scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cognitive Neuroscience in 2010"


Journal ArticleDOI
TL;DR: The DMN supports common aspects of these cognitive behaviors involved in simulating an internalized experience, including autobiographical remembering, prospection, and theory-of-mind reasoning.
Abstract: The ability to rise above the present environment and reflect upon the past, the future, and the minds of others is a fundamentally defining human feature. It has been proposed that these three self-referential processes involve a highly interconnected core set of brain structures known as the default mode network (DMN). The DMN appears to be active when individuals are engaged in stimulus-independent thought. This network is a likely candidate for supporting multiple processes, but this idea has not been tested directly. We used fMRI to examine brain activity during autobiographical remembering, prospection, and theory-of-mind reasoning. Using multivariate analyses, we found a common pattern of neural activation underlying all three processes in the DMN. In addition, autobiographical remembering and prospection engaged midline DMN structures to a greater degree and theory-of-mind reasoning engaged lateral DMN areas. A functional connectivity analysis revealed that activity of a critical node in the DMN, medial prefrontal cortex, was correlated with activity in other regions in the DMN during all three tasks. We conclude that the DMN supports common aspects of these cognitive behaviors involved in simulating an internalized experience.

867 citations


Journal ArticleDOI
TL;DR: The current meta-analysis results indicate that the key elements of basic emotion views are reflected in neural correlates identified by neuroimaging studies, complementing prior studies that have demonstrated neural correlates for the affective dimensions of arousal and valence.
Abstract: What is the basic structure of emotional experience and how is it represented in the human brain? One highly influential theory, discrete basic emotions, proposes a limited set of basic emotions such as happiness and fear, which are characterized by unique physiological and neural profiles. Although many studies using diverse methods have linked particular brain structures with specific basic emotions, evidence from individual neuroimaging studies and from neuroimaging meta-analyses has been inconclusive regarding whether basic emotions are associated with both consistent and discriminable regional brain activations. We revisited this question, using activation likelihood estimation (ALE), which allows spatially sensitive, voxelwise statistical comparison of results from multiple studies. In addition, we examined substantially more studies than previous meta-analyses. The ALE meta-analysis yielded results consistent with basic emotion theory. Each of the emotions examined (fear, anger, disgust, sadness, and happiness) was characterized by consistent neural correlates across studies, as defined by reliable correlations with regional brain activations. In addition, the activation patterns associated with each emotion were discrete (discriminable from the other emotions in pairwise contrasts) and overlapped substantially with structure-function correspondences identified using other approaches, providing converging evidence that discrete basic emotions have consistent and discriminable neural correlates. Complementing prior studies that have demonstrated neural correlates for the affective dimensions of arousal and valence, the current meta-analysis results indicate that the key elements of basic emotion views are reflected in neural correlates identified by neuroimaging studies.

608 citations


Journal ArticleDOI
TL;DR: The authors conducted a meta-analysis of 164 functional neuroimaging studies of semantic processing to investigate factors that might contribute to the inconsistency in previous results and found that the specific pattern of ATL activation may be influenced by stimulus type due to variations across this region in the degree of connectivity with modality-specific areas in posterior temporal cortex.
Abstract: The role of the anterior temporal lobes (ATLs) in semantic cognition is not clear from the current literature. Semantic dementia patients show a progressive and a specific semantic impairment, following bilateral atrophy of the ATLs. Neuroimaging studies of healthy participants, however, do not consistently show ATL activation during semantic tasks. Consequently, several influential theories of semantic memory do not ascribe a central role to the ATLs. We conducted a meta-analysis of 164 functional neuroimaging studies of semantic processing to investigate factors that might contribute to the inconsistency in previous results. Four factors influenced the likelihood of finding ATL activation: (1) the use of PET versus fMRI, reflecting the fact that fMRI but not PET is sensitive to distortion artifacts caused by large variations in magnetic susceptibility in the area of the ATL; (2) a field of view (FOV) of more than 15 cm, thereby ensuring whole-brain coverage; (3) the use of a high baseline task to prevent subtraction of otherwise uncontrolled semantic activation; (4) the inclusion of the ATL as an ROI. The type of stimuli or task did not influence the likelihood of ATL activation, consistent with the view that this region underpins an amodal semantic system. Spoken words, written words, and picture stimuli produced overlapping ATL peaks. On average, these were more inferior for picture-based tasks. We suggest that the specific pattern of ATL activation may be influenced by stimulus type due to variations across this region in the degree of connectivity with modality-specific areas in posterior temporal cortex.

562 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared distraction and reappraisal and found both similarities and differences between the two forms of emotion regulation and found that both resulted in decreased negative affect, decreased activation in the amygdala, and increased activation in prefrontal and cingulate regions.
Abstract: Distraction and reappraisal are two commonly used forms of cognitive emotion regulation. Functional neuroimaging studies have shown that each one depends upon interactions between pFC, interpreted as implementing cognitive control, and limbic regions, interpreted as mediating emotional responses. However, no study has directly compared distraction with reappraisal, and it remains unclear whether they draw upon different neural mechanisms and have different emotional consequences. The present fMRI study compared distraction and reappraisal and found both similarities and differences between the two forms of emotion regulation. Both resulted in decreased negative affect, decreased activation in the amygdala, and increased activation in prefrontal and cingulate regions. Relative to distraction, reappraisal led to greater decreases in negative affect and to greater increases in a network of regions associated with processing affective meaning (medial prefrontal and anterior temporal cortices). Relative to reappraisal, distraction led to greater decreases in amygdala activation and to greater increases in activation in prefrontal and parietal regions. Taken together, these data suggest that distraction and reappraisal differentially engage neural systems involved in attentional deployment and cognitive reframing and have different emotional consequences.

530 citations


Journal Article
TL;DR: A meta-analysis of 164 functional neuroimaging studies of semantic processing suggests that the specific pattern of ATL activation may be influenced by stimulus type due to variations across this region in the degree of connectivity with modality-specific areas in posterior temporal cortex.

477 citations


Journal ArticleDOI
TL;DR: Automated calculation of whole-brain volume is presented to demonstrate use of the data for measuring differences associated with normal aging and Alzheimer's disease.
Abstract: The Open Access Series of Imaging Studies is a series of neuroimaging data sets that are publicly available for study and analysis. The present MRI data set consists of a longitudinal collection of 150 subjects aged 60 to 96 years all acquired on the same scanner using identical sequences. Each subject was scanned on two or more visits, separated by at least 1 year for a total of 373 imaging sessions. Subjects were characterized using the Clinical Dementia Rating (CDR) as either nondemented or with very mild to mild Alzheimer's disease. Seventy-two of the subjects were characterized as nondemented throughout the study. Sixty-four of the included subjects were characterized as demented at the time of their initial visits and remained so for subsequent scans, including 51 individuals with CDR 0.5 similar level of impairment to individuals elsewhere considered to have "mild cognitive impairment." Another 14 subjects were characterized as nondemented at the time of their initial visit (CDR 0) and were subsequently characterized as demented at a later visit (CDR > 0). The subjects were all right-handed and include both men (n = 62) and women (n = 88). For each scanning session, three or four individual T1-weighted MRI scans were obtained. Multiple within-session acquisitions provide extremely high contrast to noise, making the data amenable to a wide range of analytic approaches including automated computational analysis. Automated calculation of whole-brain volume is presented to demonstrate use of the data for measuring differences associated with normal aging and Alzheimer's disease.

450 citations


Journal ArticleDOI
TL;DR: This work provides the first behavioral and neural evidence for an intracultural advantage (better performance for same- vs. other-culture) in mental state decoding in a sample of native Japanese and white American participants and examines the neural correlates of this intrusion using fMRI.
Abstract: The ability to infer others' thoughts, intentions, and feelings is regarded as uniquely human. Over the last few decades, this remarkable ability has captivated the attention of philosophers, primatologists, clinical and developmental psychologists, anthropologists, social psychologists, and cognitive neuroscientists. Most would agree that the capacity to reason about others' mental states is innately prepared, essential for successful human social interaction. Whether this ability is culturally tuned, however, remains entirely uncharted on both the behavioral and neural levels. Here we provide the first behavioral and neural evidence for an intracultural advantage (better performance for same-vs. other-culture) in mental state decoding in a sample of native Japanese and white American participants. We examined the neural correlates of this intracultural advantage using fMRI, revealing greater bilateral posterior superior temporal sulci recruitment during same-versus other-culture mental state decoding in both cultural groups. These findings offer preliminary support for cultural consistency in the neurological architecture subserving high-level mental state reasoning, as well as its differential recruitment based on cultural group membership.

356 citations


Journal ArticleDOI
TL;DR: Results demonstrate that following someone else's gaze to engage in joint attention resulted in activation of anterior portion of medial prefrontal cortex known to be involved in the supramodal coordination of perceptual and cognitive processes, and support the idea that other-initiated joint attention relies upon recruitment of MPFC previously related to the “meeting of minds.”
Abstract: The ability and motivation to share attention is a unique aspect of human cognition. Despite its significance, the neural basis remains elusive. To investigate the neural correlates of joint attention, we developed a novel, interactive research paradigm in which participants' gaze behavior-as measured by an eye tracking device-was used to contingently control the gaze of a computer-animated character. Instructed that the character on screen was controlled by a real person outside the scanner, 21 participants interacted with the virtual other while undergoing fMRI. Experimental variations focused on leading versus following the gaze of the character when fixating one of three objects also shown on the screen. In concordance with our hypotheses, results demonstrate, firstly, that following someone else's gaze to engage in joint attention resulted in activation of anterior portion of medial prefrontal cortex (MPFC) known to be involved in the supramodal coordination of perceptual and cognitive processes. Secondly, directing someone else's gaze toward an object activated the ventral striatum which-in light of ratings obtained from participants-appears to underlie the hedonic aspects of sharing attention. The data, therefore, support the idea that other-initiated joint attention relies upon recruitment of MPFC previously related to the "meeting of minds." In contrast, self-initiated joint attention leads to a differential increase of neural activity in reward-related brain areas, which might contribute to the uniquely human motivation to engage in the sharing of experiences.

353 citations


Journal ArticleDOI
TL;DR: It is demonstrated that identical neural circuits are implementing processes involved in mentalizing of both self and other and that the nature of such processes may be the integration of low-level embodied processes within higher level inference-based mentalizing.
Abstract: Although many examples exist for shared neural representations of self and other, it is unknown how such shared representations interact with the rest of the brain. Furthermore, do high-level inference-based shared mentalizing representations interact with lower level embodied/simulation-based shared representations? We used functional neuroimaging (fMRI) and a functional connectivity approach to assess these questions during high-level inference-based mentalizing. Shared mentalizing representations in ventromedial prefrontal cortex, posterior cingulate/precuneus, and temporo-parietal junction (TPJ) all exhibited identical functional connectivity patterns during mentalizing of both self and other. Connectivity patterns were distributed across low-level embodied neural systems such as the frontal operculum/ventral premotor cortex, the anterior insula, the primary sensorimotor cortex, and the presupplementary motor area. These results demonstrate that identical neural circuits are implementing processes involved in mentalizing of both self and other and that the nature of such processes may be the integration of low-level embodied processes within higher level inference-based mentalizing.

353 citations


Journal ArticleDOI
TL;DR: A nonlinear relationship between load and both performance and brain activity is hypothesized and predicted that asymptotes in the brain activation function should correlate with performance asymPTotes (corresponding to working memory span).
Abstract: Neuroimaging data emphasize that older adults often show greater extent of brain activation than younger adults for similar objective levels of difficulty. A possible interpretation of this finding is that older adults need to recruit neuronal resources at lower loads than younger adults, leaving no resources for higher loads, and thus leading to performance decrements [Compensation-Related Utilization of Neural Circuits Hypothesis; e.g., Reuter-Lorenz, P. A., & Cappell, K. A. Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science,17, 177-182, 2008]. The Compensation-Related Utilization of Neural Circuits Hypothesis leads to the prediction that activation differences between younger and older adults should disappear when task difficulty is made subjectively comparable. In a Sternberg memory search task, this can be achieved by assessing brain activity as a function of load relative to the individual's memory span, which declines with age. Specifically, we hypothesized a nonlinear relationship between load and both performance and brain activity and predicted that asymptotes in the brain activation function should correlate with performance asymptotes (corresponding to working memory span). The results suggest that age differences in brain activation can be largely attributed to individual variations in working memory span. Interestingly, the brain activation data show a sigmoid relationship with load. Results are discussed in terms of Cowan's [Cowan, N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioraland Brain Sciences,24, 87-114, 2001] model of working memory and theories of impaired inhibitory processes in aging.

343 citations


Journal ArticleDOI
TL;DR: The findings suggest that testosterone increases the propensity toward aggression because of reduced activation of the neural circuitry of impulse control and self-regulation.
Abstract: Testosterone plays a role in aggressive behavior, but the mechanisms remain unclear. The present study tested the hypothesis that testosterone influences aggression through the OFC, a region implicated in self-regulation and impulse control. In a decision-making paradigm in which people chose between aggression and monetary reward (the ultimatum game), testosterone was associated with increased aggression following social provocation (rejecting unfair offers). The effect of testosterone on aggression was explained by reduced activity in the medial OFC. The findings suggest that testosterone increases the propensity toward aggression because of reduced activation of the neural circuitry of impulse control and self-regulation.

Journal ArticleDOI
TL;DR: The OFA and the fSTS were sensitive only to the presence of real face parts, not to the correct configuration of those parts, whereas the FFA was sensitive to both face parts and face configuration.
Abstract: fMRI studies have reported three regions in human ventral visual cortex that respond selectively to faces: the occipital face area (OFA), the fusiform face area (FFA), and a face-selective region in the superior temporal sulcus (fSTS). Here, we asked whether these areas respond to two first-order aspects of the face argued to be important for face perception, face parts (eyes, nose, and mouth), and the T-shaped spatial configuration of these parts. Specifically, we measured the magnitude of response in these areas to stimuli that (i) either contained real face parts, or did not, and (ii) either had veridical face configurations, or did not. The OFA and the fSTS were sensitive only to the presence of real face parts, not to the correct configuration of those parts, whereas the FFA was sensitive to both face parts and face configuration. Further, only in the FFA was the response to configuration and part information correlated across voxels, suggesting that the FFA contains a unified representation that includes both kinds of information. In combination with prior results from fMRI, TMS, MEG, and patient studies, our data illuminate the functional division of labor in the OFA, FFA, and fSTS.

Journal ArticleDOI
TL;DR: A neural model is developed that extends the existing DIVA model of speech production in two complementary ways and fills a void in current speech research by providing formal mechanistic hypotheses about both phonological and phonetic processes that are grounded by neuroanatomy and physiology.
Abstract: Speakers plan the phonological content of their utterances before their release as speech motor acts. Using a finite alphabet of learned phonemes and a relatively small number of syllable structures, speakers are able to rapidly plan and produce arbitrary syllable sequences that fall within the rules of their language. The class of computational models of sequence planning and performance termed competitive queuing models have followed K. S. Lashley [The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior (pp. 112-136). New York: Wiley, 1951] in assuming that inherently parallel neural representations underlie serial action, and this idea is increasingly supported by experimental evidence. In this article, we developed a neural model that extends the existing DIVA model of speech production in two complementary ways. The new model includes paired structure and content subsystems [cf. MacNeilage, P. F. The frame/content theory of evolution of speech production. Behavioral and Brain Sciences,21, 499-511, 1998] that provide parallel representations of a forthcoming speech plan as well as mechanisms for interfacing these phonological planning representations with learned sensorimotor programs to enable stepping through multisyllabic speech plans. On the basis of previous reports, the model's components are hypothesized to be localized to specific cortical and subcortical structures, including the left inferior frontal sulcus, the medial premotor cortex, the basal ganglia, and the thalamus. The new model, called gradient order DIVA, thus fills a void in current speech research by providing formal mechanistic hypotheses about both phonological and phonetic processes that are grounded by neuroanatomy and physiology. This framework also generates predictions that can be tested in future neuroimaging and clinical case studies.

Journal ArticleDOI
TL;DR: Findings suggest that the early, but not late, phase of visuomotor adaptation engages spatial working memory processes, similar to previous studies of motor learning.
Abstract: Previous studies of motor learning have described the importance of cognitive processes during the early stages of learning; however, the precise nature of these processes and their neural correlates remains unclear. The present study investigated whether spatial working memory (SWM) contributes to visuomotor adaptation depending on the stage of learning. We tested the hypothesis that SWM would contribute early in the adaptation process by measuring (i) the correlation between SWM tasks and the rate of adaptation, and (ii) the overlap between the neural substrates of a SWM mental rotation task and visuomotor adaptation. Participants completed a battery of neuropsychological tests, a visuomotor adaptation task, and an SWM task involving mental rotation, with the latter two tasks performed in a 3.0-T MRI scanner. Performance on a neuropsychological test of SWM (two-dimensional mental rotation) correlated with the rate of early, but not late, visuomotor adaptation. During the early, but not late, adaptation period, participants showed overlapping brain activation with the SWM mental rotation task, in right dorsolateral prefrontal cortex and the bilateral inferior parietal lobules. These findings suggest that the early, but not late, phase of visuomotor adaptation engages SWM processes.

Journal ArticleDOI
TL;DR: This study suggests that multisensory “sluggish attention shifting”—related to a temporoparietal dysfunction—selectively impairs the sublexical mechanisms that are critical for reading development and may offer a new approach for early identification and remediation of developmental dyslexia.
Abstract: Although the dominant approach posits that developmental dyslexia arises from deficits in systems that are exclusively linguistic in nature (ie, phonological deficit theory), dyslexics show a variety of lower level deficits in sensory and attentional processing Although their link to the reading disorder remains contentious, recent empirical and computational studies suggest that spatial attention plays an important role in phonological decoding The present behavioral study investigated exogenous spatial attention in dyslexic children and matched controls by measuring RTs to visual and auditory stimuli in cued-detection tasks Dyslexics with poor nonword decoding accuracy showed a slower time course of visual and auditory (multisensory) spatial attention compared with both chronological age and reading level controls as well as compared with dyslexics with slow but accurate nonword decoding Individual differences in the time course of multisensory spatial attention accounted for 31% of unique variance in the nonword reading performance of the entire dyslexic sample after controlling for age, IQ, and phonological skills The present study suggests that multisensory "sluggish attention shifting"-related to a temporoparietal dysfunction-selectively impairs the sublexical mechanisms that are critical for reading development These findings may offer a new approach for early identification and remediation of developmental dyslexia

Journal ArticleDOI
TL;DR: Results showed that participants were significantly more sensitive to the pain of AIDS transfusion targets as compared with healthy and AIDS drug targets, as evidenced by significantly higher pain and empathy ratings during video evaluation and significantly greater hemodynamic activity in areas associated with pain processing.
Abstract: This investigation combined behavioral and functional neuroimaging measures to explore whether perception of pain is modulated by the target's stigmatized status and whether the target bore responsibility for that stigma. During fMRI scanning, participants were exposed to a series of short video clips featuring age-matched individuals experiencing pain who were (a) similar to the participant (healthy), (b) stigmatized but not responsible for their stigmatized condition (infected with AIDS as a result of an infected blood transfusion), or (c) stigmatized and responsible for their stigmatized condition (infected with AIDS as a result of intravenous drug use). Explicit pain and empathy ratings for the targets were obtained outside of the MRI environment, along with a variety of implicit and explicit measures of AIDS bias. Results showed that participants were significantly more sensitive to the pain of AIDS transfusion targets as compared with healthy and AIDS drug targets, as evidenced by significantly higher pain and empathy ratings during video evaluation and significantly greater hemodynamic activity in areas associated with pain processing (i.e., right anterior insula, anterior midcingulate cortex, periaqueductal gray). In contrast, significantly less activity was observed in the anterior midcingulate cortex for AIDS drug targets as compared with healthy controls. Further, behavioral differences between healthy and AIDS drug targets were moderated by the extent to which participants blamed AIDS drug individuals for their condition. Controlling for both explicit and implicit AIDS bias, the more participants blamed these targets, the less pain they attributed to them as compared with healthy controls. The present study reveals that empathic resonance is moderated early in information processing by a priori attitudes toward the target group.

Journal ArticleDOI
TL;DR: The current results support the view that cognitive and motor functions are segregated in the cerebellum and suggest that the posterior cerebellar activity during a demanding cognitive task is involved with optimization of the response speed.
Abstract: We applied fMRI and diffusion-weighted MRI to study the segregation of cognitive and motor functions in the human cerebro-cerebellar system. Our fMRI results show that a load increase in a nonverbal auditory working memory task is associated with enhanced brain activity in the parietal, dorsal premotor, and lateral prefrontal cortices and in lobules VII-VIII of the posterior cerebellum, whereas a sensory-motor control task activated the motor/somatosensory, medial prefrontal, and posterior cingulate cortices and lobules V/VI of the anterior cerebellum. The load-dependent activity in the crus I/II had a specific relationship with cognitive performance: This activity correlated negatively with load-dependent increase in RTs. This correlation between brain activity and RTs was not observed in the sensory-motor task in the activated cerebellar regions. Furthermore, probabilistic tractography analysis of the diffusion-weighted MRI data suggests that the tracts between the cerebral and the cerebellar areas exhibiting cognitive load-dependent and sensory-motor activity are mainly projected via separated pontine (feed-forward tracts) and thalamic (feedback tracts) nuclei. The tractography results also indicate that the crus I/II in the posterior cerebellum is linked with the lateral prefrontal areas activated by cognitive load increase, whereas the anterior cerebellar lobe is not. The current results support the view that cognitive and motor functions are segregated in the cerebellum. On the basis of these results and theories of the function of the cerebellum, we suggest that the posterior cerebellar activity during a demanding cognitive task is involved with optimization of the response speed.

Journal ArticleDOI
TL;DR: Investigation of the neural correlates of valuation computations while individuals freely decided whether to donate to real charities or to take the money for themselves in the presence or absence of observers found that activation in the ventral striatum before the same choice (“donate” or “not donate”) was significantly modulated by the presence of observers.
Abstract: Human behaviors are motivated not only by materialistic rewards but also by abstract social rewards, such as the approval of others. When choosing an action in social situations, to evaluate each action, the brain must convert different types of reward (such as money or social approval) into a common scale. Here using fMRI, we investigated the neural correlates of such valuation computations while individuals freely decided whether to donate to real charities or to take the money for themselves in the presence or absence of observers. Behavioral evidence showed that the mere presence of observers increased donation rates, and neuroimaging results revealed that activation in the ventral striatum before the same choice ("donate" or "not donate") was significantly modulated by the presence of observers. Particularly high striatal activations were observed when a high social reward was expected (donation in public) and when there was the potential for monetary gain without social cost (no donation in the absence of observers). These findings highlight the importance of this area in representing both social and monetary rewards as a "decision utility" and add to the understanding of how the brain makes a choice using a "common neural currency" in social situations.

Journal ArticleDOI
TL;DR: Examination of whether priming cultural values of individualism and collectivism in bicultural individuals affects neural activity in cortical midline structures underlying self-relevant processes using functional magnetic resonance imaging suggests a neurobiological basis by which people acculturate to novel environments.
Abstract: People living in multicultural environments often encounter situations which require them to acquire different cultural schemas and to switch between these cultural schemas depending on their immediate sociocultural context. Prior behavioral studies show that priming cultural schemas reliably impacts mental processes and behavior underlying self-concept. However, less well understood is whether or not cultural priming affects neurobiological mechanisms underlying the self. Here we examined whether priming cultural values of individualism and collectivism in bicultural individuals affects neural activity in cortical midline structures underlying self-relevant processes using functional magnetic resonance imaging. Biculturals primed with individualistic values showed increased activation within medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC) during general relative to contextual self-judgments, whereas biculturals primed with collectivistic values showed increased response within MPFC and PCC during contextual relative to general self-judgments. Moreover, degree of cultural priming was positively correlated with degree of MPFC and PCC activity during culturally congruent self-judgments. These findings illustrate the dynamic influence of culture on neural representations underlying the self and, more broadly, suggest a neurobiological basis by which people acculturate to novel environments.

Journal ArticleDOI
TL;DR: Functional magnetic resonance imaging is used to assess how participants empathize with the feelings of patients who reacted with no pain to surgical procedures but with pain to a soft touch, corroborating that empathy is a flexible phenomenon which involves both automatic and controlled cognitive mechanisms.
Abstract: Previous research on the neural underpinnings of empathy has been limited to affective situations experienced in a similar way by an observer and a target individual. In daily life we also interact with people whose responses to affective stimuli can be very different from our own. How do we understand the affective states of these individuals? We used functional magnetic resonance imaging to assess how participants empathize with the feelings of patients who reacted with no pain to surgical procedures but with pain to a soft touch. Empathy for pain of these patients activated the same areas (insula, medial/anterior cingulate cortex) as empathy for persons who responded to painful stimuli in the same way as the observer. Empathy in a situation that was aversive only for the observer but neutral for the patient recruited areas involved in self-other distinction (dorsomedial prefrontal cortex) and cognitive control (right inferior frontal cortex). In addition, effective connectivity between the latter and areas implicated in affective processing was enhanced. This suggests that inferring the affective state of someone who is not like us can rely upon the same neural structures as empathy for someone who is similar to us. When strong emotional response tendencies exist though, these tendencies have to be overcome by executive functions. Our results demonstrate that the fronto-cortical attention network is crucially involved in this process, corroborating that empathy is a flexible phenomenon which involves both automatic and controlled cognitive mechanisms. Our findings have important implications for the understanding and promotion of empathy, demonstrating that regulation of one's egocentric perspective is crucial for understanding others.

Journal ArticleDOI
TL;DR: These findings are consistent with the notion that the anterior temporal lobes are crucial for conceptual knowledge whereas the left prefrontal and temporo-parietal cortices play a critical role in regulating semantic activation in a task-appropriate fashion.
Abstract: Semantic cognition-semantically driven verbal and nonverbal behavior-is composed of at least two interactive principal components: conceptual representations and executive control processes that regulate and shape activation within the semantic system. Previous studies indicate that semantic dementia follows from a progressive yet specific degradation of conceptual knowledge. In contrast, multimodal semantic impairment in aphasic patients (semantic aphasia [SA]) reflects damage to the control component of semantic cognition [Jefferies, E., & Lambon Ralph, M. A. Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. Brain,129, 2132-2147, 2006]. The purpose of the present study was to examine the nature of the semantic control deficits in SA in detail for the first time. Seven patients with SA were tested on four comprehension and naming tasks that directly manipulated the requirement for executive control in different ways. In line with many theories of cognitive control, the SA patients demonstrated three core features of impaired control: (i) they exhibited poor on-line manipulation and exploration of semantic knowledge; (ii) they exhibited poor inhibition of strongly associated distractors; and (iii) they exhibited reduced ability to focus on or augment less dominant aspects of semantic information, although the knowledge itself remained and could be successfully cued by external constraints provided by the examiner. Our findings are consistent with the notion that the anterior temporal lobes are crucial for conceptual knowledge whereas the left prefrontal and temporo-parietal cortices, damaged in patients with SA, play a critical role in regulating semantic activation in a task-appropriate fashion.

Journal ArticleDOI
TL;DR: It is suggested that a stress-induced switch from hippocampus-based to nucleus caudate-based memory systems can rescue performance, and corticosteroids promote the transition from spatial to stimulus–response memory systems.
Abstract: Stress and corticosteroid hormones are known to affect learning and memory processes. In this study, we examined whether stress and corticosteroids are capable of facilitating the switch between multiple memory systems in mice. For this purpose, we designed a task that allowed measurement of nucleus caudate-based stimulus-response and hippocampus-based spatial learning strategies. Naive mice used spatial strategies to locate an exit hole on a circular hole board at a fixed location flagged by a proximal stimulus. When the mice were either stressed or administered corticosterone before the task, 30-50% of the mice switched to a stimulus-response strategy. This switch between learning strategies was accompanied by a rescue of performance, whereas performance declined in the stressed mice that kept using the spatial strategy. Pretreatment with a mineralocorticoid receptor antagonist prevented the switch toward the stimulus-response strategy but led to deterioration of hippocampus-dependent performance. These findings (i) show that corticosteroids promote the transition from spatial to stimulus-response memory systems, (ii) provide evidence that the mineralocorticoid receptor underlies this corticosteroid-mediated switch, and (iii) suggest that a stress-induced switch from hippocampus-based to nucleus caudate-based memory systems can rescue performance.

Journal ArticleDOI
TL;DR: The effects of ketamine on in vivo recordings from the CA3 region of mouse hippocampus referenced to the ipsilateral frontal sinus using a paired-click auditory gating paradigm support a role for NMDA receptors in mediating the balance between theta and gamma responses to sensory stimuli.
Abstract: Ketamine, an N-methyl-d-aspartate (NMDA) receptor glutamatergic antagonist, has been studied as a model of schizophrenia when applied in subanesthetic doses In EEG studies, ketamine affects sensory gating and alters the oscillatory characteristics of neuronal signals in a complex manner We investigated the effects of ketamine on in vivo recordings from the CA3 region of mouse hippocampus referenced to the ipsilateral frontal sinus using a paired-click auditory gating paradigm One issue of particular interest was elucidating the effect of ketamine on background network activity, poststimulus evoked and induced activity We find that ketamine attenuates the theta frequency band in both background activity and in poststimulus evoked activity Ketamine also disrupts a late, poststimulus theta power reduction seen in control recordings In the gamma frequency range, ketamine enhances both background and evoked power, but decreases relative induced power These findings support a role for NMDA receptors in mediating the balance between theta and gamma responses to sensory stimuli, with possible implications for dysfunction in schizophrenia

Journal ArticleDOI
TL;DR: The results suggest that the response delay effect is at least partly explained by active braking, possibly involving a mechanism that is similar to that used to stop responses completely.
Abstract: An important aspect of cognitive control is the ability to respond with restraint. Here, we modeled this experimentally by measuring the degree of response slowing that occurs when people respond to an imperative stimulus in a context where they might suddenly need to stop the initiated response compared with a context in which they do not need to stop. We refer to the RT slowing that occurs as the "response delay effect." We conjectured that this response delay effect could relate to one or more neurocognitive mechanism(s): partial response suppression (i.e., "active braking"), prolonged decision time, and slower response facilitation. These accounts make different predictions about motor system excitability and brain activation. To test which neurocognitive mechanisms underlie the response delay effect, we performed two studies with TMS and we reanalyzed fMRI data. The results suggest that the response delay effect is at least partly explained by active braking, possibly involving a mechanism that is similar to that used to stop responses completely. These results further our understanding of how people respond with restraint by pointing to proactive recruitment of a neurocognitive mechanism heretofore associated with outright stopping.

Journal ArticleDOI
TL;DR: The results reveal that highly proficient learners can show electrophysiological correlates during L2 processing that are qualitatively similar to those of native speakers, but the results also indicate the contribution of factors such as age of acquisition and transfer processes from first language to L2.
Abstract: The goal of the present study was to investigate the electrophysiological correlates of second-language (L2) morphosyntactic processing in highly proficient late learners of an L2 with long exposure to the L2 environment. ERPs were collected from 22 English-Spanish late learners while they read sentences in which morphosyntactic features of the L2 present or not present in the first language (number and gender agreement, respectively) were manipulated at two different sentence positions-within and across phrases. The results for a control group of age-matched native-speaker Spanish participants included an ERP pattern of LAN-type early negativity followed by P600 effect in response to both agreement violations and for both sentence positions. The late L2 learner results included a similar pattern, consisting of early negativity followed by P600, in the first sentence position (within-phrase agreement violations) but only P600 effects in the second sentence position (across-phrase agreement violation), as well as significant amplitude and onset latency differences between the gender and the number violation effects in both sentence positions. These results reveal that highly proficient learners can show electrophysiological correlates during L2 processing that are qualitatively similar to those of native speakers, but the results also indicate the contribution of factors such as age of acquisition and transfer processes from first language to L2.

Journal ArticleDOI
TL;DR: Results show, for the first time, an association between early institutional deprivation and brain reward systems in humans and highlight potential neural vulnerabilities resulting from such exposures.
Abstract: Severe deprivation in the first few years of life is associated with multiple difficulties in cognition and behavior. However, the brain basis for these difficulties is poorly understood. Structural and functional neuroimaging studies have implicated limbic system structures as dysfunctional, and one functional imaging study in a heterogeneous group of maltreated individuals has confirmed the presence of abnormalities in the basal ganglia. Based on these studies and known dopaminergic abnormalities from studies in experimental animals using social isolation, we used a task of monetary reward anticipation to examine the functional integrity of brain regions previously shown to be implicated in reward processing. Our sample included a group of adolescents (n = 12) who had experienced global deprivation early in their lives in Romania prior to adoption into UK families. In contrast to a nonadopted comparison group (n = 11), the adoptees did not recruit the striatum during reward anticipation despite comparable performance accuracy and latency. These results show, for the first time, an association between early institutional deprivation and brain reward systems in humans and highlight potential neural vulnerabilities resulting from such exposures.

Journal ArticleDOI
TL;DR: Results showed that encoding color information as an item detail improved source recognition in amnesic patients with recollection deficits, and qualitatively different patterns of results observed in PRc and hippocampus/PHc are consistent with the idea that different MTL regions process different types of episodic information.
Abstract: The medial temporal lobes (MTLs) are critical for episodic memory but the functions of MTL subregions are controversial. According to memory strength theory, MTL subregions collectively support declarative memory in a graded manner. In contrast, other theories assert that MTL subregions support functionally distinct processes. For instance, one view is that perirhinal cortex (PRc) processes item information, parahippocampal cortex (PHc) processes context information, and the hippocampus binds item and context. Here, we report two experiments that tested competing predictions from these models. In these studies, subjects encoded color-word associations by imagining color either as a contextual association (context detail condition) or as a feature of the item to be encoded (item detail condition). Results showed that encoding color information as an item detail improved source recognition in amnesic patients with recollection deficits. Furthermore, event-related fMRI data from healthy subjects revealed PRc activation associated with successful retrieval of item details, whereas activation in the hippocampus and PHc was associated with recollection-based source retrieval. The qualitatively different patterns of results observed in PRc and hippocampus/PHc are inconsistent with a memory strength account and are consistent with the idea that different MTL regions process different types of episodic information.

Journal ArticleDOI
TL;DR: The sustained posterior contralateral negativity, during the retention interval, was larger for complex objects than for simple objects, suggesting that neurons mediating VSTM needed to work harder to maintain more complex objects.
Abstract: Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not related to storage limitations of VSTM, per se. We used ERPs to track neuronal activity specifically related to retention in VSTM by measuring the sustained posterior contralateral negativity during a change detection task (which required detecting if an item was changed between a memory and a test array). The sustained posterior contralateral negativity, during the retention interval, was larger for complex objects than for simple objects, suggesting that neurons mediating VSTM needed to work harder to maintain more complex objects. This, in turn, is consistent with the view that VSTM capacity depends on complexity.

Journal ArticleDOI
TL;DR: It is demonstrated that tDCS may facilitate acquisition of grammatical knowledge, a finding of potential interest for rehabilitation of aphasia, and Broca's area is specifically involved in rule-based knowledge, and here, in an improved ability to detect syntactic violations.
Abstract: Artificial grammar learning constitutes a well-established model for the acquisition of grammatical knowledge in a natural setting. Previous neuroimaging studies demonstrated that Broca's area (left BA 44/45) is similarly activated by natural syntactic processing and artificial grammar learning. The current study was conducted to investigate the causal relationship between Broca's area and learning of an artificial grammar by means of transcranial direct current stimulation (tDCS). Thirty-eight healthy subjects participated in a between-subject design, with either anodal tDCS (20 min, 1 mA) or sham stimulation, over Broca's area during the acquisition of an artificial grammar. Performance during the acquisition phase, presented as a working memory task, was comparable between groups. In the subsequent classification task, detecting syntactic violations, and specifically, those where no cues to superficial similarity were available, improved significantly after anodal tDCS, resulting in an overall better performance. A control experiment where 10 subjects received anodal tDCS over an area unrelated to artificial grammar learning further supported the specificity of these effects to Broca's area. We conclude that Broca's area is specifically involved in rule-based knowledge, and here, in an improved ability to detect syntactic violations. The results cannot be explained by better tDCS-induced working memory performance during the acquisition phase. This is the first study that demonstrates that tDCS may facilitate acquisition of grammatical knowledge, a finding of potential interest for rehabilitation of aphasia.

Journal ArticleDOI
TL;DR: The findings suggest that dyscalculia is associated with impairment in areas involved in number magnitude processing and, to a lesser extent, in areas dedicated to domain-general magnitude processing.
Abstract: Developmental dyscalculia (DD) is a deficit in number processing and arithmetic that affects 3-6% of schoolchildren. The goal of the present study was to analyze cerebral bases of DD related to symbolic number processing. Children with DD aged 9-11 years and matched children with no learning disability history were investigated using fMRI. The two groups of children were controlled for general cognitive factors, such as working memory, reading abilities, or IQ. Brain activations were measured during a number comparison task on pairs of Arabic numerals and a color comparison task on pairs of nonnumerical symbols. In each task, pairs of stimuli that were close or far on the relevant dimension were constituted. Brain activation in bilateral intraparietal sulcus (IPS) was modulated by numerical distance in controls but not in children with DD. Moreover, although the right IPS responded to numerical distance only, the left IPS was influenced by both numerical and color distances in control children. Our findings suggest that dyscalculia is associated with impairment in areas involved in number magnitude processing and, to a lesser extent, in areas dedicated to domain-general magnitude processing.