scispace - formally typeset
Search or ask a question
JournalISSN: 2213-2929

Journal of environmental chemical engineering 

Elsevier BV
About: Journal of environmental chemical engineering is an academic journal published by Elsevier BV. The journal publishes majorly in the area(s): Adsorption & Chemistry. It has an ISSN identifier of 2213-2929. Over the lifetime, 9625 publications have been published receiving 193709 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a general review of advanced oxidation processes developed to decolorize and/or degrade organic pollutants and highlight the application of nano-zero valent iron in treating refractory compounds.
Abstract: The increase in the disposal of refractory organics demands for newer technologies for the complete mineralization of these wastewaters. Advanced oxidation processes (AOPs) constitute a promising technology for the treatment of such wastewaters and this study presents a general review on such processes developed to decolorize and/or degrade organic pollutants. Fundamentals and main applications of typical methods such as Fenton, electro-Fenton, photo-Fenton, sono-Fenton, sono-photo-Fenton, sono-electro-Fenton and photo-electro-Fenton are discussed. This review also highlights the application of nano-zero valent iron in treating refractory compounds.

1,256 citations

Journal ArticleDOI
TL;DR: In this article, a review of existing research papers on various biological, chemical and physical dye removal methods to find its efficiency through percentage of dye removal is presented, which highlights enzyme degradation and adsorption (physical) dye removal as these are known as one of the most efficient dye removal techniques these days.
Abstract: Dye effluents released from numerous dye-utilizing industries are harmful towards the environment and living things. Consequently, existence of dye effluent in environmental water bodies is becoming a growing concern to environmentalists and civilians. A long term sustainable and efficient dye effluent treatment method should be established to eliminate this issue. Dye wastewater should be treated first before release to minimize its negative impacts towards the environment and living things. However, due to lack of information on efficient dye removal methods, it is difficult to decide on a single technique that resolves the prevailing dye effluent issue. Therefore, this paper reviews existing research papers on various biological, chemical and physical dye removal methods to find its efficiency through percentage of dye removal. Although there are numerous existing tried and tested methods to accomplish dye removal, most of them have a common disadvantage which is the generation of secondary pollution to the environment. This paper highlights enzyme degradation (biological) and adsorption (physical) dye removal as these are known as one of the most efficient dye removal techniques these days. This paper also suggests the usage of a combined adsorbent as it is envisioned that this technique has better efficiency and is able to remove dyes at a faster rate.

1,186 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a sketch about treatment technologies followed by their heavy metal capture capacity from industrial effluent, the treatment performance, their remediation capacity and probable environmental and health impacts were deliberated in this review article.
Abstract: The controversy related to the environment pollution is increasing in human life and in the eco-system. Especially, the water pollution is growing rapidly due to the wastewater discharge from the industries. The only way to find the new water resource is the reuse of treated wastewater. Several remediation technologies are available which provides a convenience to reuse the reclaimed wastewater. Heavy metals like Zn, Cu, Pb, Ni, Cd, Hg, etc. contributes various environmental problems based on their toxicity. These toxic metals are exposed to human and environment, the accumulation of ions takes place which causes serious health and environmental hazards. Hence, it is a major concern in the environment. Due to this concern, the significance of developing technology for removing heavy metals has been increased. This paper contributes the outline of new literature with two objectives. First, it provides the sketch about treatment technologies followed by their heavy metal capture capacity from industrial effluent. The treatment performance, their remediation capacity and probable environmental and health impacts were deliberated in this review article. Conclusively, this review paper furnishes the information about the important methods incorporated in lab scale studies which are required to identify the feasible and convenient wastewater treatment. Moreover, attempts have been made to confer the emphasis on sequestration of heavy metals from industrial effluent and establish the scientific background for reducing the discharge of heavy metals into the environment.

1,040 citations

Journal ArticleDOI
TL;DR: In this article, a review of the study status of Fenton-like processes is presented, and some important effect parameters (pH, H2O2 dosage, catalyst dosage, temperature) in hetero-/homo-geneous Fentonlike processes are discussed.
Abstract: Fenton-like processes have been studied widely in recent years and are considered promising for organic wastewater treatment. Due to the demand for high efficiency wastewater treatment, a summary of the study status of Fenton-like processes is necessary to develop a novel and high efficiency organic wastewater treatment method. In this review, some important effect parameters (pH, H2O2 dosage, catalyst dosage, temperature) in hetero-/homo-geneous Fenton-like processes are discussed, and then the physical field/phenomenon-assisted hetero-/homo-geneous Fenton-like processes are presented. After that, catalyst types and the evaluation of wastewater treatment costs for various Fenton-like processes are summarized and discussed. Finally, possible future research directions and some guidelines for Fenton-like processes are given.

680 citations

Journal ArticleDOI
TL;DR: In this article, the optimal selection of the KC is strongly dependent on the adsorption characteristics (i.e., Henry, Freundlich, and Langmuir) where equilibrium data are actually located; and the correlation coefficient of the van-t Hoff equation.
Abstract: Thermodynamic adsorption investigation plays a key role in estimating adsorptive mechanisms (i.e., physical or chemical). Accuracy estimation of the thermodynamic parameters is directly dependent on the equilibrium constant between two phases (KC; dimensionless). In this study, the thermodynamic parameters were calculated from the KC constants derived from the adsorption isotherm constants (i.e., Langmuir, Freundlich, and Henry) and partition coefficient, with and without dimensionality consideration. Results showed that the optimal selection of KC is strongly dependent on: the adsorption characteristics (i.e., Henry, Freundlich, and Langmuir) where equilibrium data are actually located; and the correlation coefficient of the van’t Hoff equation. Both the Langmuir and Freundlich constants (dimensionless) are appropriate to calculate the thermodynamic parameters. The Langmuir constants from its four linear forms can be applied to calculate the thermodynamic parameters without significant difference. The Cd(II) biosorption process onto the orange peel (OP) occurred spontaneously (−ΔG°), in an exothermic nature (−ΔH°), and with increased randomness (+ΔS°). The biosorption process involved physical adsorption with minimal activation energy (Ea) and adsorption energy (E). The biosorption phenomenon reached fast equilibrium and reversibility. The negatively charged carboxylic groups (–COO−) on the OP’s surface play an important role (approximately 90%) in Cd2+ biosorption through electrostatic attractions (out-sphere complexes).

494 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20231,370
20222,120
20212,322
20201,033
2019701
2018743