scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Computational Chemistry in 2014"


Journal ArticleDOI
TL;DR: The new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems are described, including addition of new lipid types, including phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol.
Abstract: CHARMM-GUI Membrane Builder, http://www.charmm-gui.org/input/membrane, is a web-based user interface designed to interactively build all-atom protein/membrane or membrane-only systems for molecular dynamics simulations through an automated optimized process. In this work, we describe the new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems, including (1) addition of new lipid types, such as phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol, yielding more than 180 lipid types, (2) enhanced building procedure for lipid packing around protein, (3) reliable algorithm to detect lipid tail penetration to ring structures and protein surface, (4) distance-based algorithm for faster initial ion displacement, (5) CHARMM inputs for P21 image transformation, and (6) NAMD equilibration and production inputs. The robustness of these new features is illustrated by building and simulating a membrane model of the polar and septal regions of E. coli membrane, which contains five lipid types: CL lipids with two types of acyl chains and phosphatidylethanolamine lipids with three types of acyl chains. It is our hope that CHARMM-GUI Membrane Builder becomes a useful tool for simulation studies to better understand the structure and dynamics of proteins and lipids in realistic biological membrane environments. © 2014 Wiley Periodicals, Inc.

1,604 citations


Journal ArticleDOI
TL;DR: KiSThelP is a cross‐platform free open‐source program developed to estimate molecular and reaction properties from electronic structure data that is well‐suited to support and enhance students learning and can serve as a very attractive courseware.
Abstract: Kinetic and Statistical Thermodynamical Package (KiSThelP) is a cross-platform free open-source program developed to estimate molecular and reaction properties from electronic structure data. To date, three computational chemistry software formats are supported (Gaussian, GAMESS, and NWChem). Some key features are: gas-phase molecular thermodynamic properties (offering hindered rotor treatment), thermal equilibrium constants, transition state theory rate coefficients (transition state theory (TST), variational transition state theory (VTST)) including one-dimensional (1D) tunnelling effects (Wigner, and Eckart) and Rice-Ramsperger-Kassel-Marcus (RRKM) rate constants, for elementary reactions with well-defined barriers. KiSThelP is intended as a working tool both for the general public and also for more expert users. It provides graphical front-end capabilities designed to facilitate calculations and interpreting results. KiSThelP enables to change input data and simulation parameters directly through the graphical user interface and to visually probe how it affects results. Users can access results in the form of graphs and tables. The graphical tool offers customizing of 2D plots, exporting images and data files. These features make this program also well-suited to support and enhance students learning and can serve as a very attractive courseware, taking the teaching content directly from results in molecular and kinetic modelling.

530 citations


Journal ArticleDOI
TL;DR: A database of environmentally hazardous chemicals, collected and modeled by QSar by the Insubria group, is included in the updated version of QSARINS, software recently proposed for the development and validation ofQSAR models by the genetic algorithm‐ordinary least squares method.
Abstract: A database of environmentally hazardous chemicals, collected and modeled by QSAR by the Insubria group, is included in the updated version of QSARINS, software recently proposed for the development and validation of QSAR models by the genetic algorithm-ordinary least squares method. In this version, a module, named QSARINS-Chem, includes several datasets of chemical structures and their corresponding endpoints (physicochemical properties and biological activities). The chemicals are accessible in different ways (CAS, SMILES, names and so forth) and their three-dimensional structure can be visualized. Some of the QSAR models, previously published by our group, have been redeveloped using the free online software for molecular descriptor calculation, PaDEL-Descriptor. The new models can be easily applied for future predictions on chemicals without experimental data, also verifying the applicability domain to new chemicals. The QSAR model reporting format (QMRF) of these models is also here downloadable. Additional chemometric analyses can be done by principal component analysis and multicriteria decision making for screening and ranking chemicals to prioritize the most dangerous. © 2014 Wiley Periodicals, Inc.

244 citations


Journal ArticleDOI
TL;DR: The performance of 18 density functional approximations has been tested for a very challenging task, the calculations of rate constants for radical‐molecule reactions in aqueous solution, and six of them provide high quality results, and are recommended to that purpose.
Abstract: The performance of 18 density functional approximations has been tested for a very challenging task, the calculations of rate constants for radical-molecule reactions in aqueous solution. Despite of the many difficulties involved in such an enterprise, six of them provide high quality results, and are recommended to that purpose. They are LC-ωPBE, M06-2X, BMK, B2PLYP, M05-2X, and MN12SX, in that order. This trend was obtained using experimental data as reference. The other relevant aspects used in this benchmark are: (i) the SMD model for mimicking the solvent; (ii) the conventional transition state, the zero-curvature tunneling correction, and the limit imposed by diffusion for the calculation of the rate constants. Even though changing any of these aspects might alter the trend in performance, at least, when using them, the aforementioned functionals can be successfully used to obtain high quality kinetic data for the kind of reactions investigated in this work.

198 citations


Journal ArticleDOI
TL;DR: LUMPAC (LUMinescence PACkage) is the first software that allows the study of luminescent properties of lanthanide‐based systems, and is a computationally efficient software that is user friendly and can be used by researchers who have no previous experience in theoretical chemistry.
Abstract: In this study, we will be presenting LUMPAC (LUMinescence PACkage), which was developed with the objective of making possible the theoretical study of lanthanide-based luminescent systems. This is the first software that allows the study of luminescent properties of lanthanide-based systems. Besides being a computationally efficient software, LUMPAC is user friendly and can be used by researchers who have no previous experience in theoretical chemistry. With this new tool, we hope to enable research groups to use theoretical tools on projects involving systems that contain lanthanide ions.

169 citations


Journal ArticleDOI
TL;DR: This work reports the first machine‐learning technique for sequence‐based prediction of θ and τ angles, which are expected to be complementary to predicted ϕ and ψ angles and secondary structures for using in model validation and template‐based as well as template‐free structure prediction.
Abstract: Because a nearly constant distance between two neighbouring Cα atoms, local backbone structure of proteins can be represented accurately by the angle between C(αi-1)-C(αi)-C(αi+1) (θ) and a dihedral angle rotated about the C(αi)-C(αi+1) bond (τ). θ and τ angles, as the representative of structural properties of three to four amino-acid residues, offer a description of backbone conformations that is complementary to φ and ψ angles (single residue) and secondary structures (>3 residues). Here, we report the first machine-learning technique for sequence-based prediction of θ and τ angles. Predicted angles based on an independent test have a mean absolute error of 9° for θ and 34° for τ with a distribution on the θ-τ plane close to that of native values. The average root-mean-square distance of 10-residue fragment structures constructed from predicted θ and τ angles is only 1.9A from their corresponding native structures. Predicted θ and τ angles are expected to be complementary to predicted ϕ and ψ angles and secondary structures for using in model validation and template-based as well as template-free structure prediction. The deep neural network learning technique is available as an on-line server called Structural Property prediction with Integrated DEep neuRal network (SPIDER) at http://sparks-lab.org.

144 citations


Journal ArticleDOI
TL;DR: A variant of the algebraic‐diagrammatic construction scheme of second‐order ADC(2) is implemented by applying the core‐valence separation (CVS) approximation to the ADC( 2) working equations, providing access to properties of core‐excited states and allowing for the calculation of X‐ray absorption spectra.
Abstract: Core-level excitations are generated by absorption of high-energy radiation such as X-rays. To describe these energetically high-lying excited states theoretically, we have implemented a variant of the algebraic-diagrammatic construction scheme of second-order ADC(2) by applying the core-valence separation (CVS) approximation to the ADC(2) working equations. Besides excitation energies, the CVS-ADC(2) method also provides access to properties of core-excited states, thereby allowing for the calculation of X-ray absorption spectra. To demonstrate the potential of our implementation of CVS-ADC(2), we have chosen medium-sized molecules as examples that have either biological importance or find application in organic electronics. The calculated results of CVS-ADC(2) are compared with standard TD-DFT/B3LYP values and experimental data. In particular, the extended variant, CVS-ADC(2)-x, provides the most accurate results, and the agreement between the calculated values and experiment is remarkable. © 2014 Wiley Periodicals, Inc.

140 citations


Journal ArticleDOI
TL;DR: An extensible interface between the AMBER molecular dynamics (MD) software package and electronic structure software packages for quantum mechanical (QM) and mixed QM and classical molecular mechanical (MM) MD simulations within both mechanical and electronic embedding schemes is presented.
Abstract: We present an extensible interface between the AMBER molecular dynamics (MD) software package and electronic structure software packages for quantum mechanical (QM) and mixed QM and classical molecular mechanical (MM) MD simulations within both mechanical and electronic embedding schemes. With this interface, ab initio wave function theory and density functional theory methods, as available in the supported electronic structure software packages, become available for QM/MM MD simulations with AMBER. The interface has been written in a modular fashion that allows straight forward extensions to support additional QM software packages and can easily be ported to other MD software. Data exchange between the MD and QM software is implemented by means of files and system calls or the message passing interface standard. Based on extensive tests, default settings for the supported QM packages are provided such that energy is conserved for typical QM/MM MD simulations in the microcanonical ensemble. Results for the free energy of binding of calcium ions to aspartate in aqueous solution comparing semiempirical and density functional Hamiltonians are shown to demonstrate features of this interface.

137 citations


Journal ArticleDOI
TL;DR: An efficient automated TS search method, artificial force induced reaction (AFIR), was extended to intramolecular reactions and is called single‐component AFIR (SC‐AFIR, to distinguish it from multicomponent AFIR for intermolecular reactants).
Abstract: Finding all required transition state (TS) structures is an important but hard task in theoretical study of complex reaction mechanisms. In the present article, an efficient automated TS search method, artificial force induced reaction (AFIR), was extended to intramolecular reactions. The AFIR method has been developed for intermolecular associative pathways between two or more reactants. Although it has also been applied to intramolecular reactions by dividing molecules manually into fragments, the fragmentation scheme was not automated. In this work, we propose an automated fragmentation scheme. Using this fragmentation scheme and the AFIR method, a fully automated search algorithm for intramolecular pathways is introduced. This version for intramolecular reactions is called single-component AFIR (SC-AFIR), to distinguish it from multicomponent AFIR for intermolecular reactions. SC-AFIR was tested with two reactions, the Claisen rearrangement and the first step of cobalt-catalyzed hydroformylation, and successfully located all important pathways reported in the literature. © 2013 Wiley Periodicals, Inc.

136 citations


Journal ArticleDOI
TL;DR: Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations.
Abstract: Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA.

131 citations


Journal ArticleDOI
TL;DR: A new class of descriptors obtained from the quantum theory of atoms in molecules' (QTAIM) localization and delocalization indices and bond properties, cast in matrix format, is shown to quantify transferability and molecular similarity meaningfully.
Abstract: The electron density and the electrostatic potential are fundamentally related to the molecular hamiltonian, and hence are the ultimate source of all properties in the ground- and excited-states. The advantages of using molecular descriptors derived from these fundamental scalar fields, both accessible from theory and from experiment, in the formulation of quantitative structure-to-activity and structure-to-property relationships, collectively abbreviated as QSAR, are discussed. A few such descriptors encode for a wide variety of properties including, for example, electronic transition energies, pKa's, rates of ester hydrolysis, NMR chemical shifts, DNA dimers binding energies, π-stacking energies, toxicological indices, cytotoxicities, hepatotoxicities, carcinogenicities, partial molar volumes, partition coefficients (log P), hydrogen bond donor capacities, enzyme–substrate complementarities, bioisosterism, and regularities in the genetic code. Electronic fingerprinting from the topological analysis of the electron density is shown to be comparable and possibly superior to Hammett constants and can be used in conjunction with traditional bulk and liposolubility descriptors to accurately predict biological activities. A new class of descriptors obtained from the quantum theory of atoms in molecules' (QTAIM) localization and delocalization indices and bond properties, cast in matrix format, is shown to quantify transferability and molecular similarity meaningfully. Properties such as “interacting quantum atoms (IQA)” energies which are expressible into an interaction matrix of two body terms (and diagonal one body “self” terms, as IQA energies) can be used in the same manner. The proposed QSAR-type studies based on similarity distances derived from such matrix representatives of molecular structure necessitate extensive investigation before their utility is unequivocally established. © 2014 The Author and the Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: The scaling factors from 10 DFT methods for 10 commonly used NMR solvents using the same set of reference compounds are presented to assess the inclusion of the polarizable continuum model for solvent effects.
Abstract: Calculation of NMR chemical shifts and coupling constants using quantum mechanical calculations [density functional theory (DFT)], has become a very popular tool for the determination of conformation and the assignment of stereochemistry within a molecule. We present the scaling factors (linear regression parameters) from 10 DFT methods for 10 commonly used NMR solvents using the same set of reference compounds. The results were compared with the corresponding gas-phase calculations to assess the inclusion of the polarizable continuum model for solvent effects.

Journal ArticleDOI
TL;DR: A new faster molecular dynamics engine is introduced into the CHARMM software package that is faster both in serial and parallel execution and allows the MD engine to parallelize up to hundreds of CPU cores.
Abstract: We introduce a new faster molecular dynamics (MD) engine into the CHARMM software package. The new MD engine is faster both in serial (i.e., single CPU core) and parallel execution. Serial performance is approximately two times higher than in the previous version of CHARMM. The newly programmed parallelization method allows the MD engine to parallelize up to hundreds of CPU cores.

Journal ArticleDOI
TL;DR: This work discusses the ChemNetworks software, whose purpose is to process Cartesian coordinates of chemical systems into a network/graph formalism and apply topological network analyses that include network neighborhood, the determination of geodesic paths, the degree census, direct structural searches, and the distribution of defect states of network.
Abstract: Many intermolecular chemical interactions persist across length and timescales and can be considered to form a "network" or "graph." Obvious examples include the hydrogen bond networks formed by polar solvents such as water or alcohols. In fact, there are many similarities between intermolecular chemical networks like those formed by hydrogen bonding and the complex and distributed networks found in computer science. Contemporary network analyses are able to dissect the complex local and global changes that occur within the network over multiple time and length scales. This work discusses the ChemNetworks software, whose purpose is to process Cartesian coordinates of chemical systems into a network/graph formalism and apply topological network analyses that include network neighborhood, the determination of geodesic paths, the degree census, direct structural searches, and the distribution of defect states of network. These properties can help to understand the network patterns and organization that may influence physical properties and chemical reactivity. The focus of ChemNetworks is to quantitatively describe intermolecular chemical networks of entire systems at both the local and global levels and as a function of time. The code is highly general, capable of converting a wide variety of systems into a chemical network formalism, including complex solutions, liquid interfaces, or even self-assemblies.

Journal ArticleDOI
TL;DR: LOOS (Lightweight Object Oriented Structure‐analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem.
Abstract: LOOS (Lightweight Object-Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 120 pre-built tools, including suites of tools for analyzing simulation convergence, 3D histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only 4 core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development.

Journal ArticleDOI
TL;DR: Developed here are developments to the CHARMM docking methodology to incorporate receptor flexibility and improvements to the sampling protocol as demonstrated with re‐docking trials on a subset of the CCDC/Astex set.
Abstract: Protein-ligand docking is a commonly used method for lead identification and refinement. While traditional structure-based docking methods represent the receptor as a rigid body, recent developments have been moving toward the inclusion of protein flexibility. Proteins exist in an interconverting ensemble of conformational states, but effectively and efficiently searching the conformational space available to both the receptor and ligand remains a well-appreciated computational challenge. To this end, we have developed the Flexible CDOCKER method as an extension of the family of complete docking solutions available within CHARMM. This method integrates atomically detailed side chain flexibility with grid-based docking methods, maintaining efficiency while allowing the protein and ligand configurations to explore their conformational space simultaneously. This is in contrast to existing approaches that use induced-fit like sampling, such as Glide or Autodock, where the protein or the ligand space is sampled independently in an iterative fashion. Presented here are developments to the CHARMM docking methodology to incorporate receptor flexibility and improvements to the sampling protocol as demonstrated with re-docking trials on a subset of the CCDC/Astex set. These developments within CDOCKER achieve docking accuracy competitive with or exceeding the performance of other widely utilized docking programs.

Journal ArticleDOI
TL;DR: A new way of summarizing the latest achievements in automatic liver segmentation is presented, which categorise a segmentation method according to the image feature it works on, therefore better summarising the performance of each category and leading to finding an optimal solution for a particular segmentation task.
Abstract: Automatic liver segmentation from abdominal images is challenging on the aspects of segmentation accuracy, automation and robustness. There exist many methods of liver segmentation and ways of categorisingthem. In this paper, we present a new way of summarizing the latest achievements in automatic liver segmentation. We categorise a segmentation method according to the image feature it works on, therefore better summarising the performance of each category and leading to finding an optimal solution for a particular segmentation task. All the methods of liver segmentation are categorized into three main classes including gray level based method, structure based method and texture based method. In each class, the latest advance is reviewed with summary comments on the advantages and drawbacks of each discussed approach. Performance comparisons among the classes are given along with the remarks on the problems existed and possible solutions. In conclusion, we point out that liver segmentation is still an open issue and the tendency is that multiple methods will be employed together to achieve better segmentation performance.

Journal ArticleDOI
TL;DR: Detailed density functional theory calculations definitively rationalize the preference for the endo cycloadduct in text‐book thermal Diels–Alder reactions involving maleic anhydride and cyclopentadiene or butadiene, and find that neither the orbital interactions nor the total interaction between the deformed reactants contributes to theendo selectivity.
Abstract: Detailed density functional theory calculations definitively rationalize the preference for the endo cycloadduct (also known as endo rule) in text-book thermal Diels-Alder reactions involving maleic anhydride and cyclopentadiene or butadiene. This selectivity is mainly caused by an unfavorable steric arrangement in the transition-state region of the exo pathway which translates into a more destabilizing activation strain. In contrast with the widely accepted, orbital-interaction-based explanation for the endo rule, it is found that neither the orbital interactions nor the total interaction between the deformed reactants contributes to the endo selectivity.

Journal ArticleDOI
TL;DR: It was found that double hybrid functionals explicitly including dispersion, that is, B2PLYPD and mPW2PLyPD, provide the better agreement with the CCSD(T)/CBS results on both energies and equilibrium geometry, indicating the importance of dispersive contributions in determining this interaction.
Abstract: The performance of an extensive set of density functional theory functionals has been tested against CCSD(T) and MP2 results, extrapolated to the complete basis set (CBS) limit, for the interaction of either DCl or DBr (D = H, HCC, F, and NC) with the aromatic system of benzene. It was found that double hybrid functionals explicitly including dispersion, that is, B2PLYPD and mPW2PLYPD, provide the better agreement with the CCSD(T)/CBS results on both energies and equilibrium geometry, indicating the importance of dispersive contributions in determining this interaction. Among the less expensive functionals, the better performance is provided by the ωB97X and M062X functionals, while the ωB97XD and B97D functionals are shown to work very well for bromine complexes but not so well for chlorine complexes. © 2013 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: A set of Carbohydrate Intrinsic (CHI) energy functions that quantify the conformational properties of oligosaccharides, based on the values of their glycosidic torsion angles, are developed.
Abstract: Docking algorithms that aim to be applicable to a broad range of ligands suffer reduced accuracy because they are unable to incorporate ligand-specific conformational energies. Here, we develop a set of Carbohydrate Intrinsic (CHI) energy functions that quantify the conformational properties of oligosaccharides, based on the values of their glycosidic torsion angles. The relative energies predicted by the CHI energy functions mirror the conformational distributions of glycosidic linkages determined from a survey of oligosaccharide-protein complexes in the protein data bank. Addition of CHI energies to the standard docking scores in Autodock 3, 4.2, and Vina consistently improves pose ranking of oligosaccharides docked to a set of anticarbohydrate antibodies. The CHI energy functions are also independent of docking algorithm, and with minor modifications, may be incorporated into both theoretical modeling methods, and experimental NMR or X-ray structure refinement programs. © 2013 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: The forcefield presented here provides a starting point for future development of peptoid‐specific simulation methods within CHARMM, and it is demonstrated that solvation of a dipeptoid substantially modifies the conformations it can access.
Abstract: Peptoids are positional isomers of peptides: peptoid sidechains are attached to backbone nitrogens rather than α-carbons. Peptoids constitute a class of sequence-specific polymers resistant to biological degradation and potentially as diverse, structurally and functionally, as proteins. While molecular simulation of proteins is commonplace, relatively few tools are available for peptoid simulation. Here, we present a first-generation atomistic forcefield for peptoids. Our forcefield is based on the peptide forcefield CHARMM22, with key parameters tuned to match both experimental data and quantum mechanical calculations for two model peptoids (dimethylacetamide and a sarcosine dipeptoid). We used this forcefield to demonstrate that solvation of a dipeptoid substantially modifies the conformations it can access. We also simulated a crystal structure of a peptoid homotrimer, H-(N-2-phenylethyl glycine)3 -OH, and we show that experimentally observed structural and dynamical features of the crystal are accurately described by our forcefield. The forcefield presented here provides a starting point for future development of peptoid-specific simulation methods within CHARMM.

Journal ArticleDOI
TL;DR: The dynamical instability of the A*·G* base mis Pair cannot be considered as a source of the mutagenic tautomers of the DNA bases, as the A·G base mispair dissociates during DNA replication exceptionally into the A and G monomers in the canonical tautomeric form.
Abstract: Herein, we first address the question posed in the title by establishing the tautomerization trajectory via the double proton transfer of the adenine·guanine (A·G) DNA base mispair formed by the canonical tautomers of the A and G bases into the A*·G* DNA base mispair, involving mutagenic tautomers, with the use of the quantum-mechanical calculations and quantum theory of atoms in molecules (QTAIM). It was detected that the A·G ↔ A*·G* tautomerization proceeds through the asynchronous concerted mechanism. It was revealed that the A·G base mispair is stabilized by the N6H···O6 (5.68) and N1H···N1 (6.51) hydrogen bonds (H-bonds) and the N2H···HC2 dihydrogen bond (DH-bond) (0.68 kcal·mol−1), whereas the A*·G* base mispair—by the O6H···N6 (10.88), N1H···N1 (7.01) and C2H···N2 H-bonds (0.42 kcal·mol−1). The N2H···HC2 DH-bond smoothly and without bifurcation transforms into the C2H···N2 H-bond at the IRC = −10.07 Bohr in the course of the A·G ↔ A*·G* tautomerization. Using the sweeps of the energies of the intermolecular H-bonds, it was observed that the N6H···O6 H-bond is anticooperative to the two others—N1H···N1 and N2H···HC2 in the A·G base mispair, while the latters are significantly cooperative, mutually strengthening each other. In opposite, all three O6H···N6, N1H···N1, and C2H···N2 H-bonds are cooperative in the A*·G* base mispair. All in all, we established the dynamical instability of the А*·G* base mispair with a short lifetime (4.83·10−14 s), enabling it not to be deemed feasible source of the A* and G* mutagenic tautomers of the DNA bases. The small lifetime of the А*·G* base mispair is predetermined by the negative value of the Gibbs free energy for the A*·G* → A·G transition. Moreover, all of the six low-frequency intermolecular vibrations cannot develop during this lifetime that additionally confirms the aforementioned results. Thus, the A*·G* base mispair cannot be considered as a source of the mutagenic tautomers of the DNA bases, as the A·G base mispair dissociates during DNA replication exceptionally into the A and G monomers in the canonical tautomeric form. © 2013 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: It is concluded that extensive benchmarking allows for the quantitative analyses of the CT behavior of copper bis(chelate) complexes within TD‐DFT and that DFT identifies the correct conformational minimum and that the MLCTs are strongly dependent on the torsion of the chelate angles at the copper center.
Abstract: We report a comprehensive computational benchmarking of the structural and optical properties of a bis(chelate) copper(I) guanidine-quinoline complex. Using various (TD-)DFT flavors a strong influence of the basis set is found. Moreover, the amount of exact exchange shifts metal-to-ligand bands by 1 eV through the absorption spectrum. The BP86/6-311G(d) and B3LYP/def2-TZVP functional/basis set combinations were found to yield results in best agreement with the experimental data. In order to probe the general applicability of TD-DFT to excitations of copper bis(chelate) charge-transfer (CT) systems, we studied a small model system that on the one hand is accessible to methods of many-body perturbation theory (MBPT) but still contains simple guanidine and imine groups. These calculations show that large quasiparticle energies of the order of several electronvolts are largely offset by exciton binding energies for optical excitations and that TD-DFT excitation energies deviate from MBPT results by at most 0.5 eV, further corroborating the reliability of our TD-DFT results. The latter result in a multitude of MLCT bands ranging from the visible region at 3.4 eV into the UV at 5.5 eV for the bis(chelate) complex. Molecular orbital analysis provided insight into the CT within these systems but gave mixed transitions. A meaningful transition assignment is possible, however, by using natural transition orbitals. Additionally, we performed a thorough conformational analysis as the correct description of the copper coordination is crucial for the prediction of optical spectra. We found that DFT identifies the correct conformational minimum and that the MLCTs are strongly dependent on the torsion of the chelate angles at the copper center. From the results, it is concluded that extensive benchmarking allows for the quantitative analyses of the CT behavior of copper bis(chelate) complexes within TD-DFT.

Journal ArticleDOI
TL;DR: A hydration site analysis program developed together with an easy‐to‐use graphical user interface based on PyMOL that is able to estimate the protein desolvation free energy for any user specified ligand.
Abstract: Water molecules that mediate protein-ligand interactions or are released from the binding site on ligand binding can contribute both enthalpically and entropically to the free energy of ligand binding. To elucidate the thermodynamic profile of individual water molecules and their potential contribution to ligand binding, a hydration site analysis program WATsite was developed together with an easy-to-use graphical user interface based on PyMOL. WATsite identifies hydration sites from a molecular dynamics simulation trajectory with explicit water molecules. The free energy profile of each hydration site is estimated by computing the enthalpy and entropy of the water molecule occupying a hydration site throughout the simulation. The results of the hydration site analysis can be displayed in PyMOL. A key feature of WATsite is that it is able to estimate the protein desolvation free energy for any user specified ligand. The WATsite program and its PyMOL plugin are available free of charge from http://people.pnhs.purdue.edu/~mlill/software.

Journal ArticleDOI
TL;DR: To describe the atomic layer deposition (ALD) reactions of HfO2 from Hf(N(CH3)2)4 and H2O, a three‐dimensional on‐lattice kinetic Monte‐Carlo model is developed and introduces a slow reordering motion at the mesoscale, leading to the smooth and conformal thin film that is characteristic of ALD.
Abstract: To describe the atomic layer deposition (ALD) reactions of HfO2 from Hf(N(CH3)2)4 and H2O, a three-dimensional on-lattice kinetic Monte-Carlo model is developed. In this model, all atomistic reaction pathways in density functional theory (DFT) are implemented as reaction events on the lattice. This contains all steps, from the early stage of adsorption of each ALD precursor, kinetics of the surface protons, interaction between the remaining precursors (steric effect), influence of remaining fragments on adsorption sites (blocking), densification of each ALD precursor, migration of each ALD precursors, and cooperation between the remaining precursors to adsorb H2O (cooperative effect). The essential chemistry of the ALD reactions depends on the local environment at the surface. The coordination number and a neighbor list are used to implement the dependencies. The validity and necessity of the proposed reaction pathways are statistically established at the mesoscale. The formation of one monolayer of precursor fragments is shown at the end of the metal pulse. Adsorption and dissociation of the H2O precursor onto that layer is described, leading to the delivery of oxygen and protons to the surface during the H2O pulse. Through these processes, the remaining precursor fragments desorb from the surface, leaving the surface with bulk-like and OH-terminated HfO2, ready for the next cycle. The migration of the low coordinated remaining precursor fragments is also proposed. This process introduces a slow reordering motion (crawling) at the mesoscale, leading to the smooth and conformal thin film that is characteristic of ALD.

Journal ArticleDOI
TL;DR: It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system reduces the thermodynamic interpretation of guest‐host interactions.
Abstract: The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio-)chemical thermodynamics. Many important endogenous receptor-binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice-summation scheme or a cutoff-truncation scheme with Barker–Watts reaction-field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest-host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free-energy calculation studies if changes in the net charge are involved. © 2013 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: A systematic study on how the reaction barrier depends on the nature of the aryl halide, ligand, and counteranion allows us to identify the best combination of gold(I) complex and aryal halide to achieve a feasible (i.e., low barrier) oxidative addition to gold( I), a process considered as kinetically sluggish so far.
Abstract: By means of density functional theory calculations, we computationally analyze the physical factors governing the oxidative addition of aryl halides to gold(I) complexes. Using the activation strain model of chemical reactivity, it is found that the strain energy associated with the bending of the gold(I) complex plays a key role in controlling the activation barrier of the process. A systematic study on how the reaction barrier depends on the nature of the aryl halide, ligand, and counteranion allows us to identify the best combination of gold(I) complex and aryl halide to achieve a feasible (i.e., low barrier) oxidative addition to gold(I), a process considered as kinetically sluggish so far. © 2014 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: In this article, two different atomic energy partitioning methods, namely fractional occupation iterative Hirshfeld (FOHI) and interacting quantum atoms (IQA), were compared with the traditional virial-based approach of atoms in molecules (QTAIM).
Abstract: The nature of H-H interaction between ortho-hydrogen atoms in planar biphenyl is investigated by two different atomic energy partitioning methods, namely fractional occupation iterative Hirshfeld (FOHI) and interacting quantum atoms (IQA), and compared with the traditional virial-based approach of quantum theory of atoms in molecules (QTAIM). In agreement with Bader’s hypothesis of HAH bonding, partitioning the atomic energy into intra-atomic and interatomic terms reveals that there is a net attractive interaction between the ortho-hydrogens in the planar biphenyl. This falsifies the classical view of steric repulsion between the hydrogens. In addition, in contrast to the traditional QTAIM energy analysis, both FOHI and IQA show that the total atomic energy of the ortho-hydrogens remains almost constant when they participate in the H-H interaction. Although, the interatomic part of atomic energy of the hydrogens plays a stabilizing role during the formation of the HAH bond, it is almost compensated by the destabilizing effects of the intraatomic parts and consequently, the total energy of the hydrogens remains constant. The trends in the changes of intraatomic and interatomic energy terms of ortho-hydrogens during HAH bond formation are very similar to those observed for the H2 molecule. V C 2014 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: The free‐energy computation with ERmod is not restricted to the solvation in homogeneous medium such as fluid and polymer and can treat the binding into weakly ordered system with nano‐inhomogeneity such as micelle and lipid membrane.
Abstract: ERmod is a software package to efficiently and approximately compute the solvation free energy using the method of energy representation. Molecular simulation is to be conducted at two condensed-phase systems of the solution of interest and the reference solvent with test-particle insertion of the solute. The subprogram ermod in ERmod then provides a set of energy distribution functions from the simulation trajectories, and another subprogram slvfe determines the solvation free energy from the distribution functions through an approximate functional. This article describes the design and implementation of ERmod, and illustrates its performance in solvent water for two organic solutes and two protein solutes. Actually, the free-energy computation with ERmod is not restricted to the solvation in homogeneous medium such as fluid and polymer and can treat the binding into weakly ordered system with nano-inhomogeneity such as micelle and lipid membrane. ERmod is available on web at http://sourceforge.net/projects/ermod.

Journal ArticleDOI
TL;DR: NBO analysis is shown to be fully consistent with the traditional physical organic concept of repulsive bay‐type H···H contacts, including the corollary array of structural, conformational, and vibrational properties.
Abstract: We use comparative natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) methods to analyze the proximal bay-type H···H interactions in cis-2-butene and related species, which lead to controversial interpretation as attractive "HH bonding" in the QTAIM framework. We address the challenging questions concerning well established structural, conformational, and vibrational properties of such species that appear to be sharply at odds with the QTAIM interpretation. In contrast to the purported "HH bonding" of QTAIM theory, NBO-based evaluation of steric (donor-donor) and hyperconjugative (donor-acceptor) interactions unambiguously portrays such H···H contacts as dominated by steric clashes that are only partially softened by weak secondary hyperconjugative interactions, contributing negligibly (bHH < 0.01) to H···H bond order. Additional details of NBO-based versus QTAIM-based description are provided by natural bond critical point analysis of topological bond critical point properties, which further emphasizes the contrast between the problematic bay-type H···H contacts and remaining noncontroversial (consensus) chemical bonds. NBO analysis is thereby shown to be fully consistent with the traditional physical organic concept of repulsive bay-type H···H contacts, including the corollary array of structural, conformational, and vibrational properties. © 2014 Wiley Periodicals, Inc.