scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology in 2013"


Journal ArticleDOI
TL;DR: In this paper, the authors review explanations for size-related and mass-independent variation in the basal metabolic rate (BMR) of animals, and suggest ways that the various explanations can be evaluated and integrated.
Abstract: Basal metabolic rate (BMR) is the rate of metabolism of a resting, postabsorptive, non-reproductive, adult bird or mammal, measured during the inactive circadian phase at a thermoneutral temperature. BMR is one of the most widely measured physiological traits, and data are available for over 1,200 species. With data available for such a wide range of species, BMR is a benchmark measurement in ecological and evolutionary physiology, and is often used as a reference against which other levels of metabolism are compared. Implicit in such comparisons is the assumption that BMR is invariant for a given species and that it therefore represents a stable point of comparison. However, BMR shows substantial variation between individuals, populations and species. Investigation of the ultimate (evolutionary) explanations for these differences remains an active area of inquiry, and explanation of size-related trends remains a contentious area. Whereas explanations for the scaling of BMR are generally mechanistic and claim ties to the first principles of chemistry and physics, investigations of mass-independent variation typically take an evolutionary perspective and have demonstrated that BMR is ultimately linked with a range of extrinsic variables including diet, habitat temperature, and net primary productivity. Here we review explanations for size-related and mass-independent variation in the BMR of animals, and suggest ways that the various explanations can be evaluated and integrated.

171 citations


Journal ArticleDOI
TL;DR: It is concluded that within-species variation in BMR and its components have a clear genetic signature, and are functionally linked to key metabolic process at all levels of biological organization and the need to integrate molecular genetics with conventional metabolic field studies to reveal the adaptive significance of metabolic variation is highlighted.
Abstract: Basal metabolic rate (BMR) provides a widely accepted benchmark of metabolic expenditure for endotherms under laboratory and natural conditions. While most studies examining BMR have concentrated on inter-specific variation, relatively less attention has been paid to the determinants of within-species variation. Even fewer studies have analysed the determinants of within-species BMR variation corrected for the strong influence of body mass by appropriate means (e.g. ANCOVA). Here, we review recent advancements in studies on the quantitative genetics of BMR and organ mass variation, along with their molecular genetics. Next, we decompose BMR variation at the organ, tissue and molecular level. We conclude that within-species variation in BMR and its components have a clear genetic signature, and are functionally linked to key metabolic process at all levels of biological organization. We highlight the need to integrate molecular genetics with conventional metabolic field studies to reveal the adaptive significance of metabolic variation. Since comparing gene expressions inter-specifically is problematic, within-species studies are more likely to inform us about the genetic underpinnings of BMR. We also urge for better integration of animal and medical research on BMR; the latter is quickly advancing thanks to the application of imaging technologies and ‘omics’ studies. We also suggest that much insight on the biochemical and molecular underpinnings of BMR variation can be gained from integrating studies on the mammalian target of rapamycin (mTOR), which appears to be the major regulatory pathway influencing the key molecular components of BMR.

134 citations


Journal ArticleDOI
TL;DR: The role of the skin in larval fish was examined, with early life stages often utilising the skin as a surrogate gill, prior to the development of a functional branchial epithelium.
Abstract: The primary function of fish skin is to act as a barrier. It provides protection against physical damage and assists with the maintenance of homoeostasis by minimising exchange between the animal and the environment. However in some fish, the skin may play a more active physiological role. This is particularly true in species that inhabit specialised environmental niches (e.g. amphibious and air-breathing fish such as the lungfish), those with physiological characteristics that may subvert the need for the integument as a barrier (e.g. the osmoconforming hagfish), and/or fish with anatomical modifications of the epidermis (e.g. reduced epithelial thickness). Using examples from different fish groups (e.g. hagfishes, elasmobranchs and teleosts), the importance of fish skin as a transport epithelium for gases, ions, nitrogenous waste products, and nutrients was reviewed. The role of the skin in larval fish was also examined, with early life stages often utilising the skin as a surrogate gill, prior to the development of a functional branchial epithelium.

105 citations


Journal ArticleDOI
TL;DR: This review summarizes current insights into hypoxia adaptation-related proteins and signaling pathways in fish and reveals new insights into redox status, AMPK, MAPK and IGF/PI3K/Akt.
Abstract: Aquatic environments exhibit wide temporal and spatial variations in oxygen levels compared to terrestrial environments. Fish are an excellent model for elucidating the underlying mechanisms of hypoxia adaptation. Over the past decade, several hypoxia-related proteins have been reported to act in concert to convey oxygen change information to downstream signaling effectors. Some signaling pathways, such as redox status, AMPK, MAPK and IGF/PI3K/Akt, are known to play a central role in hypoxia adaptation. These networks regulate oxygen-sensitive transcription factors which, in turn, affect the expression of hypoxia adaptation-related genes. This review summarizes current insights into hypoxia adaptation-related proteins and signaling pathways in fish.

104 citations


Journal ArticleDOI
TL;DR: The mechanical processes associated with digestion in decapod crustaceans are reviewed, including transit rates, which are commonly used as a measure of food processing rates and are keys in understanding strategies of adaptation to trophic conditions.
Abstract: This article reviews the mechanical processes associated with digestion in decapod crustaceans. The decapod crustacean gut is essentially an internal tube that is divided into three functional areas, the foregut, midgut, and hindgut. The foregut houses the gastric mill apparatus which functions in mastication (cutting and grinding) of the ingested food. The processed food passes into the pyloric region of the foregut which controls movement of digesta into the midgut region and hepatopancreas where intracellular digestion takes place. The movements of the foregut muscles and gastric mill are controlled via nerves from the stomatogastric ganglion. Contraction rates of the gastric mill and foregut muscles can be influenced by environmental factors such as salinity, temperature, and oxygen levels. Gut contraction rates depend on the magnitude of the environmental perturbation and the physiological ability of each species. The subsequent transit of the digesta from the foregut into the midgut and through the hindgut has been followed in a wide variety of crustaceans. Transit rates are commonly used as a measure of food processing rates and are keys in understanding strategies of adaptation to trophic conditions. Transit times vary from as little as 30 min in small copepods to over 150 h in larger lobsters. Transit times can be influenced by the size and the type of the meal, the size and activity level of an animal and changes in environmental temperature, salinity and oxygen tension. Ultimately, changes in transit times influence digestive efficiency (the amount of nutrients absorbed across the gut wall). Digestive efficiencies tend to be high for carnivorous crustaceans, but somewhat lower for those that consume plant material. A slowing of the transit rate allows more time for nutrient absorption but this may be confounded by changes in the environment, which may reduce the energy available for active transport processes. Given the large number of articles already published on the stomatogastric ganglion and its control mechanisms, this area will continue to be of interest to scientists. There is also a push towards studying animals in a more natural environment or even in the field and investigation of the energetic costs of the components of digestion under varying biotic and environmental conditions will undoubtedly be an area that expands in the future.

96 citations


Journal ArticleDOI
TL;DR: It is found that individuals, regardless of reproductive condition, used torpor, but the patterns of torpor use varied significantly between reproductive (pregnant and lactating) females and post-lactating females, and foraging behaviour of radio-tagged bats did not vary with reproductive condition.
Abstract: In mammals, reproduction, especially for females is energetically demanding. Therefore, during the reproductive period females could potentially adjust patterns of thermoregulation and foraging in concert to minimise the energetic constraints associated with pregnancy and lactation. We assessed the influence of pregnancy, lactation, and post-lactation on torpor use and foraging behaviour by female little brown bats, Myotis lucifugus. We measured thermoregulation by recording skin temperature and foraging by tracking bats which carried temperature-sensitive radio-tags. We found that individuals, regardless of reproductive condition, used torpor, but the patterns of torpor use varied significantly between reproductive (pregnant and lactating) females and post-lactating females. As we predicted, reproductive females entered torpor for shorter bouts than post-lactating females. Although all females used torpor frequently, pregnant females spent less time in torpor, and maintained higher skin temperatures than either lactating or post-lactating females. This result suggests that delayed offspring development which has been associated with torpor use during pregnancy, may pose a higher risk to an individual’s reproductive success than reduced milk production during lactation. Conversely, foraging behaviour of radio-tagged bats did not vary with reproductive condition, suggesting that even short, shallow bouts of torpor produce substantial energy savings, likely obviating the need to spend more time foraging. Our data clearly show that torpor use and reproduction are not mutually exclusive and that torpor use (no matter how short or shallow) is an important means of balancing the costs of reproduction for M. lucifugus.

94 citations


Journal ArticleDOI
Rob S. James1
TL;DR: The plasticity of thermal sensitivity in skeletal muscle performance has been reviewed to investigate the extent to which individuals can acclimate to chronic changes in their thermal environment, and the effects of thermalensitivity of muscle performance are placed in a wider context by relating thermal sensitivity of skeletal Muscle performance to aspects of vertebrate species distribution.
Abstract: Environmental temperature varies spatially and temporally, affecting many aspects of an organism's biology. In ectotherms, variation in environmental temperature can cause parallel changes in skeletal muscle temperature, potentially leading to significant alterations in muscle performance. Endotherms can also undergo meaningful changes in skeletal muscle temperature that can affect muscle performance. Alterations in skeletal muscle temperature can affect contractile performance in both endotherms and ectotherms, changing the rates of force generation and relaxation, shortening velocity, and consequently mechanical power. Such alterations in the mechanical performance of skeletal muscle can in turn affect locomotory performance and behaviour. For instance, as temperature increases, a consequent improvement in limb muscle performance causes some lizard species to be more likely to flee from a potential predator. However, at lower temperatures, they are much more likely to stand their ground, show threatening displays and even bite. There is no consistent pattern in reported effects of temperature on skeletal muscle fatigue resistance. This review focuses on the effects of temperature variation on skeletal muscle performance in vertebrates, and investigates the thermal sensitivity of different mechanical measures of skeletal muscle performance. The plasticity of thermal sensitivity in skeletal muscle performance has been reviewed to investigate the extent to which individuals can acclimate to chronic changes in their thermal environment. The effects of thermal sensitivity of muscle performance are placed in a wider context by relating thermal sensitivity of skeletal muscle performance to aspects of vertebrate species distribution.

69 citations


Journal ArticleDOI
TL;DR: Results show that the reduction of muscle growth in large salmon is mediated by decreased igf1 and igf2 mRNA levels in addition to GH-associated lipolytic action to cope with prolonged thermal exposure, and 13 °C appears to be a more optimal temperature for the growth of adult Atlantic salmon at sea.
Abstract: Growth regulation in adult Atlantic salmon (1.6 kg) was investigated during 45 days in seawater at 13, 15, 17, and 19 °C. We focused on feed intake, nutrient uptake, nutrient utilization, and endocrine regulation through growth hormone (GH), insulin-like growth factors (IGF), and IGF-binding proteins (IGFBP). During prolonged thermal exposure, salmon reduced feed intake and growth. Feed utilization was reduced at 19 °C after 45 days compared with fish at lower temperatures, and body lipid storage was depleted with increasing water temperature. Although plasma IGF-1 concentrations did not change, 32-Da and 43-kDa IGFBP increased in fish reared at ≤17 °C, and dropped in fish reared at 19 °C. Muscle igf1 mRNA levels were reduced at 15 and 45 days in fish reared at 15, 17, and 19 °C. Muscle igf2 mRNA levels did not change after 15 days in response to increasing temperature, but were reduced after 45 days. Although liver igf2 mRNA levels were reduced with increasing temperatures after 15 and 45 days, temperature had no effect on igf1 mRNA levels. The liver igfbp2b mRNA level, which corresponds to circulating 43-kDa IGFBP, exhibited similar responses after 45 days. IGFBP of 23 kDa was only detected in plasma in fish reared at 17 °C, and up-regulation of the corresponding igfbp1b gene indicated a time-dependent catabolic response, which was not observed in fish reared at 19 °C. However, higher muscle ghr mRNA levels were detected in fish at 17 and 19 °C than in fish at lower temperatures, indicating lipolytic regulation in muscle. These results show that the reduction of muscle growth in large salmon is mediated by decreased igf1 and igf2 mRNA levels in addition to GH-associated lipolytic action to cope with prolonged thermal exposure. Accordingly, 13 °C appears to be a more optimal temperature for the growth of adult Atlantic salmon at sea.

63 citations


Journal ArticleDOI
TL;DR: While general physiological parameters of heterothermy seem to have remained conserved in heterotherms, the underlying causes which elicit this physiological response, and thus the extent of expression and timing of heterthermy, have evolved very differently in different groups, depending on body mass and the specific habitat and lifestyle of the species.
Abstract: The expression of heterothermy in the African lesser bushbaby, Galago moholi, seems to be strikingly different to most other heterotherms: G. moholi uses its ability to enter torpor only rarely and torpor is only used by a small fraction of the population. The aim of this study was, therefore, to summarize the parameters of torpor use in G. moholi to conclude the general patterns and discuss them in comparison to other heterotherms to elucidate possible causes and constraints that underlie these differences in deployment of heterothermy. Our study was carried out on wild animals using temperature loggers and open-flow respirometry for measurements of body temperature and metabolic rate, respectively. G. moholi uses torpor only as a last resort and not as a routine, seasonal behavior. Nevertheless, we found that the general physiological patterns of torpor, e.g., torpor bout duration or entry and arousal times from torpor, were mainly consistent with those described for other nocturnal daily heterotherms. The greatest difference found was the unusual low rewarming rates during arousal from torpor, probably due to already depleted internal energy stores and thus inability to mobilize sufficient energy for endogenous heating. We therefore conclude that while general physiological parameters of heterothermy seem to have remained conserved in heterotherms, the underlying causes which elicit this physiological response, and thus the extent of expression and timing of heterothermy, have evolved very differently in different groups, depending on body mass and the specific habitat and lifestyle of the species.

61 citations


Journal ArticleDOI
TL;DR: A meta-analysis supports previous studies indicating a cardiovascular limit to maximal O2 transport and also implicates a respiratory system limit to maximum CO2 efflux, especially in ectotherms and suggests a common gas transport blueprint, or Bauplan, in the vertebrate clade.
Abstract: Maximal aerobic metabolic rates (MMR) in vertebrates are supported by increased conductive and diffusive fluxes of O2 from the environment to the mitochondria necessitating concomitant increases in CO2 efflux A question that has received much attention has been which step, respiratory or cardiovascular, provides the principal rate limitation to gas flux at MMR? Limitation analyses have principally focused on O2 fluxes, though the excess capacity of the lung for O2 ventilation and diffusion remains unexplained except as a safety factor Analyses of MMR normally rely upon allometry and temperature to define these factors, but cannot account for much of the variation and often have narrow phylogenetic breadth The unique aspect of our comparative approach was to use an interclass meta-analysis to examine cardio-respiratory variables during the increase from resting metabolic rate to MMR among vertebrates from fish to mammals, independent of allometry and phylogeny Common patterns at MMR indicate universal principles governing O2 and CO2 transport in vertebrate cardiovascular and respiratory systems, despite the varied modes of activities (swimming, running, flying), different cardio-respiratory architecture, and vastly different rates of metabolism (endothermy vs ectothermy) Our meta-analysis supports previous studies indicating a cardiovascular limit to maximal O2 transport and also implicates a respiratory system limit to maximal CO2 efflux, especially in ectotherms Thus, natural selection would operate on the respiratory system to enhance maximal CO2 excretion and the cardiovascular system to enhance maximal O2 uptake This provides a possible evolutionary explanation for the conundrum of why the respiratory system appears functionally over-designed from an O2 perspective, a unique insight from previous work focused solely on O2 fluxes The results suggest a common gas transport blueprint, or Bauplan, in the vertebrate clade

56 citations


Journal ArticleDOI
TL;DR: The data agree with known metabolic adaptations to stress in B. antarctica, although a few discrepancies between gene expression patterns and downstream metabolite contents point to fluxes that are not controlled at the level of transcription.
Abstract: The Antarctic midge, Belgica antarctica, experiences sub-zero temperatures and desiccating conditions for much of the year, and in response to these environmental insults, larvae undergo rapid shifts in metabolism, mobilizing carbohydrate energy reserves to promote synthesis of low-molecular-mass osmoprotectants. In this study, we measured the expression of 11 metabolic genes in response to thermal and dehydration stress. During both heat and cold stress, we observed upregulation of phosphoenolpyruvate carboxykinase (pepck) and glycogen phosphorylase (gp) to support rapid glucose mobilization. In contrast, there was a general downregulation of pathways related to polyol, trehalose, and proline synthesis during both high- and low-temperature stress. Pepck was likewise upregulated in response to different types of dehydration stress; however, for many of the other genes, expression patterns depended on the nature of dehydration stress. Following fast dehydration, expression patterns were similar to those observed during thermal stress, i.e., upregulation of gp accompanied by downregulation of trehalose and proline synthetic genes. In contrast, gradual, prolonged dehydration (both at a constant temperature and in conjunction with chilling) promoted marked upregulation of genes responsible for trehalose and proline synthesis. On the whole, our data agree with known metabolic adaptations to stress in B. antarctica, although a few discrepancies between gene expression patterns and downstream metabolite contents point to fluxes that are not controlled at the level of transcription.

Journal ArticleDOI
TL;DR: The results indicate that inanga is an excellent osmoregulator, an ability that is conferred by the rapid activation of physiological and molecular responses to salinity change.
Abstract: Inanga (Galaxias maculatus) is an amphidromous fish with a well-known capacity to withstand a wide range of environmental salinities. To investigate the molecular mechanisms facilitating acclimation of inanga to seawater, several isoforms of the Na+, K+-ATPase ion transporter were identified. This included three α-1 (a, b and c), an α-2 and two α-3 (a and b) isoforms. Phylogenetic analysis showed that the inanga α-1a and α-1b formed a clade with the α-1a and α-1b isoforms of rainbow trout, while another clade contained the α-1c isoforms of these species. The expression of all the α-1 isoforms was modulated after seawater exposure (28 ‰). In gills, the expression of the α-1a isoform was progressively down-regulated after seawater exposure, while the expression of the α-1b isoform was up-regulated. The α-1c isoform behaved similarly to the α-1a, although changes were less dramatic. Physiological indicators of salinity acclimation matched the time frame of the changes observed at the molecular level. A 24-h osmotic shock period was highlighted by small increases in plasma osmolality, plasma Na+ and a decrease in muscle tissue water content. Thereafter, these values returned close to their pre-exposure (freshwater) values. Na+, K+-ATPase activity showed a decreasing trend over the first 72 h following seawater exposure, but activity increased after 240 h. Our results indicate that inanga is an excellent osmoregulator, an ability that is conferred by the rapid activation of physiological and molecular responses to salinity change.

Journal ArticleDOI
TL;DR: The results suggest that exercise training had different effects on swimming performance at different temperatures, and may be related to changes in aerobic metabolic capability, arterial oxygen delivery, available dissolved oxygen, imbalances in ion fluxes and stimuli to remodel tissues with changes in temperature.
Abstract: To investigate the effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis), we measured the following: (1) the resting oxygen consumption rate $$ \left( {{\dot{\text{M}}\text{O}}_{{ 2 {\text{rest}}}} } \right) $$ , critical swimming speed (U crit) and active oxygen consumption rate $$ \left( {{\dot{\text{M}}\text{O}}_{{ 2 {\text{active}}}} } \right) $$ of fish at acclimation temperatures of 10, 15, 20, 25 and 30 °C and (2) the $$ \dot{M}{\text{O}}_{{ 2 {\text{rest}}}} $$ , U crit and $$ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $$ of both exercise-trained (exhaustive chasing training for 14 days) and control fish at both low and high acclimation temperatures (15 and 25 °C). The relationship between U crit and temperature (T) approximately followed a bell-shaped curve as temperature increased: U crit = 8.21/{1 + [(T − 27.2)/17.0]2} (R 2 = 0.915, P < 0.001, N = 40). The optimal temperature for maximal U crit (8.21 BL s−1) in juvenile qingbo was 27.2 °C. Both the $$ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $$ and the metabolic scope (MS, $$ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} - \dot{M}{\text{O}}_{{ 2 {\text{rest}}}} $$ ) of qingbo increased with temperature from 10 to 25 °C (P < 0.05), but there were no significant differences between fish acclimated to 25 and 30 °C. The relationships between $$ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $$ or MS and temperature were described as $$ {\dot{\text{M}}\text{O}}_{{ 2 {\text{active}}}} = 1,214.29/\left\{ {1 + \left[ {\left( {T - 28.8} \right)/10.6} \right]^{2} } \right\}\;\left( {R^{2} = 0.911,\;P < 0.001,\;N = 40} \right) $$ and MS = 972.67/{1 + [(T − 28.0)/9.34]2} (R 2 = 0.878, P < 0.001, N = 40). The optimal temperatures for $$ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $$ and MS in juvenile qingbo were 28.8 and 28.0 °C, respectively. Exercise training resulted in significant increases in both U crit and $$ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $$ at a low temperature (P < 0.05), but training exhibited no significant effect on either U crit or $$ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $$ at a high temperature. These results suggest that exercise training had different effects on swimming performance at different temperatures. These differences may be related to changes in aerobic metabolic capability, arterial oxygen delivery, available dissolved oxygen, imbalances in ion fluxes and stimuli to remodel tissues with changes in temperature.

Journal ArticleDOI
TL;DR: The body size of endothermic pollinators appears to be influenced by opposing requirements of the animals and plants, and birds and mammals employ daily torpor, and large insects reduce the frequency of facultative endothermy.
Abstract: Pollination biology is often associated with mutualistic interactions between plants and their animal pollen vectors, with energy rewards as the foundation for co-evolution. Energy is supplied as food (often nectar from flowers) or as heat (in sun-tracking or thermogenic plants). The requirements of pollinators for these resources depend on many factors, including the costs of living, locomotion, thermoregulation and behaviour, all of which are influenced by body size. These requirements are modified by the availability of energy offered by plants and environmental conditions. Endothermic insects, birds and bats are very effective, because they move faster and are more independent of environmental temperatures, than are ectothermic insects, but they are energetically costly for the plant. The body size of endothermic pollinators appears to be influenced by opposing requirements of the animals and plants. Large body size is advantageous for endotherms to retain heat. However, plants select for small body size of endotherms, as energy costs of larger size are not matched by increases in flight speed. If high energy costs of endothermy cannot be met, birds and mammals employ daily torpor, and large insects reduce the frequency of facultative endothermy. Energy uptake can be limited by the time required to absorb the energy or eliminate the excess water that comes with it. It can also be influenced by variations in climate that determine temperature and flowering season.

Journal ArticleDOI
TL;DR: It seems that the utilization of fat may be delayed as migrants initiate flight, and short-hop migrants may exploit high rates of endogenous water production resulting from carbohydrate and protein catabolism early in flight to offset high water loss associated with low humidity.
Abstract: Although birds use fat as the primary fuel for migratory flights, carbohydrate and protein catabolism could be significant in the early stages of flight while pathways of fatty acid transport and oxidation are induced. The fuel mixture of long distance migrant birds can also be affected by the rate of water loss, where birds catabolize more protein to increase endogenous water production under dehydrating flight conditions. Despite many studies investigating flight metabolism, few have focused on the metabolic response to flight during the switchover to fat catabolism in migrants, and none have examined the effect of ambient conditions on fuel selection during early flight. We investigated the effect of water loss on the metabolic response to short duration flight in the American robin (Turdus migratorius). Birds were flown in a climatic wind tunnel and changes in body composition and plasma metabolites were measured. As flight duration increased, there was a gradual switchover from carbohydrate and protein catabolism to fat catabolism. Plasma metabolite profiles indicate that the mobilization of fat occurred within 20 min of initiating flight. Plasma glucose decreased and uric acid increased with flight duration. Ambient humidity did not affect fuel mixture. Thus, it seems that the utilization of fat may be delayed as migrants initiate flight. Short-hop migrants may exploit high rates of endogenous water production resulting from carbohydrate and protein catabolism early in flight to offset high water loss associated with low humidity. Rapid catabolism of lean body components at the start of a flight also reduces mass quickly, and may reduce energy costs.

Journal ArticleDOI
TL;DR: Investigation of golden spiny mice in the Judean desert shows that the occurrence of daily torpor is not necessarily linked to cold exposure and the development of a pronounced hypothermia, but may even occur as depression of metabolic rate in a hot environment.
Abstract: Golden spiny mice (Acomys russatus) living in the Judean desert are exposed to extended periods of food and water shortage. We investigated their thermal and metabolic response to three weeks of 50 % food reduction at ambient temperatures of 23, 27, 32 and 35 °C by long term records of metabolic rate and body temperature in the laboratory. At all ambient temperatures, A. russatus responded to starvation by a reduction of daily energy expenditure. At 32 and 35 °C, this metabolic adjustment fully compensated the reduced food availability and they maintained their energy balance at a slightly reduced body mass. At lower ambient temperatures, they could not fully compensate for the reduced food availability and kept a negative energy balance. The reduction of daily energy expenditure was largely achieved by the occurrence of daily torpor. Torpor even occurred at high ambient temperatures of 32 and 35 °C during which metabolic depression was not associated with a marked decrease of body temperature. The results show that the occurrence of daily torpor is not necessarily linked to cold exposure and the development of a pronounced hypothermia, but may even occur as depression of metabolic rate in a hot environment.

Journal ArticleDOI
TL;DR: The induction of Hsp70 and Hsp90 and the phosphorylation of p38 MAPK, JNKs and ERKs in the examined five tissues of the gilthead sea bream indicated a cellular stress response under the prism of a seasonal pattern which was characterized by distinct tissue specificity.
Abstract: The present study aimed to investigate the seasonal cellular stress response in vital organs, like the heart, the liver, the whole blood and the skeletal (red and white) muscles of the Mediterranean fish Sparus aurata during a 1-year acclimatization period in the field, in two examined depths (0–2 m and 10–12 m). Processes studied included heat shock protein expression and protein kinase activation. Molecular responses were addressed through the expression of Hsp70 and Hsp90, the phosphorylation of stress-activated protein kinases and particularly p38 mitogen-activated protein kinase (p38 MAPK), the extracellular signal-regulated kinases (ERK-1/2) and c-Jun N-terminal kinases (JNK1/2/3). The induction of Hsp70 and Hsp90 and the phosphorylation of p38 MAPK, JNKs and ERKs in the examined five tissues of the gilthead sea bream indicated a cellular stress response under the prism of a seasonal pattern which was characterized by distinct tissue specificity. Specifically, Hsp induction and MAPK activation occurred before peak summer water temperatures, with no further increases in their levels despite increases in water temperatures. Moreover, although water temperature did not vary significantly with depth of immersion, significant effects of depth on cellular stress response were observed, probably caused by different light regime. The expression and the activation of these certain proteins can be used as tools to define the extreme thermal limits of the gilthead sea bream.

Journal ArticleDOI
TL;DR: A model is described that integrates thermal physiology with temperature-dependent toxicity to predict maximal dietary intake of plant secondary compounds by mammalian herbivores and the effect of small changes in ambient temperature is on par with several fold changes in PSC concentration.
Abstract: Diet selection in mammalian herbivores is thought to be primarily governed by intrinsic properties of food, such as nutrient and plant secondary compound (PSC) contents, and less so by environmental factors. However, several independent lines of evidence suggest that the toxicity of PSCs is mediated, in part, by ambient temperature and that the effect of small changes in ambient temperature is on par with several fold changes in PSC concentration. This review describes the disparate lines of evidence for temperature-dependent toxicity and the putative mechanisms causing this phenomenon. A model is described that integrates thermal physiology with temperature-dependent toxicity to predict maximal dietary intake of plant secondary compounds by mammalian herbivores. The role of temperature-dependent toxicity is considered with respect to the observed changes in herbivorous species attributed to climate change. Possible future investigations and the effects of temperature-dependent toxicity on other endotherms are presented. Temperature-dependent toxicity has the potential to apply to all endotherms that consume toxins. The effects of temperature-dependent toxicity will likely be exacerbated with increasing ambient temperatures caused by climate change.

Journal ArticleDOI
TL;DR: It is demonstrated that hypoxia response is specific to muscle type in Pacific oyster, and that truncated AMPKα and AKT proteins might be involved in maintaining aerobic metabolism in smooth muscle, while regulation might occur in vivo during tidal intervals that cause up to 6 h of Hypoxia.
Abstract: AMP-activated protein kinase α (AMPKα) is a key regulator of energy balance in many model species during hypoxia. In a marine bivalve, the Pacific oyster Crassostrea gigas, we analyzed the protein content of adductor muscle in response to hypoxia during 6 h. In both smooth and striated muscles, the amount of full-length AMP-activated protein kinase α (AMPKα) remained unchanged during hypoxia. However, hypoxia induced a rapid and muscle-specific response concerning truncated isoforms of AMPKα. In the smooth muscle, a truncated isoform of AMPKα was increased from 1 to 6 h of hypoxia, and was linked with accumulation of AKT kinase, a key enzyme of the insulin signaling pathway which controls intracellular glucose metabolism. In this muscle, aerobic metabolism was maintained over the 6 h of hypoxia, as mitochondrial citrate synthase activity remained constant. In contrast, in striated muscle, hypoxia did not induce any significant modification of neither truncated AMPKα nor AKT protein content, and citrate synthase activity was altered after 6 h of hypoxia. Together, our results demonstrate that hypoxia response is specific to muscle type in Pacific oyster, and that truncated AMPKα and AKT proteins might be involved in maintaining aerobic metabolism in smooth muscle. Such regulation might occur in vivo during tidal intervals that cause up to 6 h of hypoxia.

Journal ArticleDOI
TL;DR: Temperature telemetry was used to monitor skin temperature of free-ranging little brown bats hibernating in central Manitoba, Canada, and found no evidence bats synchronized arousals with photoperiod but they did arouse synchronously with other bats in the same cluster.
Abstract: For temperate endotherms (i.e., mammals and birds) energy costs are highest during winter but food availability is lowest and many mammals depend on hibernation as a result. Hibernation is made up of energy-saving torpor bouts [periods of controlled reduction in body temperature (T b)], which are interrupted by brief periodic arousals to normothermic T b. What triggers these arousals in free-ranging hibernators is not well understood. Some temperate bats with intermittent access to flying insects during winter synchronize arousals with sunset, which suggests that, in some species, feeding opportunities influence arousal timing. We tested whether hibernating bats from a cold climate without access to food during winter also maintain a circadian rhythm for arousals or whether cues from conspecifics in the same cluster are more important. We used temperature telemetry to monitor skin temperature (T sk) of free-ranging little brown bats (Myotis lucifugus) hibernating in central Manitoba, Canada, where temperatures from 22 October to 22 March were too cold for flying insects. We found no evidence bats synchronized arousals with photoperiod but they did arouse synchronously with other bats in the same cluster. Thus, in the northern part of their range where flying insects are almost never available during winter, little brown bats exhibit no circadian pattern to arousals. Warming synchronously with others could reduce the energetic costs of arousal for individuals or could reflect disturbance of torpid bats by cluster-mates.

Journal ArticleDOI
TL;DR: Fever has an ancient phylogenetic history and many of the underling mechanisms in birds appear similar to mammals, but there are several important differences that suggest fever has evolved quite differently in these two homeothermic classes.
Abstract: While fever is known to occur in invertebrates and vertebrates, the mechanisms of fever in animals other than mammals have received scant attention. We look initially at the recognition, by the avian immune system, of pathogen associated molecular patterns and the likely role of toll-like receptors in signaling the presence of bacteria and viruses. Several mediators of fever are subsequently released by immune cells, including interleukin-6 and interleukin-1β, that eventually reach the brain and alter thermoregulatory function. As is the case in mammals, prostaglandins appear to be the ultimate mediators of fever in birds, since the febrile response is attenuated when prostaglandin synthesis is inhibited. Ambient temperature modulates the fever response, with larger fevers at higher, and smaller fevers at lower ambient temperatures. Glucocorticoid levels are increased during fever and seem to play an important role by modulating the extent of fever generation, possibly playing a role in the attenuation of fever after repeated exposure to a pathogen in a process termed tolerance, suggesting that the fever process can be phenotypically adapted to likely future conditions. While fever has an ancient phylogenetic history and many of the underling mechanisms in birds appear similar to mammals, there are several important differences that suggest fever has evolved quite differently in these two homeothermic classes.

Journal ArticleDOI
TL;DR: Results indicate that a mammalian obligate carnivore, the domestic cat, is able to regulate food selection and intake to balance macronutrient intake despite differences in moisture content and textural properties of the foods provided.
Abstract: We investigated the ability of domestic cats to regulate the macronutrient composition of their diet when provided with foods that differed not only in macronutrient content but also in texture and moisture content, as typically found in the main forms of commercially manufactured cat foods. Cats were provided with foods in different combinations (1 wet + 3 dry; 1 dry + 3 wet; 3 wet + 3 dry) in three separate experiments. Within each experiment cats were offered the wet and dry food combinations in two (naive and experienced) diet selection phases where all the foods were offered simultaneously, separated by a phase in which the foods were offered sequentially in 3-day cycles in pairs (1 wet with 1 dry). Using nutritional geometry we demonstrate convergence upon the same dietary macronutrient composition in the naive and experienced self-selection phases of each experiment as well as over the course of the 3-day cycles in the pair-wise choice phase of each experiment. Furthermore, even though the dietary options were very different in each of these experiments the macronutrient composition of the diets achieved across all experiments were remarkably similar. These results indicate that a mammalian obligate carnivore, the domestic cat, is able to regulate food selection and intake to balance macronutrient intake despite differences in moisture content and textural properties of the foods provided.

Journal ArticleDOI
TL;DR: It is suggested that the increase in expression levels of NPY and AgRP may contribute to the observed diet shift and mass gain, and that the FA composition of the bat’s specialized diet is adaptive in the relatively high temperatures the authors recorded in both their winter and summer roosts.
Abstract: Prior to hibernation, mammals accumulate large amounts of fat in their bodies. In temperate mammalian species, hibernation is improved by increasing the levels of poly-unsaturated fatty acids (PUFA) in the body. The saturation of fatty acids (FA) in both white adipose tissue (WAT) and membrane phospholipids of mammals often reflects their diet composition. We found that the greater mouse-tailed bat (Rhinopoma microphyllum) accumulates large amounts of fat at the end of summer by gradually shifting to a fat-rich diet (queen carpenter ants, Camponotus felah). PUFA are almost absent in this diet (<1 % of total FA), which contains a high fraction of saturated (SFA) and mono-unsaturated (MUFA) fatty acids. We found similar low levels of PUFA in mouse-tailed bat WAT, but not in their heart total lipids. The expression of two appetite-stimulating (orexigenic) hypothalamic neuropeptides, AgRP and NPY, increased in parallel to the shift in diet and with fat gain in these bats. To the best of our knowledge, this is the only documented example of specific pre-hibernation diet in bats, and one which reveals the most saturated FA composition ever documented in a mammal. We suggest that the increase in expression levels of NPY and AgRP may contribute to the observed diet shift and mass gain, and that the FA composition of the bat’s specialized diet is adaptive in the relatively high temperatures we recorded in both their winter and summer roosts.

Journal ArticleDOI
TL;DR: It is demonstrated that this desert bat uses torpor extensively in summer and often rewarms passively from torpor to maximise energy and water conservation.
Abstract: Bats are among the most successful groups of Australian arid-zone mammals and, therefore, must cope with pronounced seasonal fluctuations in ambient temperature (T a), food availability and unpredictable weather patterns. As knowledge about the energy conserving strategies in desert bats is scant, we used temperature-telemetry to quantify the thermal physiology of tree-roosting inland freetail bats (Mormopterus species 3, 8.5 g, n = 8) at Sturt National Park over two summers (2010–2012), when T a was high and insects were relatively abundant. Torpor use and activity were affected by T a. Bats remained normothermic on the warmest days; they employed one “morning” torpor bout on most days and typically exhibited two torpor bouts on the coolest days. Overall, animals employed torpor on 67.9 % of bat-days and torpor bout duration ranged from 0.5 to 39.3 h. At any given T a, torpor bouts were longer in Mormopterus than in bats from temperate and subtropical habitats. Furthermore, unlike bats from other climatic regions that used only partial passive rewarming, Mormopterus aroused from torpor using either almost entirely passive (68.9 % of all arousals) or active rewarming (31.1 %). We provide the first quantitative data on torpor in a free-ranging arid-zone molossid during summer. They demonstrate that this desert bat uses torpor extensively in summer and often rewarms passively from torpor to maximise energy and water conservation.

Journal ArticleDOI
TL;DR: The concomitant increases in the rates of whole-body protein turnover in possums eating diets with more benzoate were indicative of a protein cost of detoxification and highlights the significant effects that PSMs can have on nutrient metabolism and retention.
Abstract: The detoxification limitation hypothesis predicts that the metabolism and biotransformation of plant secondary metabolites (PSMs) elicit a cost to herbivores. There have been many attempts to estimate these costs to mammalian herbivores in terms of energy, but this ignores what may be a more important cost—increases in protein turnover and concomitant losses of amino acids. We measured the effect of varying dietary protein concentrations on the ingestion of two PSMs (1,8 cineole—a monoterpene, and benzoic acid—an aromatic carboxylic acid) by common brushtail possums (Trichosurus vulpecula). The dietary protein concentration had a small effect on how much cineole possums ingested. In contrast, protein had a large effect on how much benzoate they ingested, especially at high dietary concentrations of benzoate. This prompted us to measure the effects of dietary protein and benzoate on whole-body protein turnover using the end-product method following an oral dose of [15N] glycine. Increasing the concentration of dietary protein in diets without PSMs improved N balance but did not influence whole-body protein turnover. In contrast, feeding benzoate in a low-protein diet pushed animals into negative N balance. The concomitant increases in the rates of whole-body protein turnover in possums eating diets with more benzoate were indicative of a protein cost of detoxification. This was about 30 % of the dietary N intake and highlights the significant effects that PSMs can have on nutrient metabolism and retention.

Journal ArticleDOI
TL;DR: The study suggests that in ion-poor conditions, claudin-b may contribute to a selective reduction in passive Na+ loss in zebrafish.
Abstract: Freshwater teleosts are challenged by diffusive ion loss across permeable epithelia including gills and skin. Although the mechanisms regulating ion loss are poorly understood, a significant component is thought to involve paracellular efflux through pathways formed via tight junction proteins. The mammalian orthologue (claudin-4) of zebrafish (Danio rerio) tight junction protein, claudin-b, has been proposed to form a cation-selective barrier regulating the paracellular loss of Na+. The present study investigated the cellular localization and regulation of claudin-b, as well as its potential contribution to Na+ homeostasis in adult zebrafish acclimated to ion-poor water. Using a green fluorescent protein-expressing line of transgenic zebrafish, we found that claudin-b was expressed along the lamellar epithelium as well as on the filament in the inter-lamellar regions. Co-localization of claudin-b and Na+/K+-ATPase was observed, suggesting its interaction with mitochondrion-rich cells. Claudin-b also appeared to be associated with other cell types, including the pavement cells. In the kidney, claudin-b was expressed predominantly in the collecting tubules. In addition, exposure to ion-poor water caused a significant increase in claudin-b abundance as well as a decrease in Na+ efflux, suggesting a possible role for claudin-b in regulating paracellular Na+ loss. Interestingly, the whole-body uptake of a paracellular permeability marker, polyethylene glycol-400, increased significantly after prolonged exposure to ion-poor water, indicating that an increase in epithelial permeability is not necessarily coupled with an increase in passive Na+ loss. Overall, our study suggests that in ion-poor conditions, claudin-b may contribute to a selective reduction in passive Na+ loss in zebrafish.

Journal ArticleDOI
TL;DR: The authors used doubly labelled water to measure field metabolic rates (FMR) and water turnover rates (WTR) in Australia's largest native herbivores, the red kangaroo (Macropus rufus) and one of Australia's dominant livestock species, the wool-breed Merino sheep, under free living conditions in a typical Australian rangeland.
Abstract: We used doubly labelled water to measure field metabolic rates (FMR) and water turnover rates (WTR) in one of Australia’s largest native herbivores, the red kangaroo (Macropus rufus) and one of Australia’s dominant livestock species, the wool-breed Merino sheep, under free-living conditions in a typical Australian rangeland. Also, we used GPS technology to examine animal space use, along with the comparisons of urine concentration, diet, diet digestibility, and subsequent grazing pressures. We found smaller space-use patterns than previously reported for kangaroos, which were between 14 and 25 % those of sheep. The FMR of a 25-kg kangaroo was 30 % that of a 45-kg sheep, while WTR was 15 % and both were associated with smaller travel distances, lower salt intakes, and higher urine concentration in kangaroos than sheep. After accounting for differences in dry matter digestibility of food eaten by kangaroos (51 %) and sheep (58 %), the relative grazing pressure of a standard (mature, non-reproductive) 25-kg kangaroo was 35 % that of a 45-kg sheep. Even for animals of the same body mass (35 kg), the relative grazing pressure of the kangaroo was estimated to be only 44 % that of the sheep. After accounting for the energetic costs of wool growth by sheep, the FMRs of our sheep and kangaroos were 2–3 times their expected BMRs, which is typical for mammalian FMR:BMRs generally. Notably, data collected from our free-living animals were practically identical to those from animals confined to a semi-natural enclosure (collected in an earlier study under comparable environmental conditions), supporting the idea that FMRs are relatively constrained within species.

Journal ArticleDOI
TL;DR: It is demonstrated that in vivo treatment of earthworms with immuno-stimulants induces various changes in their coelomocyte response, including ROS production and apoptosis.
Abstract: Due to the specific habitat conditions in which they live, earthworms are constantly exposed to pathogens. Consequently, they have evolved various immuno-defense mechanisms, including cellular (coelomocytes) and humoral responses, which may help to eliminate deleterious micro-organisms but also repair and/or protect host cells and tissues. Similar to mammalian phagocytes, coelomocytes can kill ingested pathogens with reactive oxygen species (ROS) and nitric oxide. In the present work, we studied the effects of the dermal exposure of Eisenia andrei earthworms to different immuno-stimulants: phorbol-12-myristate-13-acetate (PMA), lipopolysaccharide (LPS) or concanavalin A (ConA). After 3 days of treatment with all immuno-stimulants, decreased numbers and changed composition of the coelomocytes were observed. The immuno-stimulants also induced numerous changes in bactericidal activity, including ROS production. Furthermore, all stimulants increased cell proliferation while only LPS-treatment significantly elevated apoptosis of coelomocytes. These results demonstrate that in vivo treatment of earthworms with immuno-stimulants induces various changes in their coelomocyte response.

Journal ArticleDOI
TL;DR: The regulated incorporation of dietary FA into phospholipids seems to allow fish to maintain critical membrane functions even when the lipid quality of their diets varies considerably, as is likely in their natural environment.
Abstract: To examine whether membrane fatty acid (FA) composition has a greater impact upon specific components of oxidative phosphorylation or on overall properties of muscle mitochondria, rainbow trout (Oncorhynchus mykiss) were fed two diets differing only in FA composition. Diet 1 was enriched in 18:1n-9 and 18:2n-6 while Diet 2 was enriched in 22:6n-3. The FA composition of mitochondrial phospholipids was strongly affected by diet. 22:6n-3 levels were twice as high (49 %) in mitochondrial phospholipids of fish fed Diet 2 than in those fed Diet 1. 18:2n-6 content of the phospholipids also followed the diets, whereas 18:1n-9 changed little. All n-6 FA, most notably 22:5n-6, were significantly higher in fish fed Diet 1. Nonetheless, total saturated FA, total monounsaturated FA and total polyunsaturated FA in mitochondrial phospholipids varied little. Despite a marked impact of diet on specific FA levels in mitochondrial phospholipids, only non-phosphorylating (state 4) rates were higher in fish fed Diet 2. Phosphorylating rates (state 3), oxygen consumption due to flux through the electron transport chain complexes as well as the corresponding spectrophotometric activities did not differ with diet. Body mass affected state 4 rates and cytochrome c oxidase and F 0 F 1 ATPase activities while complex I showed a diet-specific effect of body mass. Only the minor FA that were affected by body mass were correlated with functional properties. The regulated incorporation of dietary FA into phospholipids seems to allow fish to maintain critical membrane functions even when the lipid quality of their diets varies considerably, as is likely in their natural environment.

Journal ArticleDOI
TL;DR: Describing the proteolytic activity of the four nonpathogenic species of gut bacteria isolated from the velvet bean caterpillar indicated that serine- and cysteine-proteinase activities were expressed by all four gut bacteria symbionts of the velvetbean caterpillar.
Abstract: The development of proteinase inhibitors as potential insect control agents has been constrained by insect adaptation to these compounds The velvet bean caterpillar (Anticarsia gemmatalis) is a key soybean pest species that is well-adapted to proteinase inhibitors, particularly serine-proteinase inhibitors, which are abundant in the caterpillar host The expression of diverse proteolytic enzymes by gut symbionts may allow the velvet bean caterpillar to circumvent proteinase inhibitors produced by the host plant In this study, we characterized the proteolytic activity of the four nonpathogenic species of gut bacteria isolated from the velvet bean caterpillar-Bacillus cereus, Enterococcus gallinarum, Enterococcus mundtii and Staphylococcus xylosus Two proteinase substrates, N-α-benzoyl-L-Arg-p-nitroanilide (L-BApNA) and N-α-p-tosyl-L-Arg methyl ester (L-TAME) and five proteinase inhibitors [aprotinin, E-64, ethylenediamine tetraacetic acid (EDTA), pepstatin and N-α-tosyl-L-lysine chloromethyl ketone (TLCK)] as well as CaCl2, pH and temperature profiles were used to characterize the expressed proteolytic activity of these bacterial strains in vitro Kinetic parameters for proteolytic activity were also estimated The results of these experiments indicated that serine- and cysteine-proteinase activities were expressed by all four gut bacteria symbionts of the velvet bean caterpillar The cysteine- and serine-proteinase activities of these gut symbionts were distinct and different from that of gut proteinases of the caterpillar itself This finding provides support for the potential involvement of gut symbionts in the mitigation of the negative effects of serine-proteinase inhibitors in the velvet bean caterpillar