scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Computational Chemistry in 2011"


Journal ArticleDOI
TL;DR: It is shown by an extensive benchmark on molecular energy data that the mathematical form of the damping function in DFT‐D methods has only a minor impact on the quality of the results and BJ‐damping seems to provide a physically correct short‐range behavior of correlation/dispersion even with unmodified standard functionals.
Abstract: It is shown by an extensive benchmark on molecular energy data that the mathematical form of the damping function in DFT-D methods has only a minor impact on the quality of the results. For 12 different functionals, a standard "zero-damping" formula and rational damping to finite values for small interatomic distances according to Becke and Johnson (BJ-damping) has been tested. The same (DFT-D3) scheme for the computation of the dispersion coefficients is used. The BJ-damping requires one fit parameter more for each functional (three instead of two) but has the advantage of avoiding repulsive interatomic forces at shorter distances. With BJ-damping better results for nonbonded distances and more clear effects of intramolecular dispersion in four representative molecular structures are found. For the noncovalently-bonded structures in the S22 set, both schemes lead to very similar intermolecular distances. For noncovalent interaction energies BJ-damping performs slightly better but both variants can be recommended in general. The exception to this is Hartree-Fock that can be recommended only in the BJ-variant and which is then close to the accuracy of corrected GGAs for non-covalent interactions. According to the thermodynamic benchmarks BJ-damping is more accurate especially for medium-range electron correlation problems and only small and practically insignificant double-counting effects are observed. It seems to provide a physically correct short-range behavior of correlation/dispersion even with unmodified standard functionals. In any case, the differences between the two methods are much smaller than the overall dispersion effect and often also smaller than the influence of the underlying density functional.

14,151 citations


Journal ArticleDOI
TL;DR: MDAnalysis is an object‐oriented library for structural and temporal analysis of molecular dynamics simulation trajectories and individual protein structures that uses the powerful NumPy package to expose trajectory data as fast and efficient NumPy arrays.
Abstract: MDAnalysis is an object-oriented library for structural and temporal analysis of molecular dynamics (MD) simulation trajectories and individual protein structures. It is written in the Python language with some performance-critical code in C. It uses the powerful NumPy package to expose trajectory data as fast and efficient NumPy arrays. It has been tested on systems of millions of particles. Many common file formats of simulation packages including CHARMM, Gromacs, Amber, and NAMD and the Protein Data Bank format can be read and written. Atoms can be selected with a syntax similar to CHARMM's powerful selection commands. MDAnalysis enables both novice and experienced programmers to rapidly write their own analytical tools and access data stored in trajectories in an easily accessible manner that facilitates interactive explorative analysis. MDAnalysis has been tested on and works for most Unix-based platforms such as Linux and Mac OS X. It is freely available under the GNU General Public License from http://mdanalysis.googlecode.com.

1,920 citations


Journal ArticleDOI
TL;DR: PaDEL‐Descriptor is a software for calculating molecular descriptors and fingerprints, which currently calculates 797 descriptors (663 1D, 2D descriptors, and 134 3D descriptorors) and 10 types of fingerprints.
Abstract: Introduction PaDEL-Descriptor is a software for calculating molecular descriptors and fingerprints. The software currently calculates 797 descriptors (663 1D, 2D descriptors, and 134 3D descriptors) and 10 types of fingerprints. These descriptors and fingerprints are calculated mainly using The Chemistry Development Kit. Some additional descriptors and fingerprints were added, which include atom type electrotopological state descriptors, McGowan volume, molecular linear free energy relation descriptors, ring counts, count of chemical substructures identified by Laggner, and binary fingerprints and count of chemical substructures identified by Klekota and Roth. Methods PaDEL-Descriptor was developed using the Java language and consists of a library component and an interface component. The library component allows it to be easily integrated into quantitative structure activity relationship software to provide the descriptor calculation feature while the interface component allows it to be used as a standalone software. The software uses a Master/Worker pattern to take advantage of the multiple CPU cores that are present in most modern computers to speed up calculations of molecular descriptors. Results The software has several advantages over existing standalone molecular descriptor calculation software. It is free and open source, has both graphical user interface and command line interfaces, can work on all major platforms (Windows, Linux, MacOS), supports more than 90 different molecular file formats, and is multithreaded. Conclusion PaDEL-Descriptor is a useful addition to the currently available molecular descriptor calculation software. The software can be downloaded at http://padel.nus.edu.sg/software/padeldescriptor. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011

1,865 citations


Journal ArticleDOI
TL;DR: Gabedit is a freeware graphical user interface, offering preprocessing and postprocessing adapted (to date) to nine computational chemistry software packages, which includes tools for editing, displaying, analyzing, converting, and animating molecular systems.
Abstract: Gabedit is a freeware graphical user interface, offering preprocessing and postprocessing adapted (to date) to nine computational chemistry software packages. It includes tools for editing, displaying, analyzing, converting, and animating molecular systems. A conformational search tool is implemented using a molecular mechanics or a semiempirical potential. Input files can be generated for the computational chemistry software supported by Gabedit. Some molecular properties of interest are processed directly from the output of the computational chemistry programs; others are calculated by Gabedit before display. Molecular orbitals, electron density, electrostatic potential, nuclear magnetic resonance shielding density, and any other volumetric data properties can be displayed. It can display electronic circular dichroism, UV-visible, infrared, and Raman-computed spectra after a convolution. Gabedit can generate a Povray file for geometry, surfaces, contours, and color-coded planes. Output can be exported to a selection of popular image and vector graphics file formats; the program can also generate a series of pictures for animation. Quantum mechanical electrostatic potentials can be calculated using the partial charges on atoms, or by solving the Poisson equation using the multigrid method. The atoms in molecule charges can also be calculated. Gabedit is platform independent. The code is distributed under free open source X11 style license and is available at http://gabedit.sourceforge.net/.

1,742 citations


Journal ArticleDOI
TL;DR: A fast force field generation tool, called SwissParam, able to generate, for arbitrary small organic molecule, topologies, and parameters based on the Merck molecular force field, but in a functional form that is compatible with the CHARMM force field is presented.
Abstract: The drug discovery process has been deeply transformed recently by the use of computational ligand-based or structure-based methods, helping the lead compounds identification and optimization, and finally the delivery of new drug candidates more quickly and at lower cost. Structure-based computational methods for drug discovery mainly involve ligand-protein docking and rapid binding free energy estimation, both of which require force field parameterization for many drug candidates. Here, we present a fast force field generation tool, called SwissParam, able to generate, for arbitrary small organic molecule, topologies, and parameters based on the Merck molecular force field, but in a functional form that is compatible with the CHARMM force field. Output files can be used with CHARMM or GROMACS. The topologies and parameters generated by SwissParam are used by the docking software EADock2 and EADock DSS to describe the small molecules to be docked, whereas the protein is described by the CHARMM force field, and allow them to reach success rates ranging from 56 to 78%. We have also developed a rapid binding free energy estimation approach, using SwissParam for ligands and CHARMM22/27 for proteins, which requires only a short minimization to reproduce the experimental binding free energy of 214 ligand-protein complexes involving 62 different proteins, with a standard error of 2.0 kcal mol(-1), and a correlation coefficient of 0.74. Together, these results demonstrate the relevance of using SwissParam topologies and parameters to describe small organic molecules in computer-aided drug design applications, together with a CHARMM22/27 description of the target protein. SwissParam is available free of charge for academic users at www.swissparam.ch.

1,370 citations


Journal ArticleDOI
TL;DR: The Nucleic Acid Package (NUPACK) is a growing software suite for the analysis and design of nucleic acid systems and algorithms are formulated in terms ofucleic acid secondary structure.
Abstract: The Nucleic Acid Package (NUPACK) is a growing software suite for the analysis and design of nucleic acid systems. The NUPACK web server (http://www.nupack.org) currently enables: •Analysis: thermodynamic analysis of dilute solutions of interacting nucleic acid strands. •Design: sequence design for complexes of nucleic acid strands intended to adopt a target secondary structure at equilibrium. •Utilities: evaluation, display, and annotation of equilibrium properties of a complex of nucleic acid strands. NUPACK algorithms are formulated in terms of nucleic acid secondary structure. In most cases, pseudoknots are excluded from the structural ensemble.

1,231 citations


Journal ArticleDOI
TL;DR: MM/GBSA performs well for both binding pose predictions and binding free‐energy estimations and is efficient to re‐score the top‐hit poses produced by other less‐accurate scoring functions.
Abstract: In molecular docking, it is challenging to develop a scoring function that is accurate to conduct high-throughput screenings. Most scoring functions implemented in popular docking software packages were developed with many approximations for computational efficiency, which sacrifices the accuracy of prediction. With advanced technology and powerful computational hardware nowadays, it is feasible to use rigorous scoring functions, such as molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) and molecular mechanics/generalized Born surface area (MM/GBSA) in molecular docking studies. Here, we systematically investigated the performance of MM/PBSA and MM/GBSA to identify the correct binding conformations and predict the binding free energies for 98 protein-ligand complexes. Comparison studies showed that MM/GBSA (69.4%) outperformed MM/PBSA (45.5%) and many popular scoring functions to identify the correct binding conformations. Moreover, we found that molecular dynamics simulations are necessary for some systems to identify the correct binding conformations. Based on our results, we proposed the guideline for MM/GBSA to predict the binding conformations. We then tested the performance of MM/GBSA and MM/PBSA to reproduce the binding free energies of the 98 protein-ligand complexes. The best prediction of MM/GBSA model with internal dielectric constant 2.0, produced a Spearman's correlation coefficient of 0.66, which is better than MM/PBSA (0.49) and almost all scoring functions used in molecular docking. In summary, MM/GBSA performs well for both binding pose predictions and binding free-energy estimations and is efficient to re-score the top-hit poses produced by other less-accurate scoring functions.

604 citations


Journal ArticleDOI
TL;DR: EADock dihedral space sampling (DSS) is built on the most efficient features of EADock2, namely its hybrid sampling engine and multiobjective scoring function, and the CPU time required has been reduced by several orders of magnitude.
Abstract: The prediction of binding modes (BMs) occurring between a small molecule and a target protein of biological interest has become of great importance for drug development. The overwhelming diversity of needs leaves room for docking approaches addressing specific problems. Nowadays, the universe of docking software ranges from fast and user friendly programs to algorithmically flexible and accurate approaches. EADock2 is an example of the latter. Its multiobjective scoring function was designed around the CHARMM22 force field and the FACTS solvation model. However, the major drawback of such a software design lies in its computational cost. EADock dihedral space sampling (DSS) is built on the most efficient features of EADock2, namely its hybrid sampling engine and multiobjective scoring function. Its performance is equivalent to that of EADock2 for drug-like ligands, while the CPU time required has been reduced by several orders of magnitude. This huge improvement was achieved through a combination of several innovative features including an automatic bias of the sampling toward putative binding sites, and a very efficient tree-based DSS algorithm. When the top-scoring prediction is considered, 57% of BMs of a test set of 251 complexes were reproduced within 2 A RMSD to the crystal structure. Up to 70% were reproduced when considering the five top scoring predictions. The success rate is lower in cross-docking assays but remains comparable with that of the latest version of AutoDock that accounts for the protein flexibility.

364 citations


Journal ArticleDOI
TL;DR: This work is the first large‐scale docking evaluation that covers both aspects of docking programs, that is, predicting ligand conformation and calculating the strength of its binding, and observed the lack of universal scoring function for all types of molecules and protein families.
Abstract: Docking is one of the most commonly used techniques in drug design. It is used for both identifying correct poses of a ligand in the binding site of a protein as well as for the estimation of the strength of protein-ligand interaction. Because millions of compounds must be screened, before a suitable target for biological testing can be identified, all calculations should be done in a reasonable time frame. Thus, all programs currently in use exploit empirically based algorithms, avoiding systematic search of the conformational space. Similarly, the scoring is done using simple equations, which makes it possible to speed up the entire process. Therefore, docking results have to be verified by subsequent in vitro studies. The purpose of our work was to evaluate seven popular docking programs (Surflex, LigandFit, Glide, GOLD, FlexX, eHiTS, and AutoDock) on the extensive dataset composed of 1300 protein-ligands complexes from PDBbind 2007 database, where experimentally measured binding affinity values were also available. We compared independently the ability of proper posing [according to Root mean square deviation (or Root mean square distance) of predicted conformations versus the corresponding native one] and scoring (by calculating the correlation between docking score and ligand binding strength). To our knowledge, it is the first large-scale docking evaluation that covers both aspects of docking programs, that is, predicting ligand conformation and calculating the strength of its binding. More than 1000 protein-ligand pairs cover a wide range of different protein families and inhibitor classes. Our results clearly showed that the ligand binding conformation could be identified in most cases by using the existing software, yet we still observed the lack of universal scoring function for all types of molecules and protein families.

325 citations


Journal ArticleDOI
TL;DR: Application of the CHARMM36 model to a collection of canonical and noncanonical RNA molecules reveals overall improved agreement with a range of experimental observables as compared to CHARMM27, and indicates the sensitivity of the conformational heterogeneity of RNA to the orientation of the 2′‐hydroxyl moiety to support a model whereby the 2‐Hydroxyl can enhance the probability of conformational transitions in RNA.
Abstract: Here, we present an update of the CHARMM27 all-atom additive force field for nucleic acids that improves the treatment of RNA molecules. The original CHARMM27 force field parameters exhibit enhanced Watson-Crick base pair opening which is not consistent with experiment, whereas analysis of molecular dynamics (MD) simulations show the 2'-hydroxyl moiety to almost exclusively sample the O3' orientation. Quantum mechanical (QM) studies of RNA related model compounds indicate the energy minimum associated with the O3' orientation to be too favorable, consistent with the MD results. Optimization of the dihedral parameters dictating the energy of the 2'-hydroxyl proton targeting the QM data yielded several parameter sets, which sample both the base and O3' orientations of the 2'-hydroxyl to varying degrees. Selection of the final dihedral parameters was based on reproduction of hydration behavior as related to a survey of crystallographic data and better agreement with experimental NMR J-coupling values. Application of the model, designated CHARMM36, to a collection of canonical and noncanonical RNA molecules reveals overall improved agreement with a range of experimental observables as compared to CHARMM27. The results also indicate the sensitivity of the conformational heterogeneity of RNA to the orientation of the 2'-hydroxyl moiety and support a model whereby the 2'-hydroxyl can enhance the probability of conformational transitions in RNA.

299 citations


Journal ArticleDOI
TL;DR: The following new analysis modules have been added since the publication of the original Wordom paper in 2007: assignment of secondary structure, calculation of solvent accessible surfaces, elastic network model, motion cross correlations, protein structure network, shortest intra‐molecular and inter‐molescular communication paths, kinetic grouping analysis, and calculation of mincut‐based free energy profiles.
Abstract: Wordom is a versatile, user-friendly, and efficient program for manipulation and analysis of molecular structures and dynamics. The following new analysis modules have been added since the publication of the original Wordom paper in 2007: assignment of secondary structure, calculation of solvent accessible surfaces, elastic network model, motion cross correlations, protein structure network, shortest intra-molecular and inter-molecular communication paths, kinetic grouping analysis, and calculation of mincut-based free energy profiles. In addition, an interface with the Python scripting language has been built and the overall performance and user accessibility enhanced. The source code of Wordom (in the C programming language) as well as documentation for usage and further development are available as an open source package under the GNU General Purpose License from http://wordom.sf.net. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011

Journal ArticleDOI
TL;DR: A Web services framework for APBS and PDB2PQR is developed that enables the use of these software packages by users who do not have local access to the necessary amount of computational capabilities and increases the availability of electrostatics calculations on portable computing platforms.
Abstract: APBS and PDB2PQR are widely utilized free software packages for biomolecular electrostatics calculations. Using the Opal toolkit, we have developed a Web services framework for these software packages that enables the use of APBS and PDB2PQR by users who do not have local access to the necessary amount of computational capabilities. This not only increases accessibility of the software to a wider range of scientists, educators, and students but also increases the availability of electrostatics calculations on portable computing platforms. Users can access this new functionality in two ways. First, an Opal-enabled version of APBS is provided in current distributions, available freely on the web. Second, we have extended the PDB2PQR web server to provide an interface for the setup, execution, and visualization of electrostatic potentials as calculated by APBS. This web interface also uses the Opal framework which ensures the scalability needed to support the large APBS user community. Both of these resources are available from the APBS/PDB2PQR website: http://www.poissonboltzmann.org/.

Journal ArticleDOI
TL;DR: The AUTOF program is presented that allows the user to apply the complete model in a black box fashion and gives explicit recommendations regarding the conditions to be applied in the experiment, e.g., which reactant promotes the reaction or if a product kinetically inhibits it.
Abstract: The energetic span model allows the estimation of the turnover frequency (TOF) of a catalytic reaction from its calculated energy profile. Furthermore, by identifying the TOF determining intermediate and the TOF determining transition state, the model shows that the concept of “determining states” is more useful and correct than the concept of “determining steps.” This article illustrates the application of the model and provides an introduction to its concepts using instructive examples. The first part explains the model in its current state of development, whereas in the second part the degree of TOF control of the reactant and product concentrations is introduced. With this information, it is possible to give explicit recommendations regarding the conditions to be applied in the experiment, e.g., which reactant promotes the reaction or if a product kinetically inhibits it. At the end, we present the AUTOF program that allows the user to apply the complete model in a black box fashion. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011

Journal ArticleDOI
TL;DR: This tool will stimulate future work to assess the impact of the quality of the PME approximation on simulation outcomes, particularly with regard to the trade‐off between cost and scientific reliability in biomolecular applications.
Abstract: Based on our critique of requirements for performing an efficient molecular dynamics simulation with the particle-mesh Ewald (PME) implementation in GROMACS 4.5, we present a computational tool to enable the discovery of parameters that produce a given accuracy in the PME approximation of the full electrostatics. Calculations on two parallel computers with different processor and communication structures showed that a given accuracy can be attained over a range of parameter space, and that the attributes of the hardware and simulation system control which parameter sets are optimal. This information can be used to find the fastest available PME parameter sets that achieve a given accuracy. We hope that this tool will stimulate future work to assess the impact of the quality of the PME approximation on simulation outcomes, particularly with regard to the trade-off between cost and scientific reliability in biomolecular applications.

Journal ArticleDOI
TL;DR: This research is the first reported molecular mechanical study of halogen bonding, the positive region centered on the halogen atom was represented by an extra‐point (EP) of charge, which resulted in an improvement in the accuracy of the electrostatic‐potential derived charges.
Abstract: A halogen bond is a noncovalent bond between a halogen atom (X) and a Lewis base (Y). This type of bond is attributed to the anisotropic distribution of the charge density on the halogen atom, resulting in the formation of a positive cap (called the σ-hole) centered on the A–X axis. The current research is the first reported molecular mechanical study of halogen bonding, the positive region centered on the halogen atom was represented by an extra-point (EP) of charge. The correlation between the X–EP distance and the X…Y bond length was explored to determine the optimal position of the EP. A test set of 27 halogen-containing molecules complexed to various Lewis bases was studied using molecular mechanical potentials. The molecular mechanical minimized halogen bond lengths and binding energies were in good agreement with the corresponding quantum mechanical values. The EP inclusion on the halogen atom resulted in an improvement in the accuracy of the electrostatic-potential derived charges. The solvation free energies of halobenzene molecules relative to benzene were calculated with and without EP inclusion to assess the accuracy of the developed approach. Molecular mechanical study of halo derivatives of benzotriazole complexed to cyclin-dependent protein kinase 2 (CDK2) was performed, and MM-PB(GB)SA binding energies were calculated as a case study in finding potent halogenated inhibitors that can serve as antitumor drugs. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011

Journal ArticleDOI
TL;DR: An algorithm for designing the sequence of one or more interacting nucleic acid strands intended to adopt a target secondary structure at equilibrium is described and exhibits asymptotic optimality and the exponent in the time complexity bound is sharp.
Abstract: We describe an algorithm for designing the sequence of one or more interacting nucleic acid strands intended to adopt a target secondary structure at equilibrium. Sequence design is formulated as an optimization problem with the goal of reducing the ensemble defect below a user-specified stop condition. For a candidate sequence and a given target secondary structure, the ensemble defect is the average number of incorrectly paired nucleotides at equilibrium evaluated over the ensemble of unpseudoknotted secondary structures. To reduce the computational cost of accepting or rejecting mutations to a random initial sequence, candidate mutations are evaluated on the leaf nodes of a tree-decomposition of the target structure. During leaf optimization, defect-weighted mutation sampling is used to select each candidate mutation position with probability proportional to its contribution to the ensemble defect of the leaf. As subsequences are merged moving up the tree, emergent structural defects resulting from crosstalk between sibling sequences are eliminated via reoptimization within the defective subtree starting from new random subsequences. Using a Θ(N^3) dynamic program to evaluate the ensemble defect of a target structure with N nucleotides, this hierarchical approach implies an asymptotic optimality bound on design time: for sufficiently large N, the cost of sequence design is bounded below by 4/3 the cost of a single evaluation of the ensemble defect for the full sequence. Hence, the design algorithm has time complexity Ω(N^3). For target structures containing N ∈{100,200,400,800,1600,3200} nucleotides and duplex stems ranging from 1 to 30 base pairs, RNA sequence designs at 37°C typically succeed in satisfying a stop condition with ensemble defect less than N/100. Empirically, the sequence design algorithm exhibits asymptotic optimality and the exponent in the time complexity bound is sharp

Journal ArticleDOI
TL;DR: This work provides recommended values for the two parameters αLJ and βC controlling the behavior of the soft‐core Lennard–Jones and Coulomb potentials and compares one‐ and two‐step transformations with regard to their suitability for numerical integration.
Abstract: Molecular dynamics-based free energy calculations allow the determination of a variety of thermodynamic quantities from computer simulations of small molecules. Thermodynamic integration (TI) calculations can suffer from instabilities during the creation or annihilation of particles. This "singularity" problem can be addressed with "soft-core" potential functions which keep pairwise interaction energies finite for all configurations and provide smooth free energy curves. "One-step" transformations, in which electrostatic and van der Waals forces are simultaneously modified, can be simpler and less expensive than "two-step" transformations in which these properties are changed in separate calculations. Here, we study solvation free energies for molecules of different hydrophobicity using both models. We provide recommended values for the two parameters α(LJ) and β(C) controlling the behavior of the soft-core Lennard-Jones and Coulomb potentials and compare one- and two-step transformations with regard to their suitability for numerical integration. For many types of transformations, the one-step procedure offers a convenient and accurate approach to free energy estimates.

Journal ArticleDOI
TL;DR: Glycan Reader greatly simplifies the reading of PDB structure files containing glycans and is linked to other functional modules in CHARMM‐GUI, allowing users to easily generate carbohydrate or glycop protein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces.
Abstract: Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics.

Journal ArticleDOI
Duan Chen1, Zhan Chen1, Changjun Chen1, Weihua Geng1, Guo-Wei Wei1 
TL;DR: A matched interface and boundary (MIB)‐based PBE software package, the MIBPB solver, for electrostatic analysis, and further accelerates the rate of convergence of linear equation systems resulting from the M IBPB by using the Krylov subspace (KS) techniques.
Abstract: The Poisson–Boltzmann equation (PBE) is an established model for the electrostatic analysis of biomolecules. The development of advanced computational techniques for the solution of the PBE has been an important topic in the past two decades. This article presents a matched interface and boundary (MIB)-based PBE software package, the MIBPB solver, for electrostatic analysis. The MIBPB has a unique feature that it is the first interface technique-based PBE solver that rigorously enforces the solution and flux continuity conditions at the dielectric interface between the biomolecule and the solvent. For protein molecular surfaces, which may possess troublesome geometrical singularities, the MIB scheme makes the MIBPB by far the only existing PBE solver that is able to deliver the second-order convergence, that is, the accuracy increases four times when the mesh size is halved. The MIBPB method is also equipped with a Dirichlet-to-Neumann mapping technique that builds a Green's function approach to analytically resolve the singular charge distribution in biomolecules in order to obtain reliable solutions at meshes as coarse as 1 A — whereas it usually takes other traditional PB solvers 0.25 A to reach similar level of reliability. This work further accelerates the rate of convergence of linear equation systems resulting from the MIBPB by using the Krylov subspace (KS) techniques. Condition numbers of the MIBPB matrices are significantly reduced by using appropriate KS solver and preconditioner combinations. Both linear and nonlinear PBE solvers in the MIBPB package are tested by protein–solvent solvation energy calculations and analysis of salt effects on protein–protein binding energies, respectively. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011

Journal ArticleDOI
TL;DR: The new 56ACARBO force field is characterized by the formulation of systematic build‐up rules for the automatic generation of force‐field topologies over a large class of compounds including (but not restricted to) unfunctionalized polyhexopyranoses with arbritrary connectivities.
Abstract: This article presents a reoptimization of the GROMOS 53A6 force field for hexopyranose-based carbohydrates (nearly equivalent to 45A4 for pure carbohydrate systems) into a new version 56A(CARBO) (nearly equivalent to 53A6 for non-carbohydrate systems). This reoptimization was found necessary to repair a number of shortcomings of the 53A6 (45A4) parameter set and to extend the scope of the force field to properties that had not been included previously into the parameterization procedure. The new 56A(CARBO) force field is characterized by: (i) the formulation of systematic build-up rules for the automatic generation of force-field topologies over a large class of compounds including (but not restricted to) unfunctionalized polyhexopyranoses with arbritrary connectivities; (ii) the systematic use of enhanced sampling methods for inclusion of experimental thermodynamic data concerning slow or unphysical processes into the parameterization procedure; and (iii) an extensive validation against available experimental data in solution and, to a limited extent, theoretical (quantum-mechanical) data in the gas phase. At present, the 56A(CARBO) force field is restricted to compounds of the elements C, O, and H presenting single bonds only, no oxygen functions other than alcohol, ether, hemiacetal, or acetal, and no cyclic segments other than six-membered rings (separated by at least one intermediate atom). After calibration, this force field is shown to reproduce well the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. As a result, the 56A(CARBO) force field should be suitable for: (i) the characterization of the dynamics of pyranose ring conformational transitions (in simulations on the microsecond timescale); (ii) the investigation of systems where alternative ring conformations become significantly populated; (iii) the investigation of anomerization or epimerization in terms of free-energy differences; and (iv) the design of simulation approaches accelerating the anomerization process along an unphysical pathway.

Journal ArticleDOI
TL;DR: It is shown that the nudged elastic band method does in fact converge to steepest descent paths and that the observed tendency for the NEB to approach gradient extremal paths was a consequence of implementation errors.
Abstract: A recent letter to the editor (Quapp and Bofill, J Comput Chem 2010, 31, 2526) claims that the nudged elastic band (NEB) method can converge toward gradient extremal paths and not to steepest descent paths, as has been assumed. Here, we show that the NEB does in fact converge to steepest descent paths and that the observed tendency for the NEB to approach gradient extremal paths was a consequence of implementation errors. We also note that while the NEB finds steepest descent paths, these are not necessarily minimum energy paths in the sense of being a set of points which are minima in the potential energy surface perpendicular to the path. An example is given where segments of steepest descent paths follow potential energy ridges.

Journal ArticleDOI
TL;DR: DynamO is presented, a general event‐driven simulation package, which displays the optimal ${\cal O}$(N) asymptotic scaling of the computational cost with the number of particles N, rather than the standard scaling found in most standard algorithms.
Abstract: Molecular dynamics algorithms for systems of particles interacting through discrete or "hard" potentials are fundamentally different to the methods for continuous or "soft" potential systems. Although many software packages have been developed for continuous potential systems, software for discrete potential systems based on event-driven algorithms are relatively scarce and specialized. We present DynamO, a general event-driven simulation package, which displays the optimal O(N) asymptotic scaling of the computational cost with the number of particles N, rather than the O(N log N) scaling found in most standard algorithms. DynamO provides reference implementations of the best available event-driven algorithms. These techniques allow the rapid simulation of both complex and large (>10(6) particles) systems for long times. The performance of the program is bench-marked for elastic hard sphere systems, homogeneous cooling and sheared inelastic hard spheres, and equilibrium Lennard-Jones fluids.

Journal ArticleDOI
TL;DR: The smaller basis sets gave the best results (in comparison to experimental and high‐level non‐DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set.
Abstract: We evaluate the performance of ten functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D, and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-density functional theory (non-DFT) molecular orbital (MO) calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise (CP) corrected PES. The calculated interaction energies (ΔEs) with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, because of error compensation, the smaller basis sets gave the best results (in comparison to experimental and high-level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. As many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: (1) D95(d,p) with B3LYP, B97D, M06, or MPWB1k; (2) 6-311G(d,p) with B3LYP; (3) D95++(d,p) with B3LYP, B97D, or MPWB1K; (4) 6-311++G(d,p) with B3LYP or B97D; and (5) aug-cc-pVDZ with M05-2X, M06-2X, or X3LYP.

Journal ArticleDOI
TL;DR: It is concluded that the sampling strategy that averaging the mean square displacement collected in multiple short‐MD simulations is efficient in predicting diffusion coefficients of solutes at infinite dilution.
Abstract: In this work, we have evaluated how well the general assisted model building with energy refinement (AMBER) force field performs in studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17 solvents, five organic compounds in aqueous solutions, four proteins in aqueous solutions, and nine organic compounds in nonaqueous solutions. An efficient sampling strategy has been proposed and tested in the calculation of the diffusion coefficients of solutes in solutions. There are two major findings of this study. First of all, the diffusion coefficients of organic solutes in aqueous solution can be well predicted: the average unsigned errors and the root mean square errors are 0.137 and 0.171 × 10(-5) cm(-2) s(-1), respectively. Second, although the absolute values of D cannot be predicted, good correlations have been achieved for eight organic solvents with experimental data (R(2) = 0.784), four proteins in aqueous solutions (R(2) = 0.996), and nine organic compounds in nonaqueous solutions (R(2) = 0.834). The temperature dependent behaviors of three solvents, namely, TIP3P water, dimethyl sulfoxide, and cyclohexane have been studied. The major molecular dynamics (MD) settings, such as the sizes of simulation boxes and with/without wrapping the coordinates of MD snapshots into the primary simulation boxes have been explored. We have concluded that our sampling strategy that averaging the mean square displacement collected in multiple short-MD simulations is efficient in predicting diffusion coefficients of solutes at infinite dilution.

Journal ArticleDOI
TL;DR: It is shown that a variant of REST realized by rescaling the force‐field parameters can be performed with GROMACS 4 without changing the code.
Abstract: To reduce the number of replicas required in the conventional replica exchange method for huge systems, recently the replica exchange with solute tempering (REST) method was proposed. Here we showed that a variant of REST realized by rescaling the force-field parameters can be performed with GROMACS 4 without changing the code. We tested the variant REST for alanine dipeptide and an N-terminal peptide from p53 confirming its performance nearly equal to the original REST.

Journal ArticleDOI
Juan Du1, Huijun Sun1, Lili Xi1, Jiazhong Li1, Ying Yang1, Huanxiang Liu1, Xiaojun Yao1 
TL;DR: The molecular docking combined with Prime/MM–GBSA simulation can not only be used to rapidly and accurately predict the binding‐free energy of novel Chk1 inhibitors but also provide a novel strategy for lead discovery and optimization targeting Chk 1.
Abstract: Developing chemicals that inhibit checkpoint kinase 1 (Chk1) is a promising adjuvant therapeutic to improve the efficacy and selectivity of DNA-targeting agents. Reliable prediction of binding-free energy and binding affinity of Chk1 inhibitors can provide a guide for rational drug design. In this study, multiple docking strategies and Prime/Molecular Mechanics Generalized Born Surface Area (Prime/MM-GBSA) calculation were applied to predict the binding mode and free energy for a series of benzoisoquinolinones as Chk1 inhibitors. Reliable docking results were obtained using induced-fit docking and quantum mechanics/molecular mechanics (QM/MM) docking, which showed superior performance on both ligand binding pose and docking score accuracy to the rigid-receptor docking. Then, the Prime/MM-GBSA method based on the docking complex was used to predict the binding-free energy. The combined use of QM/MM docking and Prime/MM-GBSA method could give a high correlation between the predicted binding-free energy and experimentally determined pIC(50). The molecular docking combined with Prime/MM-GBSA simulation can not only be used to rapidly and accurately predict the binding-free energy of novel Chk1 inhibitors but also provide a novel strategy for lead discovery and optimization targeting Chk1. (C) 2011 Wiley Periodicals, Inc. J Comput Chem 32: 2800-2808, 2011

Journal ArticleDOI
TL;DR: It turns out that hybrid functionals perform better than LDA and GGA, in general; that B3LYP overperforms WC1LYP and, in turn, PBE0; that PBESOL is better than PBE; that LDA is the worst performing functional among the six under study.
Abstract: The performance of six different density functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in describing the infrared spectrum of forsterite, a crystalline periodic system with orthorhombic unit cell (28 atoms in the primitive cell, Pbmn space group), is investigated by using the periodic ab initio CRYSTAL09 code and an all-electron Gaussian-type basis set. The transverse optical (TO) branches of the 35 IR active modes are evaluated at the equilibrium geometry together with the oscillator strengths and the high-frequency dielectric tensor ϵ(∞) . These quantities are essential to compute the dielectric function ϵ(ν), and then the reflectance spectrum R(ν), which is compared with experiment. It turns out that hybrid functionals perform better than LDA and GGA, in general; that B3LYP overperforms WC1LYP and, in turn, PBE0; that PBESOL is better than PBE; that LDA is the worst performing functional among the six under study.

Journal ArticleDOI
TL;DR: The results show that adding electron‐withdrawing substituents can lower the energy level of lowest unoccupied molecular orbital (LUMO) and increase electron affinity, which are beneficial to the electron injection and ambient stability of the material.
Abstract: Attaching electron-withdrawing substituent to organic conjugated molecules is considered as an effective method to produce n-type and ambipolar transport materials. In this work, we use density functional theory calculations to investigate the electron and hole transport properties of pentacene (PENT) derivatives after substituent and simulate the angular resolution anisotropic mobility for both electron and hole transport. Our results show that adding electron-withdrawing substituents can lower the energy level of lowest unoccupied molecular orbital (LUMO) and increase electron affinity, which are beneficial to the electron injection and ambient stability of the material. Also the LUMO electronic couplings for electron transport in these pentacene derivatives can achieve up to a hundred meV which promises good electron transport mobility, although adding electron-withdrawing groups will introduce the increase of electron transfer reorganization energy. The final results of our angular resolution anisotropic mobility simulations show that the electron mobility of these pentacene derivatives can get to several cm(2) V-1 s(-1), but it is important to control the orientation of the organic material relative to the device channel to obtain the highest electron mobility. Our investigation provide detailed information to assist in the design of n-type and ambipolar organic electronic materials with high mobility performance. (C) 2011 Wiley Periodicals, Inc. J Comput Chem 32: 3218-3225, 2011

Journal ArticleDOI
TL;DR: A detailed description of the explicitly correlated second‐order Møller–Plesset perturbation theory (MP2‐F12) method, as implemented in the TURBOMOLE program package, is presented.
Abstract: A detailed description of the explicitly correlated second-order Moller-Plesset perturbation theory (MP2-F12) method, as implemented in the TURBOMOLE program package, is presented. The TURBOMOLE implementation makes use of density fitting, which greatly reduces the prefactor for integral evaluation. Methods are available for the treatment of ground states of open- and closed-shell species, using unrestricted as well as restricted (open-shell) Hartree-Fock reference determinants. Various methodological choices and approximations are discussed. The performance of the TURBOMOLE implementation is illustrated by example calculations of the molecules leflunomide, prednisone, methotrexate, ethylenedioxytetrafulvalene, and a cluster model for the adsorption of methanol on the zeolite H-ZSM-5. Various basis sets are used, including the correlation-consistent basis sets specially optimized for explicitly correlated calculations (cc-pVXZ-F12).

Journal ArticleDOI
TL;DR: A novel approach for feature representation of SSSs is proposed based on a different form of Chou's pseudo amino acid composition, and a novel prediction system by using SVM and IDQD algorithm as classifiers is proposed.
Abstract: Supersecondary structures (SSSs) are the building blocks of protein 3D structures. Accurate prediction of SSSs can be one important step toward building a tertiary structure from the specified secondary structure. How to improve the accuracy of prediction of SSSs by effectively incorporating the sequence order effects is an important and challenging problem. Based on a different form of Chou's pseudo amino acid composition, a novel approach for feature representation of SSSs is proposed. Amino acid basic compositions, dipeptide components, and amino acid composition distribution are incorporated to represent the compositional features of proteins. Each supersecondary structural motif is characterized as a vector of 36 dimensions. In addition, we propose a novel prediction system by using SVM and IDQD algorithm as classifiers. Our method is trained and tested on ArchDB40 dataset containing 3088 proteins. The highest overall accuracy for the training dataset and the independent testing dataset are 77.7 and 69.4%, respectively.