scispace - formally typeset
Search or ask a question
JournalISSN: 1475-6366

Journal of Enzyme Inhibition and Medicinal Chemistry 

Taylor & Francis
About: Journal of Enzyme Inhibition and Medicinal Chemistry is an academic journal published by Taylor & Francis. The journal publishes majorly in the area(s): Medicine & Carbonic anhydrase. It has an ISSN identifier of 1475-6366. It is also open access. Over the lifetime, 3034 publications have been published receiving 66283 citations. The journal is also known as: J. enzym. inhib. & Enzyme inhibition and medicinal chemistry.


Papers
More filters
Journal ArticleDOI
TL;DR: The main group of enzymes responsible for the collagen and other protein degradation in extracellular matrix (ECM) are matrix metalloproteinases (MMPs), and MMPs and their inhibitors have multiple biological functions in all stages of cancer development.
Abstract: The main group of enzymes responsible for the collagen and other protein degradation in extracellular matrix (ECM) are matrix metalloproteinases (MMPs). Collagen is the main structural component of connective tissue and its degradation is a very important process in the development, morphogenesis, tissue remodeling, and repair. Typical structure of MMPs consists of several distinct domains. MMP family can be divided into six groups: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other non-classified MMPs. MMPs and their inhibitors have multiple biological functions in all stages of cancer development: from initiation to outgrowth of clinically relevant metastases and likewise in apoptosis and angiogenesis. MMPs and their inhibitors are extensively examined as potential anticancer drugs. MMP inhibitors can be divided into two main groups: synthetic and natural inhibitors. Selected synthetic inhibitors are in clinical trials on humans, e.g. synthetic peptides, non-peptidic molecules, chemically modified tetracyclines, and bisphosphonates. Natural MMP inhibitors are mainly isoflavonoids and shark cartilage.

645 citations

Journal ArticleDOI
TL;DR: The use of such CA inhibitors (CAIs) as antiglaucoma drugs are discussed in detail, together with the recent developments that led to isozyme-specific and organ-selective inhibitors.
Abstract: Carbonic anhydrases (CAs, EC 4.2.1.1) are wide-spread enzymes, present in mammals in at least 14 different isoforms. Some of these isozymes are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII and CA XIV), CA V is mitochondrial and CA VI is secreted in the saliva and milk. Three cytosolic acatalytic forms are also known (CARP VIII, CARP X and CARP XI). The catalytically active isoforms, which play important physiological and patho-physiological functions, are strongly inhibited by aromatic and heterocyclic sulfonamides. The catalytic and inhibition mechanisms of these enzymes are understood in great detail, and this greatly helped the design of potent inhibitors, some of which possess important clinical applications. The use of such CA inhibitors (CAIs) as antiglaucoma drugs are discussed in detail, together with the recent developments that led to isozyme-specific and organ-selective inhibitors. A recent discovery is connected with the involvement of CAs and their sulfonamide inhibitors in cancer: many potent CAIs were shown to inhibit the growth of several tumor cell lines in vitro and in vivo, thus constituting interesting leads for developing novel antitumor therapies. Future prospects for drug design of inhibitors of these ubiquitous enzymes are dealt with. Although activation of CAs has been a controversial issue for some time, recent kinetic, spectroscopic and X-ray crystallographic experiments offered an explanation of this phenomenon, based on the catalytic mechanism. It has been demonstrated recently, that molecules that act as carbonic anhydrase activators (CAAs) bind at the entrance of the enzyme active site participating in facilitated proton transfer processes between the active site and the reaction medium. In addition to CA II-activator adducts, X-ray crystallographic studies have been also reported for ternary complexes of this isozyme with activators and anion (azide) inhibitors. Structure-activity correlations for diverse classes of activators is discussed for the isozymes for which the phenomenon has been studied, i.e., CA I, II, III and IV. The possible physiological relevance of CA activation/inhibition is also addressed, together with recent pharmacological/ biomedical applications of such compounds in different fields of life sciences.

622 citations

Journal ArticleDOI
TL;DR: Recent findings in the field of CA inhibition may be useful for a structure-based drug design approach of more selective/potent modulators of the activity of these enzymes.
Abstract: Six genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described to date. Inhibition of CAs has pharmacologic applications in the field of antiglaucoma, anticonvulsant, anticancer, and anti-infective agents. New classes of CA inhibitors (CAIs) were described in the last decade with enzyme inhibition mechanisms differing considerably from the classical inhibitors of the sulfonamide or anion type. Five different CA inhibition mechanisms are known: (i) the zinc binders coordinate to the catalytically crucial Zn(II) ion from the enzyme active site, with the metal in tetrahedral or trigonal bipyramidal geometries. Sulfonamides and their isosters, most anions, dithiocarbamates and their isosters, carboxylates, and hydroxamates bind in this way; (ii) inhibitors that anchor to the zinc-coordinated water molecule/hydroxide ion (phenols, carboxylates, polyamines, 2-thioxocoumarins, sulfocoumarins); (iii) inhibitors which occlude the entrance to the active site cavity (coumarins and their isosters), this binding site coinciding with that where CA activators bind; (iv) compounds which bind out of the active site cavity (a carboxylic acid derivative was seen to inhibit CA in this manner), and (v) compounds for which the inhibition mechanism is not known, among which the secondary/tertiary sulfonamides as well as imatinib/nilotinib are the most investigated examples. As CAIs are used clinically in many pathologies, with a sulfonamide inhibitor (SLC-0111) in Phase I clinical trials for the management of metastatic solid tumors, this review updates the recent findings in the field which may be useful for a structure-based drug design approach of more selective/potent modulators of the activity of these enzymes.

570 citations

Journal ArticleDOI
TL;DR: This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
Abstract: Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.

546 citations

Journal ArticleDOI
TL;DR: Novel drug design strategies have been reported ultimately based on the tail approach for obtaining sulphonamides/DTCs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds.
Abstract: Inhibition of the metalloenzyme carbonic anhydrase (CA; EC 4.2.1.1) has pharmacologic applications in the field of anti-glaucoma, anti-convulsant and anti-cancer agents. But recently, it has also emerged that these enzymes have the potential for designing anti-infective drugs (anti-fungal and anti-bacterial agents) with a novel mechanism of action. Sulphonamides and their isosteres (sulphamates/sulphamides) constitute the main class of CA inhibitors (CAIs), which bind to the metal ion from the enzyme active site. Recently, the dithiocarbamates (DTCs), possessing a similar mechanism of action, were reported as a new class of inhibitors. These types of CAIs will be discussed in detail in this review. Novel drug design strategies have been reported ultimately based on the tail approach for obtaining sulphonamides/DTCs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Most of the promising data have been obtained by combining x-ray crystallography of enzyme-inhibitor adducts with novel synthetic approaches for generating chemical diversity. Whereas sulphonamide - NO donating hybrid drugs were reported as effective anti-glaucoma agents, most of the interesting new inhibitors were designed for inhibiting specifically the tumour-associated isoforms CA IX and XII, validated targets for imaging and treatment of hypoxic tumours. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the DTC and carboxylate types, will be also reviewed.

531 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023124
2022207
2021176
2020185
2019171
2018161