction), or (C) syntactic (subcategorical) violations sentences. All three contrasts revealed robust activation of the left-inferior-temporal/fusiform gyrus. Activity in this area was also observed in a combined analysis of all three experiments, suggesting that it was modulated by all three types of linguistic violation. Planned statistical comparisons between the three experiments revealed (1) a greater difference between conditions in activation of the left-superior-temporal gyrus for the pragmatic experiment than the semantic/syntactic experiments; (2) a greater difference between conditions in activation of the right-superior and middle-temporal gyrus in the semantic experiment than in the syntactic experiment; and (3) no regions activated to a greater degree in the syntactic experiment than in the semantic experiment. These data show that, while left- and right-superior-temporal regions may be differentially involved in processing pragmatic and lexico-semantic information within sentences, the left-inferior-temporal/fusiform gyrus is involved in processing all three types of linguistic information. We suggest that this region may play a key role in using pragmatic, semantic (selection restriction), and subcategorical information to construct a higher representation of meaning of sentences.

Journal ArticleDOI
TL;DR: An integrated physical, genetic, and transcriptional map of the WMS and flanking regions is generated using multicolor metaphase and interphase fluorescence in situ hybridization of bacterial artificial chromosomes and P1 artificial chromosomes, BAC end sequencing, PCR gene marker and microsatellite, large-scale sequencing, cDNA library, and database analyses, which establish regions and consequent gene candidates for WMS features including mental retardation, hypersociability, and facial features.
Abstract: Williams syndrome (WMS) is a most compelling model of human cognition, of human genome organization, and of evolution. Due to a deletion in chromosome band 7q11.23, subjects have cardiovascular, connective tissue, and neurodevelopmental deficits. Given the striking peaks and valleys in neurocognition including deficits in visual-spatial and global processing, preserved language and face processing, hypersociability, and heightened affect, the goal of this work has been to identify the genes that are responsible, the cause of the deletion, and its origin in primate evolution. To do this, we have generated an integrated physical, genetic, and transcriptional map of the WMS and flanking regions using multicolor metaphase and interphase fluorescence in situ hybridization (FISH) of bacterial artificial chromosomes (BACs) and P1 artificial chromosomes (PACs), BAC end sequencing, PCR gene marker and microsatellite, large-scale sequencing, cDNA library, and database analyses. The results indicate the genomic organization of the WMS region as two nested duplicated regions flanking a largely single-copy region. There are at least two common deletion breakpoints, one in the centromeric and at least two in the telomeric repeated regions. Clones anchoring the unique to the repeated regions are defined along with three new pseudogene families. Primate studies indicate an evolutionary hot spot for chromosomal inversion in the WMS region. A cognitive phenotypic map of WMS is presented, which combines previous data with five further WMS subjects and three atypical WMS subjects with deletions; two larger (deleted for D7S489L) and one smaller, deleted for genes telomeric to FZD9, through LIMK1, but not WSCR1 or telomeric. The results establish regions and consequent gene candidates for WMS features including mental retardation, hypersociability, and facial features. The approach provides the basis for defining pathways linking genetic underpinnings with the neuroanatomical, functional, and behavioral consequences that result in human cognition.

Journal ArticleDOI
TL;DR: Methods for viewing large portions of the brain's surface in a single flattened representation are described and the flattened representation preserves several key spatial relationships between regions on the cortical surface.
Abstract: Much of the human cortical surface is obscured from view by the complex pattern of folds, making the spatial relationship between different surface locations hard to interpret. Methods for viewing large portions of the brain's surface in a single flattened representation are described. The flattened representation preserves several key spatial relationships between regions on the cortical surface. The principles used in the implementations and evaluations of these implementations using artificial test surfaces are provided. Results of applying the methods to structural magnetic resonance measurements of the human brain are also shown. The implementation details are available in the source code, which is freely available on the Internet.