scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Enzyme Inhibition and Medicinal Chemistry in 2016"


Journal ArticleDOI
TL;DR: The main group of enzymes responsible for the collagen and other protein degradation in extracellular matrix (ECM) are matrix metalloproteinases (MMPs), and MMPs and their inhibitors have multiple biological functions in all stages of cancer development.
Abstract: The main group of enzymes responsible for the collagen and other protein degradation in extracellular matrix (ECM) are matrix metalloproteinases (MMPs). Collagen is the main structural component of connective tissue and its degradation is a very important process in the development, morphogenesis, tissue remodeling, and repair. Typical structure of MMPs consists of several distinct domains. MMP family can be divided into six groups: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other non-classified MMPs. MMPs and their inhibitors have multiple biological functions in all stages of cancer development: from initiation to outgrowth of clinically relevant metastases and likewise in apoptosis and angiogenesis. MMPs and their inhibitors are extensively examined as potential anticancer drugs. MMP inhibitors can be divided into two main groups: synthetic and natural inhibitors. Selected synthetic inhibitors are in clinical trials on humans, e.g. synthetic peptides, non-peptidic molecules, chemically modified tetracyclines, and bisphosphonates. Natural MMP inhibitors are mainly isoflavonoids and shark cartilage.

645 citations


Journal ArticleDOI
TL;DR: Recent findings in the field of CA inhibition may be useful for a structure-based drug design approach of more selective/potent modulators of the activity of these enzymes.
Abstract: Six genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described to date. Inhibition of CAs has pharmacologic applications in the field of antiglaucoma, anticonvulsant, anticancer, and anti-infective agents. New classes of CA inhibitors (CAIs) were described in the last decade with enzyme inhibition mechanisms differing considerably from the classical inhibitors of the sulfonamide or anion type. Five different CA inhibition mechanisms are known: (i) the zinc binders coordinate to the catalytically crucial Zn(II) ion from the enzyme active site, with the metal in tetrahedral or trigonal bipyramidal geometries. Sulfonamides and their isosters, most anions, dithiocarbamates and their isosters, carboxylates, and hydroxamates bind in this way; (ii) inhibitors that anchor to the zinc-coordinated water molecule/hydroxide ion (phenols, carboxylates, polyamines, 2-thioxocoumarins, sulfocoumarins); (iii) inhibitors which occlude the entrance to the active site cavity (coumarins and their isosters), this binding site coinciding with that where CA activators bind; (iv) compounds which bind out of the active site cavity (a carboxylic acid derivative was seen to inhibit CA in this manner), and (v) compounds for which the inhibition mechanism is not known, among which the secondary/tertiary sulfonamides as well as imatinib/nilotinib are the most investigated examples. As CAIs are used clinically in many pathologies, with a sulfonamide inhibitor (SLC-0111) in Phase I clinical trials for the management of metastatic solid tumors, this review updates the recent findings in the field which may be useful for a structure-based drug design approach of more selective/potent modulators of the activity of these enzymes.

570 citations


Journal ArticleDOI
TL;DR: In this review, tyrosinase inhibitors with natural, semi-synthetic and synthetic origins are listed up with their structures, activities and characteristics.
Abstract: Tyrosinase plays a pivotal role in the synthesis of melanin pigment synthesis on skin utilizing tyrosine as a substrate. Melanin is responsible for the protection against harmful ultraviolet irradiation, which can cause significant pathological conditions, such as skin cancers. However, it can also create esthetic problems when accumulated as hyperpigmented spots. Various skin-whitening ingredients which inhibit tyrosinase activity have been identified. Some of them, especially ones with natural product origins, possess phenolic moiety and have been employed in cosmetic products. Semi-synthetic and synthetic inhibitors have also been developed under inspiration of the natural inhibitors yet some of which have no phenolic groups. In this review, tyrosinase inhibitors with natural, semi-synthetic and synthetic origins are listed up with their structures, activities and characteristics. Further, a recent report on the adverse effect of a natural melanin synthesis inhibitor which was included in skin-whitening cosmetics is also briefly discussed.

200 citations


Journal ArticleDOI
TL;DR: Investigation of the antioxidants and antiradical activities of taxifolin by using different in vitro bioanalytical antioxidant methods showed thatTaxifolin had marked antioxidant, reducing ability, radical scavenging and metal-chelating activities.
Abstract: Taxifolin is a kind of flavanonol, whose biological ability. The objectives of this study were to investigate the antioxidants and antiradical activities of taxifolin by using different in vitro bioanalytical antioxidant methods including DMPD√+, ABTS√+, , and DPPH√-scavenging effects, the total antioxidant influence, reducing capabilities, and Fe2+-chelating activities. Taxifolin demonstrated 81.02% inhibition of linoleic acid emulsion peroxidation at 30 µg/mL concentration. At the same concentration, standard antioxidants including trolox, α-tocopherol, BHT, and BHA exhibited inhibitions of linoleic acid emulsion as 88.57, 73.88, 94.29, and 90.12%, respectively. Also, taxifolin exhibited effective DMPD√+, ABTS√+, , and DPPH√-scavenging effects, reducing capabilities, and Fe2+-chelating effects. The results obtained from this study clearly showed that taxifolin had marked antioxidant, reducing ability, radical scavenging and metal-chelating activities. Also, this study exhibits a scientific shore...

179 citations


Journal ArticleDOI
TL;DR: In the present study, the inhibition effects of rosmarinic acid on tumour-associated carbonic anhydrase IX and XII isoenzymes, AChE, BchE, LPO and GST enzymes were evaluated.
Abstract: Rosmarinic acid (RA) is a natural polyphenol contained in many aromatic plants with promising biological activities. Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread and intensively studied metalloenzymes present in higher vertebrates. Acetylcholinesterase (AChE, E.C. 3.1.1.7) is intimately associated with the normal neurotransmission by catalysing the hydrolysis of acetylcholine to acetate and choline and acts in combination with butyrylcholinesterase (BChE) to remove acetylcholine from the synaptic cleft. Lactoperoxidase (LPO) is an enzyme involved in fighting pathogenic microorganisms, whereas glutathione S-transferases (GSTs) are dimeric proteins present both in prokaryotic and in eukaryotic organisms and involved in cellular detoxification mechanisms. In the present study, the inhibition effects of rosmarinic acid on tumour-associated carbonic anhydrase IX and XII isoenzymes, AChE, BChE, LPO and GST enzymes were evaluated. Rosmarinic acid inhibited these enzymes with Kis in the range between micromolar to picomolar. The best inhibitory effect of rosmarinic acid was observed against both AChE and BChE.

168 citations


Journal ArticleDOI
TL;DR: Detailed protein-inhibitor mechanistic analysis of these species indicated that the chalcones exhibited competitive inhibition characteristics to the Sars-CoV 3CLpro, whereas noncompetitive inhibition was observed with the SARS- coV PLpro.
Abstract: Two viral proteases of severe acute respiratory syndrome coronavirus (SARS-CoV), a chymotrypsin-like protease (3CL(pro)) and a papain-like protease (PL(pro)) are attractive targets for the development of anti-SARS drugs. In this study, nine alkylated chalcones (1-9) and four coumarins (10-13) were isolated from Angelica keiskei, and the inhibitory activities of these constituents against SARS-CoV proteases (3CL(pro) and PL(pro)) were determined (cell-free/based). Of the isolated alkylated chalcones, chalcone 6, containing the perhydroxyl group, exhibited the most potent 3CL(pro) and PL(pro) inhibitory activity with IC50 values of 11.4 and 1.2 µM. Our detailed protein-inhibitor mechanistic analysis of these species indicated that the chalcones exhibited competitive inhibition characteristics to the SARS-CoV 3CL(pro), whereas noncompetitive inhibition was observed with the SARS-CoV PL(pro).

166 citations


Journal ArticleDOI
TL;DR: The inhibition effect of CAPE on human carbonic anhydrase (hCA) isoforms I, II, IX, and XII, AChE, BchE, LPO, and GST was evaluated and CAPE inhibited these enzymes with Kis in the range between micromolar to picomolar.
Abstract: Caffeic acid phenethyl ester (CAPE) is an active component of honeybee propolis extracts. Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread and intensively studied metalloenzymes present in higher vertebrates including humans as many diverse isoforms. Acetylcholinesterase (AChE) is responsible for acetyl choline (ACh) hydrolysis and plays a fundamental role in nerve impulse transmission by terminating the action of the ACh neurotransmitter at cholinergic synapses and neuromuscular junctions. Butyrylcholinesterase (BChE) is another enzyme abundantly present in the liver and released into blood in a soluble form. Lactoperoxidase (LPO) is an enzyme involved in fighting pathogenic microorganisms whereas glutathione S-transferases (GSTs) are dimeric proteins present both in prokaryotic and eukaryotic organisms and involved in cellular detoxification mechanisms. In the present study, the inhibition effect of CAPE on human carbonic anhydrase (hCA) isoforms I, II, IX, and XII, AChE, BChE, LPO, and GST was evaluated. CAPE inhibited these enzymes with Kis in the range between micromolar to picomolar. The best inhibitory effect was observed against AChE and BChE.

144 citations


Journal ArticleDOI
TL;DR: Historically the numerous and different procedures which were employed for obtaining these catalysts in pure form of the α-carbonic anhydrase (CA, EC 4.2.1) class are presented.
Abstract: In this paper, we reviewed the purification and characterization methods of the α-carbonic anhydrase (CA, EC 4.2.1.1) class. Six genetic families (α-, β-, γ-, δ-, ζ- and η-CAs) all know to date, all encoding such enzymes in organisms widely distributed over the phylogenetic tree. Starting from the manuscripts published in the 1930s on the isolation and purification of α-CAs from blood and other tissues, and ending with the recent discovery of the last genetic family in protozoa, the η-CAs, considered for long time an α-CA, we present historically the numerous and different procedures which were employed for obtaining these catalysts in pure form. α-CAs possess important application in medicine (as many human α-CA isoforms are drug targets) as well as biotechnological processes, in which the enzymes are ultimately used for CO2 capture in order to mitigate the global warming effects due to greenhouse gases. Recently, it was discovered an involvement of CAs in cancerogenesis as well as infection caus...

132 citations


Journal ArticleDOI
TL;DR: The antioxidant activity of the cyclic thioureas was investigated by using different in vitro antioxidant assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical scavenging, Cu2+’and Fe3+ reducing, and Fe2- chelating activities.
Abstract: A series of tetrahydropyrimidinethiones were synthesized from thiourea, β-diketones and aromatic aldehydes, such as p-tolualdehyde, p-anisaldehyde, o-tolualdehyde, salicylaldehyde and benzaldehyde. These cyclic thioureas showed good inhibitory action against acetylcholine esterase (AChE), butyrylcholine esterase (BChE), and human (h) carbonic anhydrase (CA) isoforms I and II. AChE and BChE inhibitions were in the range of 6.11-16.13 and 6.76-15.68 nM, respectively. hCA I and II were effectively inhibited by these compounds, with Ki values in the range of 47.40-76.06 nM for hCA I, and of 30.63-76.06 nM for hCA II, respectively. The antioxidant activity of the cyclic thioureas was investigated by using different in vitro antioxidant assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical scavenging, Cu2+ and Fe3+ reducing, and Fe2+ chelating activities.

121 citations


Journal ArticleDOI
TL;DR: This study clearly showed that cynarin had marked antioxidant, anticholinergic, reducing ability, radical-scavenging, and metal-binding activities.
Abstract: Cynarin is a derivative of hydroxycinnamic acid and it has biologically active functional groups constituent of some plants and food. We elucidated the antioxidant activity of cynarin by using different in vitro condition bioanalytical antioxidant assays like DMPD•+, ABTS•+, , DPPH• and H2O2 scavenging effects, the total antioxidant influence, reducing capabilities, Fe2+ chelating and anticholinergic activities. Cynarin demonstrated 87.72% inhibition of linoleic acid lipid peroxidation at 30 µg/mL concentration. Conversely, some standard antioxidants like trolox, α-tocopherol, butylated hydroxytoluene (BHT), and butylated hydroxyanisole (BHA) exhibited inhibitions of 90.32, 75.26, 97.61, 87.30%, and opponent peroxidation of linoleic acid emulsion at the identical concentration, seriatim. Also, cynarin exhibited effective DMPD•+, ABTS•+, , DPPH•, and H2O2 scavenging effects, reducing capabilities and Fe2+ chelating effects. On the contrary, IC50 and Ki parameters of cynarin for acetylcholinesterase...

120 citations


Journal ArticleDOI
TL;DR: The CA inhibition mechanism with these ethers is unknown, but may be similar to that of aryl methyl ethers investigated earlier by computational approaches.
Abstract: A series of diaryl ethers were synthesized and their human (h) carbonic anhydrase (CA) isoenzymes hCA I and II, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) inhibitory actions were investigated. The new compounds were synthesized from the corresponding phenols and bromobenzenes via the Ullmann reaction, by using dipicolinic acid as a copper (I) complexing ligand. hCA I and II were inhibited with Kis in the low nanomolar range of 102.01-127.13 nM against hCA I, and of 73.71-113.40 nM against hCA II, whereas the inhibition constants against AChE were of 15.35-18.34 nM and against BChE in the range of 9.07-22.90 nM. The CA inhibition mechanism with these ethers is unknown, but may be similar to that of aryl methyl ethers investigated earlier by computational approaches.

Journal ArticleDOI
TL;DR: The 3,4,5-trimethoxy and the 4-hydroxy derivatives showed interesting cytotoxic activities, which may be crucial for further anti-tumor activity studies, whereas some of these sulfonamides strongly inhibited both human (h) cytosolic isoforms hCA I and II.
Abstract: A series of new 4-(3-(4-substitutedphenyl)-3a,4-dihydro-3H-indeno[1,2-c]pyrazol-2-yl) benzenesulfonamides (7-12) was synthesized starting from 2-(4-substitutedbenzylidene)-2,3-dihydro-1H-inden-1-one (1-6) and 4-hydrazinobenzenesulfonamide. The substituted benzaldehydes from which the key intermediate was prepared by introducing 2- or 4-substituents such as fluorine, hydroxy, methoxy, or the 3,4,5-trimethoxy moieties. The compounds were tested for their cytotoxicity, tumor-specificity and potential as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The 3,4,5-trimethoxy and the 4-hydroxy derivatives showed interesting cytotoxic activities, which may be crucial for further anti-tumor activity studies, whereas some of these sulfonamides strongly inhibited both human (h) cytosolic isoforms hCA I and II.

Journal ArticleDOI
TL;DR: This study suggests that isatin Mannich bases P1–P3 are good candidate compounds especially for the development of new cholinesterase inhibitors since they were 2.2–5.9 times better inhibitors than clinically used drug Tacrine.
Abstract: The effects of isatin Mannich bases incorporating (1-[piperidin-1-yl (P1)/morpholin-4-yl (P2)/N-methylpiperazin-1-yl (P3)]methyl)-1H-indole-2,3-dione) moieties against human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoenzymes hCA I and hCA II, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes were evaluated. P1–P3 demonstrated impressive inhibition profiles against AChE and BChE and also inhibited both CAs at nanomolar level. These inhibitory effects were more powerful in all cases than the reference compounds used for all these enzymes. This study suggests that isatin Mannich bases P1–P3 are good candidate compounds especially for the development of new cholinesterase inhibitors since they were 2.2–5.9 times better inhibitors than clinically used drug Tacrine.

Journal ArticleDOI
TL;DR: Synthesis of β-lactam analogs, which are containing dichloride atoms and N-methyl, N-aromatic rings, was achieved by Schiff bases and dichloroketene compounds and tested against two physiologically relevant carbonic anhydrase isozymes and acetylcholinesterase.
Abstract: β-Lactam antibiotics are a broad class of antibiotics, consisting of all antibiotic agents that contain a β-lactam ring in their molecular structures. Synthesis of β-lactam analogs, which are containing dichloride atoms and N-methyl, N-aromatic rings, was achieved by Schiff bases and dichloroketene compounds. All the synthesized imines and β-lactam analogs were tested against two physiologically relevant carbonic anhydrase isozymes (hCA I and II) and acetylcholinesterase (AChE). They demponstrated effective inhibitory profiles with Ki values in ranging of 3.22-11.18 nM against hCA I, 3.74-10.41 nM against hCA II, and 0.50-1.57 nM against AChE. On the other hand, acetazolamide and dorzolamide clinically used as CA inhibitors, showed Ki value of 170.34 and 129.26 nM against hCA I, and 115.43 and 135.67 nM against hCA II, respectively. Also, tacrine used as standard AChE inhibitor showed Ki value of 5.70 nM against AChE.

Journal ArticleDOI
TL;DR: 2-(Methacryloyloxy)ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate, is a cyclic urea derivative synthesized from urea, and tested in terms of the inhibition of two physiologically relevant carbonic anhydrase (CA) isozymes I and II.
Abstract: 2-(Methacryloyloxy)ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate, is a cyclic urea derivative synthesized from urea, 2-(methacryloyloxy) ethyl acetoacetate and substituted benzaldehyde, and tested in terms of the inhibition of two physiologically relevant carbonic anhydrase (CA) isozymes I and II. Acetylcholinesterase (AChE) is found in high concentrations in the red blood cells and brain. Butyrylcholinesterase (BChE) is another enzyme abundantly present in the liver and released into blood in a soluble form. Also, they were tested for the inhibition of AChE and BChE enzymes and demonstrated effective inhibition profiles with Ki values in the range of 429.24-530.80 nM against hCA I, 391.86-530.80 nM against hCA II, 68.48-97.19 nM against AChE and 104.70-214.15 nM against BChE. On the other hand, acetazolamide clinically used as CA inhibitor, showed Ki value of 281.33 nM against hCA I, and 202.70 nM against hCA II. Also, Tacrine inhibited AChE and BChE showed Ki values of 396.03 and 209.21 nM, respectively.

Journal ArticleDOI
TL;DR: Carbonic anhydrases, which are involved in a variety of physiological and pathological processes, are ubiquitous metalloenzymes mainly catalyzing the reversible hydration of carbon dioxide to bicarbonate and proton.
Abstract: Carbonic anhydrases (CAs, EC 4.2.1.1), which are involved in a variety of physiological and pathological processes, are ubiquitous metalloenzymes mainly catalyzing the reversible hydration of carbon dioxide (CO2) to bicarbonate () and proton (H+). In this study, a dozen of bromophenol derivatives (1–12) were evaluated as metalloenzyme CA (EC 4.2.1.1) inhibitors against the human carbonic anhydrase isoenzymes I and II (hCA I and II). Cytosolic hCA I and II isoenzymes were effectively inhibited by bromophenol derivatives (1–12) with Kis in the low nanomolar range of 1.85 ± 0.58 to 5.04 ± 1.46 nM against hCA I and in the range of 2.01 ± 0.52 to 2.94 ± 1.31 nM against hCA II, respectively.

Journal ArticleDOI
TL;DR: The properties of novel CA inhibitors to improve neurological functionalities after cerebral ischemic insult are shown and the CA involvement in cerebral hypoxic phenomena deserves deeper investigations.
Abstract: Ischemia of brain areas is a global health problem, causing death or long-term disability. Current pharmacological options have limited impact on ischemic damages. Recently, a relationship between hypoxia and carbonic anhydrase (CA) over-expression has been highlighted suggesting CA inhibition as a possible target. This study aimed to evaluate the pharmacological profile of sulfonamide and coumarin CA inhibitors in rats underwent permanent middle cerebral artery occlusion (pMCAO). The neurological score of pMCAO rats was dramatically reduced 24 h after occlusion. Repeated subcutaneous injections of the CA inhibitors 4 and 7 (1 mg kg(-1)) were able to increase the neurological score by 40%. Compound 7 showed the tendency to reduce the volume of hemisphere infarction. The standard CA inhibitor acetazolamide was ineffective. The properties of novel CA inhibitors to improve neurological functionalities after cerebral ischemic insult are shown. The CA involvement in cerebral hypoxic phenomena deserves deeper investigations.

Journal ArticleDOI
TL;DR: Some trimethoxyindane derivatives were investigated as inhibitors against the cytosolic hCA I and II isoenzymes, and AChE enzyme, and both hCA isozymes were inhibited by trimethanol derivatives in the low nanomolar range.
Abstract: Carbonic anhydrases (CAs, EC 4.2.1.1) had six genetically distinct families described to date in various organisms. There are 16 known CA isoforms in humans. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. Acetylcholine esterase (AChE. EC 3.1.1.7) is a hydrolase that hydrolyzes the neurotransmitter acetylcholine relaying the signal from the nerve. In this study, some trimethoxyindane derivatives were investigated as inhibitors against the cytosolic hCA I and II isoenzymes, and AChE enzyme. Both hCA isozymes were inhibited by trimethoxyindane derivatives in the low nanomolar range. These compounds were good hCA I inhibitors (Kis in the range of 1.66-4.14 nM) and hCA II inhibitors (Kis of 1.37-3.12 nM) and perfect AChE inhibitors (Kis in the range of 1.87-7.53 nM) compared to acetazolamide as CA inhibitor (Ki: 6.76 nM for hCA I and Ki: 5.85 nM for hCA II) and Tacrine as AChE inhibitor (Ki: 7.64 nM).

Journal ArticleDOI
TL;DR: The results represent the first evidence of the identification of these enzymes as potential therapeutic targets and development of novel innovative therapies for arthritis, also considering that the two isoforms are validated antitumor targets.
Abstract: Juvenile idiopathic arthritis (JIA) is the most common form of chronic rheumatic disease affecting children worldwide, with some features similar to adult rheumatoid arthritis (RA). In the present study, we aim at investigating novel markers that will allow in the future for tailored, more personalized treatment strategies. Hence, taking notice of several reports proving the role of local acidosis as a causal link between inflammatory diseases and related pain, and the involvement of several carbonic anhydrases (CA, EC 4.2.1.1) isoforms in articular diseases, we evaluated in JIA patients the expression of these metalloenzymes. We identified that JIA patients show high levels of active CA IX and XII isoforms. Our results represent the first evidence of the identification of these enzymes as potential therapeutic targets and development of novel innovative therapies for arthritis, also considering that the two isoforms are validated antitumor targets.

Journal ArticleDOI
TL;DR: Among the newly synthesized triazole derivatives, the Schiff base 4d and the Mannich base 5d carrying nitro substituent on the thiophene ring showed promising antibacterial and antifungal activity, with lower MIC values than the standard antibacterial ampicillin.
Abstract: Compound 2 was synthesized by reacting CS2/KOH with compound 1. The treatment of compound 2 with hydrazine hydrate produced compound 3. Then, compound 3 was converted to Schiff bases (4a–d) by the handling with several aromatic aldehydes. The treatment of triazole compounds 4a–d containing Schiff base with morpholine gave compounds 5a–d. All compounds were tested for their antioxidant and antimicrobial activities. The antioxidant test results of DPPH• radical scavenging and ferric reducing/antioxidant power methods showed good antioxidant activity. The triazole-thiol (3) was the most active, and the effect of the substituent type of the thiophene ring on the activity was same for both Schiff bases (4a–d) and Mannich bases (5a–d). Among the newly synthesized triazole derivatives, the Schiff base 4d and the Mannich base 5d carrying nitro substituent on the thiophene ring showed promising antibacterial and antifungal activity, with lower MIC values than the standard antibacterial ampicillin.

Journal ArticleDOI
TL;DR: It is proposed that the β-CAs found in Gram-negative bacteria with a periplasmic space and characterized by the presence of a signal peptide might have a pericolasmic localization and a role similar to that described previously for the α-C as.
Abstract: Among protein families, carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes characterized by a common reaction mechanism in all life domains: the carbon dioxide hydration to bicarbonate and protons (CO2+H2O ⇔ HCO3−+H+). Six genetically distinct CA families are known to date, the α-, β-, γ-, δ-, ζ- and η-CAs. The last CA class was recently discovered analyzing the amino acid sequences of CAs from Plasmodia. Bacteria encode for enzymes belonging to the α-, β-, and γ-CA classes and recently, phylogenetic analysis revealed an interesting relationship regarding the evolution of bacterial CA classes. This result evidenced that the three bacterial CA classes, in spite of the high level of the structural similarity, are evolutionarily distinct, but we noted that the primary structure of some β-CAs identified in the genome of Gram-negative bacteria present a pre-sequence of 18 or more amino acid residues at the N-terminal part. These observations and subsequent phylogenetic data presented here prompte...

Journal ArticleDOI
TL;DR: A historical overview of the sulfonamide CAIs as anti-ulcer agents is presented, in memoriam of the scientist who was in the first line of this research trend.
Abstract: Carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) started to be used in the treatment of peptic ulcers in the 1970s, and for more than two decades, a group led by Ioan Puscas used them for this purpose, assuming that by inhibiting the gastric mucosa CA isoforms, hydrochloric acid secretion is decreased. Although acetazolamide and other sulfonamide CAIs are indeed effective in healing ulcers, the inhibition of CA isoforms in other organs than the stomach led to a number of serious side effects which made this treatment obsolete when the histamine H2 receptor antagonists and the proton pump inhibitors became available. Decades later, in 2002, it has been discovered that Helicobacter pylori, the bacterial pathogen responsible for gastric ulcers and cancers, encodes for two CAs, one belonging to the α-class and the other one to the β-class of these enzymes. These enzymes are crucial for the life cycle of the bacterium and its acclimation within the highly acidic environment of the stomach. Inhibition of the two bacterial CAs with sulfonamides such as acetazolamide, a low-nanomolar H. pylori CAI, is lethal for the pathogen, which explains why these compounds were clinically efficient as anti-ulcer drugs. Thus, the approach promoted by Ioan Puscas for treating this disease was a good one although the rationale behind it was wrong. In this review, we present a historical overview of the sulfonamide CAIs as anti-ulcer agents, in memoriam of the scientist who was in the first line of this research trend.

Journal ArticleDOI
TL;DR: 4-(2-substituted hydrazinyl)benzenesulfonamides synthesized by microwave irradiation and their chemical structures were confirmed by 1H NMR, 13CNMR, and HRMS and the inhibitory effects of S1–S11 against hCA I and II were studied.
Abstract: In this study, 4-(2-substituted hydrazinyl)benzenesulfonamides were synthesized by microwave irradiation and their chemical structures were confirmed by 1H NMR, 13CNMR, and HRMS. Ketones used were: Acetophenone (S1), 4-methylacetophenone (S2), 4-chloroacetophenone (S3), 4-fluoroacetophenone (S4), 4-bromoacetophenone (S5), 4-methoxyacetophenone (S6), 4-nitroacetophenone (S7), 2-acetylthiophene (S8), 2-acetylfuran (S9), 1-indanone (S10), 2-indanone (S11). The compounds S9, S10 and S11 were reported for the first time, while S1–S8 was synthesized by different method than literature reported using microwave irradiation method instead of conventional heating in this study. The inhibitory effects of 4-(2-substituted hydrazinyl)benzenesulfonamide derivatives (S1–S11) against hCA I and II were studied. Cytosolic hCA I and II isoenzymes were potently inhibited by new synthesized sulphonamide derivatives with Kis in the range of 1.79 ± 0.22–2.73 ± 0.08 nM against hCA I and in the range of 1.72 ± 0.58–11.64 ...

Journal ArticleDOI
TL;DR: Overall these data prove that antioxidant natural products found in blueberries may be useful for designing pharmacological agents in which various CAs are involved, e.g., antiobesity, antitumor, or anticonvulsants agents.
Abstract: The multi-component fingerprint and the biological evaluation of plant-derived material are indispensable for the pharmaceutical field, in food quality control procedures, and in all plant-based products. We investigated the quantitative content of biologically active compounds (anthocyanins and chlorogenic acid) of microwave-assisted blueberry extracts from 14 different Italian cultivars, using validated high-performance liquid chromatography-photodiode array detector (HPLC-PDA) method and routinely instrument configuration. The carbonic anhydrase (CA, EC 4.2.1.1) inhibition profiles against several pharmacologically relevant CA isoforms of blueberry extracts and some bioactive compounds were also investigated. The various cultivars showed a highly variable content in anthocyanins and chlorogenic acid, and their CA inhibitory effects were also highly variable. Overall these data prove that antioxidant natural products found in blueberries may be useful for designing pharmacological agents in which various CAs are involved, e.g., antiobesity, antitumor, or anticonvulsants agents.

Journal ArticleDOI
TL;DR: The enzyme inhibitory potential on selected carbohydrate hydrolases, cholinesterases, and tyrosinase of extracts from fruits and leaves of Schisandra in relation with their main bioactive compounds were investigated by molecular modeling and molecular dynamic studies.
Abstract: Considerable interest has been shown in natural sources and their compounds in developing new therapeutically agents for different diseases. In this framework, investigations performed on this topic play a central role for human health and drug development process. Schisandra chinensis (Turcz.) Baill is a medicinal and edible plant showing highly advantageous bioactivity and nutritional value. The main bioactive compounds from its fruits are lignans, derivatives of dibenzocyclooctadiene whereas concerning its leaves, phenolic acids, and flavonoids are dominant. The purpose of this study was to investigate the enzyme inhibitory potential on selected carbohydrate hydrolases, cholinesterases, and tyrosinase of extracts from fruits and leaves of Schisandra in relation with their main bioactive compounds. Furthermore, the interactions between dominant compounds (schisandrol A, schisandrol B, schisandrin B, and cinnamic acid) from extracts and selected enzymes were investigated by molecular modeling and...

Journal ArticleDOI
TL;DR: The importance of tumor microenvironment in mediating the failure of chemotherapeutic agents is highlighted and serves as a determining factor in defining “tumor fitness”.
Abstract: Cancer cells reprogram their metabolic machineries to enter into permanent glycolytic pathways. The full reason for such reprogramming takes place is unclear. However, this metabolic switch is not made in vain for the lactate that is generated and exported outside cells is reused by other cells. This results in the generation of a pH gradient between the low extracellular pH that is acidic (pHe) and the higher cytosolic alkaline or near neutral pH (pHi) environments that are tightly regulated by the overexpression of several pumps and ion channels (e.g. NHE-1, MCT-1, V-ATPase, CA9, and CA12). The generation of this unique pH gradient serves as a determining factor in defining “tumor fitness”. Tumor fitness is the capacity of the tumor to invade and metastasize due to its ability to reduce the efficiency of the immune system and confer resistance to chemotherapy. In this article, we highlight the importance of tumor microenvironment in mediating the failure of chemotherapeutic agents.

Journal ArticleDOI
TL;DR: The significant anti-inflammatory and analgesic activities exhibited by 3-methyl-2-phenyl-1-substituted-indole derivatives 10d and 10e warrant continued preclinical development as potential anti- inflammatory and morphine-like agents.
Abstract: In a new group of 3-methyl-2-phenyl-1-substituted-indole derivatives (10a–f), the indomethacin analogs were prepared via the Fisher indole synthesis reaction of propiophenone with appropriately substituted phenylhydrazine hydrochloride. This is followed by the insertion of the appropriate benzyl or benzoyl fragment. All the synthesized compounds were evaluated for their anti-inflammatory (in vitro and in vivo) and analgesic activities. The methanesulphonyl derivatives 10d, e and f showed the highest anti-inflammatory (in vitro and in vivo) and analgesic activities. In addition, molecular docking studies were performed on compounds 10a–f and the results were in agreement with that obtained from the in vitro COX inhibition assays. The significant anti-inflammatory and analgesic activities exhibited by 10d and 10e warrant continued preclinical development as potential anti-inflammatory and analgesic agents.

Journal ArticleDOI
TL;DR: A procedure for the preparation of a wider portion of the protozoan η-CA, named PfCAdom, with respect to the truncated form prepared by Krungkrai et al. is proposed.
Abstract: The antimalarial drugs are of fundamental importance in the control of malaria, especially for the lack of efficient treatments and acquired resistance to the existing drugs. For this reason, there is a continuous work in identifying novel, less toxic and effective chemotherapies as well as new therapeutic targets against the causative agents of malaria. In this context, a superfamily of metalloenzymes named carbonic anhydrases (CAs, EC 4.2.1.1) has aroused a great interest as druggable enzymes to limit the development of Plasmodium falciparum gametocytes. CAs catalyze a common reaction in all life domains, the carbon dioxide hydration to bicarbonate and protons (CO2 + H2O ⇔ HCO3- + H+). P. falciparum synthesizes pyrimidines de novo starting from HCO3-, which is generated from CO2 through the action of the η-CA identified in the genome of the protozoan. Here, we propose a procedure for the preparation of a wider portion of the protozoan η-CA, named PfCAdom (358 amino acid residues), with respect to the truncated form prepared by Krungkrai et al. (PfCA1, 235 amino acid residues). The results evidenced that the recombinant PfCAdom, produced as a His-tag fusion protein, was 2.7 times more active with respect the truncated form PfCA1.

Journal ArticleDOI
TL;DR: The results of this study demonstrated that compounds 7 and 8 into ATP binding site of EGFR-TK which showed similar binding mode to erlotinib inhibited the growth of melanoma cell lines through inhibition of B-RAF kinase, similar to PLX4032.
Abstract: A novel series of 3-benzyl-substituted-4(3H)-quinazolinones were designed, synthesized and evaluated for their in vitro antitumor activity. The results of this study demonstrated that 2-(3-benzyl-6-methyl-4-oxo-3,4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl)acetamide, 2-(3-benzyl-6,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl)acetamide and 3-(3-benzyl-6-methyl-4-oxo-3,4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl)-propanamide have shown amazing broad spectrum antitumor activity with mean GI50 (10.47, 7.24 and 14.12 µM. respectively), and are nearly 1.5–3.0-fold more potent compared with the positive control 5-FU with mean GI50, 22.60 µM. On the other hand, compounds 6 and 10 yielded selective activities toward CNS, renal and breast cancer cell lines, whereas compound 9 showed selective activities towards leukemia cell lines. Molecular docking methodology was performed for compounds 7 and 8 into ATP binding site of EGFR-TK which showed similar bin...

Journal ArticleDOI
TL;DR: In conclusion, avermectins are effective agricultural pesticides and antiparasitic agents that are widely employed in the agricultural, veterinary and medical fields and inhibitors of carbonic anhydrase enzyme, which catalyses the rapid interconversion of carbon dioxide and water to bicarbonate and protons and regulates the acidity of the local tissues.
Abstract: Avermectins are effective agricultural pesticides and antiparasitic agents that are widely employed in the agricultural, veterinary and medical fields. The aim of this study was to investigate the inhibitory effects of selected avermectins including abamectin, doramectin, emamectin, eprinomectin, ivermectin and moxidectin that are used as drugs against a wide variety of internal and external mammalian parasites, on the carbonic anhydrase enzyme (CA, EC 4.2.1.1.) purified from fresh bovine erythrocyte. CA catalyses the rapid interconversion of carbon dioxide (CO2) and water (H2O) to bicarbonate () and protons (H+) and regulate the acidity of the local tissues. Bovine erythrocyte CA (bCA) enzyme was purified by Sepharose-4B affinity chromatography with a yield of 21.96% and 262.7-fold purification. The inhibition results obtained from this study showed Ki values of 9.73, 17.39, 20.43, 13.39, 16.44 and 17.73 nM for abamectin, doramectin, emamectin, eprinomectin, ivermectin and moxidectin, respectivel...