scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Experimental Botany in 2010"


Journal ArticleDOI
TL;DR: This review provides an update on plant catalase genes, function, and subcellular localization, with a focus on recent information generated from studies on Arabidopsis.
Abstract: Hydrogen peroxide (H(2)O(2)) is an important signal molecule involved in plant development and environmental responses. Changes in H(2)O(2) availability can result from increased production or decreased metabolism. While plants contain several types of H(2)O(2)-metabolizing proteins, catalases are highly active enzymes that do not require cellular reductants as they primarily catalyse a dismutase reaction. This review provides an update on plant catalase genes, function, and subcellular localization, with a focus on recent information generated from studies on Arabidopsis. Original data are presented on Arabidopsis catalase single and double mutants, and the use of some of these lines as model systems to investigate the outcome of increases in intracellular H(2)O(2) are discussed. Particular attention is paid to interactions with cell thiol-disulphide status; the use of catalase-deficient plants to probe the apparent redundancy of reductive H(2)O(2)-metabolizing pathways; the importance of irradiance and growth daylength in determining the outcomes of catalase deficiency; and the induction of pathogenesis-related responses in catalase-deficient lines. Within the context of strategies aimed at understanding and engineering plant stress responses, the review also considers whether changes in catalase activities in wild-type plants are likely to be a significant part of plant responses to changes in environmental conditions or biotic challenge.

708 citations


Journal ArticleDOI
TL;DR: In this review, current knowledge of phytochrome functions in the light-regulated development of Arabidopsis is summarized and novel regulatory roles for this important photoreceptor family are revealed.
Abstract: Light signals are fundamental to the growth and development of plants. Red and far-red light are sensed using the phytochrome family of plant photoreceptors. Individual phytochromes display both unique and overlapping roles throughout the life cycle of plants, regulating a range of developmental processes from seed germination to the timing of reproductive development. The evolution of multiple phytochrome photoreceptors has enhanced plant sensitivity to fluctuating light environments, diversifying phytochrome function, and facilitating conditional cross-talk with other signalling systems. The isolation of null mutants, deficient in all individual phytochromes, has greatly advanced understanding of phytochrome functions in the model species, Arabidopsis thaliana. The creation of mutants null for multiple phytochrome combinations has enabled the dissection of redundant interactions between family members, revealing novel regulatory roles for this important photoreceptor family. In this review, current knowledge of phytochrome functions in the light-regulated development of Arabidopsis is summarised.

696 citations


Journal ArticleDOI
TL;DR: Studies of temperature stress on several crop plants suggest that pollen development and fertilization may often be the most sensitive reproductive stage, which offers the potential to identify genetic traits that could be manipulated to improve temperature tolerance in selected crop species being cultivated in marginal climates.
Abstract: The reproductive (gametophytic) phase in flowering plants is often highly sensitive to hot or cold temperature stresses, with even a single hot day or cold night sometimes being fatal to reproductive success. This review describes studies of temperature stress on several crop plants, which suggest that pollen development and fertilization may often be the most sensitive reproductive stage. Transcriptome and proteomic studies on several plant species are beginning to identify stress response pathways that function during pollen development. An example is provided here of genotypic differences in the reproductive stress tolerance between two ecotypes of Arabidopsis thaliana Columbia (Col) and Hilversum (Hi-0), when reproducing under conditions of hot days and cold nights. Hi-0 exhibited a more severe reduction in seed set, correlated with a reduction in pollen tube growth potential and tropism defects. Hi-0 thus provides an Arabidopsis model to investigate strategies for improved stress tolerance in pollen. Understanding how different plants cope with stress during reproductive development offers the potential to identify genetic traits that could be manipulated to improve temperature tolerance in selected crop species being cultivated in marginal climates.

648 citations


Journal ArticleDOI
TL;DR: It is concluded that blue light during growth is qualitatively required for normal photosynthetic functioning and quantitatively mediates leaf responses resembling those to irradiance intensity.
Abstract: The blue part of the light spectrum has been associated with leaf characteristics which also develop under high irradiances. In this study blue light dose–response curves were made for the photosynthetic properties and related developmental characteristics of cucumber leaves that were grown at an equal irradiance under seven different combinations of red and blue light provided by light-emitting diodes. Only the leaves developed under red light alone (0% blue) displayed dysfunctional photosynthetic operation, characterized by a suboptimal and heterogeneously distributed dark-adapted Fv/Fm, a stomatal conductance unresponsive to irradiance, and a relatively low light-limited quantum yield for CO2 fixation. Only 7% blue light was sufficient to prevent any overt dysfunctional photosynthesis, which can be considered a qualitatively blue light effect. The photosynthetic capacity (Amax) was twice as high for leaves grown at 7% blue compared with 0% blue, and continued to increase with increasing blue percentage during growth measured up to 50% blue. At 100% blue, Amax was lower but photosynthetic functioning was normal. The increase in Amax with blue percentage (0–50%) was associated with an increase in leaf mass per unit leaf area (LMA), nitrogen (N) content per area, chlorophyll (Chl) content per area, and stomatal conductance. Above 15% blue, the parameters Amax, LMA, Chl content, photosynthetic N use efficiency, and the Chl:N ratio had a comparable relationship as reported for leaf responses to irradiance intensity. It is concluded that blue light during growth is qualitatively required for normal photosynthetic functioning and quantitatively mediates leaf responses resembling those to irradiance intensity.

633 citations


Journal ArticleDOI
TL;DR: The identification of differentially expressed novel plant miRNAs and their target genes, and the analysis of cis-elements provides molecular evidence for the possible involvement ofmiRNAs in the process of drought response and/or tolerance in rice.
Abstract: In addition to regulating growth and development, the most important function of microRNAs (miRNAs) in plants is the regulation of a variety of cellular processes underlying plant adaptation to environmental stresses. To gain a deep understanding of the mechanism of drought tolerance in rice, genome-wide profiling and analysis of miRNAs was carried out in drought-challenged rice across a wide range of developmental stages, from tillering to inflorescence formation, using a microarray platform. Among the 30 miRNAs identified as significantly down- or up-regulated under the drought stress, 11 down-regulated miRNAs (miR170, miR172, miR397, miR408, miR529, miR896, miR1030, miR1035, miR1050, miR1088, and miR1126) and eight up-regulated miRNAs (miR395, miR474, miR845, miR851, miR854, miR901, miR903, and miR1125) were revealed for the first time to be induced by drought stress in plants, and nine (miR156, miR168, miR170, miR171, miR172, miR319, miR396, miR397, and miR408) showed opposite expression to that observed in drought-stressed Arabidopsis. The most conserved down-regulated miRNAs were ath-miR170, the miR171 family, and ath-miR396, and the most conserved up-regulated miRNAs were ptc-miR474 and ath-miR854a. The identification of differentially expressed novel plant miRNAs and their target genes, and the analysis of cis-elements provides molecular evidence for the possible involvement of miRNAs in the process of drought response and/or tolerance in rice.

590 citations


Journal ArticleDOI
TL;DR: Recent advances in the genetics and genomics of drought tolerance in wheat and barley are reviewed and used as a base for revisiting approaches to analyse drought tolerance and a strategy is described where a specific environment is targeted and appropriate germplasm adapted to the chosen environment is selected.
Abstract: Tolerance to drought is a quantitative trait, with a complex phenotype, often confounded by plant phenology. Breeding for drought tolerance is further complicated since several types of abiotic stress, such as high temperatures, high irradiance, and nutrient toxicities or deficiencies can challenge crop plants simultaneously. Although marker-assisted selection is now widely deployed in wheat, it has not contributed significantly to cultivar improvement for adaptation to low-yielding environments and breeding has relied largely on direct phenotypic selection for improved performance in these difficult environments. The limited success of the physiological and molecular breeding approaches now suggests that a careful rethink is needed of our strategies in order to understand better and breed for drought tolerance. A research programme for increasing drought tolerance of wheat should tackle the problem in a multi-disciplinary approach, considering interaction between multiple stresses and plant phenology, and integrating the physiological dissection of drought-tolerance traits and the genetic and genomics tools, such as quantitative trait loci (QTL), microarrays, and transgenic crops. In this paper, recent advances in the genetics and genomics of drought tolerance in wheat and barley are reviewed and used as a base for revisiting approaches to analyse drought tolerance in wheat. A strategy is then described where a specific environment is targeted and appropriate germplasm adapted to the chosen environment is selected, based on extensive definition of the morpho-physiological and molecular mechanisms of tolerance of the parents. This information was used to create structured populations and develop models for QTL analysis and positional cloning.

493 citations


Journal ArticleDOI
TL;DR: The morphology of the reproductive organs and pollen number, and changes in anther protein expression, were studied in response to high temperature at anthesis in three rice genotypes, and the role of differentially expressed proteins and morphology during anther dehiscence and pollination in shaping heat tolerance and susceptibility is discussed.
Abstract: Episodes of high temperature at anthesis, which in rice is the most sensitive stage to temperature, are expected to occur more frequently in future climates. The morphology of the reproductive organs and pollen number, and changes in anther protein expression, were studied in response to high temperature at anthesis in three rice (Oryza sativa L.) genotypes. Plants were exposed to 6 h of high (38 °C) and control (29 °C) temperature at anthesis and spikelets collected for morphological and proteomic analysis. Moroberekan was the most heat-sensitive genotype (18% spikelet fertility at 38 °C), while IR64 (48%) and N22 (71%) were moderately and highly heat tolerant, respectively. There were significant differences among the genotypes in anther length and width, apical and basal pore lengths, apical pore area, and stigma and pistil length. Temperature also affected some of these traits, increasing anther pore size and reducing stigma length. Nonetheless, variation in the number of pollen on the stigma could not be related to measured morphological traits. Variation in spikelet fertility was highly correlated (r=0.97, n=6) with the proportion of spikelets with ≥20 germinated pollen grains on the stigma. A 2D-gel electrophoresis showed 46 protein spots changing in abundance, of which 13 differentially expressed protein spots were analysed by MS/MALDI-TOF. A cold and a heat shock protein were found significantly up-regulated in N22, and this may have contributed to the greater heat tolerance of N22. The role of differentially expressed proteins and morphology during anther dehiscence and pollination in shaping heat tolerance and susceptibility is discussed.

479 citations


Journal ArticleDOI
TL;DR: Functional-structural plant models are addressed, which are a promising tool to explore divergent management strategies and the study of plant plasticity as related to changes in the red:far red ratio of light in the canopy.
Abstract: Plants react to their environment and to management interventions by adjusting physiological functions and structure. Functional-structural plant models (FSPM), combine the representation of three-dimensional (3D) plant structure with selected physiological functions. An FSPM consists of an architectural part (plant structure) and a process part (plant functioning). The first deals with (i) the types of organs that are initiated and the way these are connected (topology), (ii) co-ordination in organ expansion dynamics, and (iii) geometrical variables (e.g. leaf angles, leaf curvature). The process part may include any physiological or physical process that affects plant growth and development (e.g. photosynthesis, carbon allocation). This paper addresses the following questions: (i) how are FSPM constructed, and (ii) for what purposes are they useful? Static, architectural models are distinguished from dynamic models. Static models are useful in order to study the significance of plant structure, such as light distribution in the canopy, gas exchange, remote sensing, pesticide spraying studies, and interactions between plants and biotic agents. Dynamic models serve quantitatively to integrate knowledge on plant functions and morphology as modulated by environment. Applications are in the domain of plant sciences, for example the study of plant plasticity as related to changes in the red:far red ratio of light in the canopy. With increasing availability of genetic information, FSPM will play a role in the assessment of the significance towards plant performance of variation in genetic traits across environments. In many crops, growers actively manipulate plant structure. FSPM is a promising tool to explore divergent management strategies.

458 citations


Journal ArticleDOI
TL;DR: SOC1, encoding a MADS box transcription factor, integrates multiple flowering signals derived from photoperiod, temperature, hormone, and age-related signals, and is regulated by two antagonistic flowering regulators, CONSTANS and FLOWERING LOCUS C (FLC), which act as floral activator and repressor, respectively.
Abstract: SOC1, encoding a MADS box transcription factor, integrates multiple flowering signals derived from photoperiod, temperature, hormone, and age-related signals. SOC1 is regulated by two antagonistic flowering regulators, CONSTANS (CO) and FLOWERING LOCUS C (FLC), which act as floral activator and repressor, respectively. CO activates SOC1 mainly through FT but FLC represses SOC1 by direct binding to the promoter. SOC1 is also activated by an age-dependent mechanism in which SPL9 and microRNA156 are involved. When SOC1 is induced at the shoot apex, SOC1 together with AGL24 directly activates LEAFY (LFY), a floral meristem identity gene. APETALA1 (AP1), activated mainly by FT, is also necessary to establish and maintain flower meristem identity. When LFY and AP1 are established, flower development occurs at the anlagen of shoot apical meristem according to the ABC model. During early flower development, AP1 activates the A function and represses three redundantly functioning flowering time genes, SOC1, AGL24, and SVP to prevent floral reversion. During late flower development, such repression is also necessary to activate SEPALATA3 (SEP3) which is a coactivator of B and C function genes with LFY, otherwise SEP3 is suppressed by SOC1, AGL24, and SVP. Therefore, SOC1 is necessary to prevent premature differentiation of the floral meristem.

448 citations


Journal ArticleDOI
TL;DR: The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentration of both Na+ and Cl– simultaneously, but the effects of the two ions may differ.
Abstract: Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but the effects of the two ions may differ. High Cl(-) concentration reduces the photosynthetic capacity and quantum yield due to chlorophyll degradation which may result from a structural impact of high Cl(-) concentration on PSII. High Na(+) interferes with K(+) and Ca(2+) nutrition and disturbs efficient stomatal regulation which results in a depression of photosynthesis and growth. These results suggest that the importance of Cl(-) toxicity as a cause of reductions in growth and yield under salinity stress may have been underestimated.

447 citations


Journal ArticleDOI
TL;DR: Developments in infrared thermography provide new and feasible screening methods for detecting genetic variation in the stomatal response to water deficit in controlled environments and in the field.
Abstract: This review considers stomatal conductance as an indicator of genotypic differences in the growth response to water stress. The benefits of using stomatal conductance are compared with photosynthetic rate and other indicators of genetic variation in water stress tolerance, along with the use of modern phenomics technologies. Various treatments for screening for genetic diversity in response to water deficit in controlled environments are considered. There is no perfect medium: there are pitfalls in using soil in pots, and in using hydroponics with ionic and non-ionic osmotica. Use of mixed salts or NaCl is recommended over non-ionic osmotica. Developments in infrared thermography provide new and feasible screening methods for detecting genetic variation in the stomatal response to water deficit in controlled environments and in the field.

Journal ArticleDOI
TL;DR: It is concluded that H2O2 mediates the up-regulation of ABA catabolism, probably through an NO signal, and also promotes GA biosynthesis and thus exerted control over seed dormancy and germination.
Abstract: H2O2 is known as a signal molecule in plant cells, but its role in the regulation of aqbscisic acid (ABA) and gibberellic acid (GA) metabolism and hormonal balance is not yet clear. In this study it was found that H2O2 affected the regulation of ABA catabolism and GA biosynthesis during seed imbibition and thus exerted control over seed dormancy and germination. As seen by quantitative RT-PCR (QRT-PCR), H2O2 up-regulated ABA catabolism genes (e.g. CYP707A genes), resulting in a decreased ABA content during imbibition. This action required the participation of nitric oxide (NO), another signal molecule. At the same time, H2O2 also up-regulated GA biosynthesis, as shown by QRT-PCR. When an ABA catabolism mutant, cyp707a2, and an overexpressing plant, CYP707A2-OE, were tested, ABA content was negatively correlated with GA biosynthesis. Exogenously applied GA was able to over-ride the inhibition of germination at low concentrations of ABA, but had no obvious effect when ABA concentrations were high. It is concluded that H2O2 mediates the up-regulation of ABA catabolism, probably through an NO signal, and also promotes GA biosynthesis. High concentrations of ABA inhibit GA biosynthesis but a balance of these two hormones can jointly control the dormancy and germination of Arabidopsis seeds.

Journal ArticleDOI
TL;DR: Modern rice (Oryza sativa L.) cultivars, especially the newly bred 'super' rice, have numerous spikelets on a panicle with a large yield capacity, but often fail to achieve their high yield potential due to poor grain-filling of later-flowering inferior spikelets.
Abstract: Modern rice (Oryza sativa L.) cultivars, especially the newly bred 'super' rice, have numerous spikelets on a panicle with a large yield capacity. However, these cultivars often fail to achieve their high yield potential due to poor grain-filling of later-flowering inferior spikelets (in contrast to the earlier-flowering superior spikelets). Conventional thinking to explain the poor grain-filling is the consequence of carbon limitation. Recent studies, however, have shown that carbohydrate supply should not be the major problem because they have adequate sucrose at their initial grain-filling stage. The low activities of key enzymes in carbon metabolism may contribute to the poor grain-filling. Proper field practices, such as moderate soil drying during mid- and late grain-filling stages, could solve some problems in poor grain-filling. Further studies are needed by molecular approaches to investigate the signal transport, the hormonal action, the gene expressions, and the biochemical processes in inferior spikelets.

Journal ArticleDOI
TL;DR: Several practices such as post-anthesis controlled soil drying, alternate wetting and moderate soil drying regimes during the whole growing season, and non-flooded straw mulching cultivation, could substantially enhance WUE and maintain or even increase grain yield of rice.
Abstract: A major challenge in rice (Oryza sativa L.) production is to enhance water use efficiency (WUE) and maintain or even increase grain yield. WUE, if defined as the biomass accumulation over water consumed, may be fairly constant for a given species in given climate. WUE can be enhanced by less irrigation. However, such enhancement is largely a trade-off against lower biomass production. If WUE is defined as the grain production per unit amount of water irrigated, it would be possible to increase WUE without compromising grain yield through the manipulation of harvest index. Harvest index has been shown to be a variable factor in crop production, and in many situations, it is closely associated with WUE and grain yield in cereals. Taking rice as an example, this paper discussed crop management techniques that can enhance harvest index. Several practices such as post-anthesis controlled soil drying, alternate wetting and moderate soil drying regimes during the whole growing season, and non-flooded straw mulching cultivation, could substantially enhance WUE and maintain or even increase grain yield of rice, mainly via improved canopy structure, source activity, sink strength, and enhanced remobilization of pre-stored carbon reserves from vegetative tissues to grains. All the work has proved that a proper crop management holds great promise to enhance harvest index and, consequently, achieve the dual goal of increasing grain production and saving water.

Journal ArticleDOI
TL;DR: High-throughput imaging provides a valuable new tool which allows the dissection of plant responses to drought into a series of component traits, and the high-throughPUT phenotyping techniques available to measure those traits are described in this paper.
Abstract: Drought is a complex stress which elicits a wide variety of plant responses. As such, genetic studies of drought are particularly difficult. Elucidation of the genetic basis of components contributing to drought tolerance is likely to be more tractable than that of overall drought tolerance. Certain of the traits which contribute to drought tolerance in plants and the high-throughput phenotyping techniques available to measure those traits are described in this paper. On the basis of the dynamic nature of drought, plant development, and the resulting stress response, the focus is on non-destructive imaging techniques which allow a temporal resolution and monitoring of the same plants throughout the experiment. Information on the physiological changes in response to drought over time is vital in order to identify and characterize different drought-tolerance mechanisms. High-throughput imaging provides a valuable new tool which allows the dissection of plant responses to drought into a series of component traits.

Journal ArticleDOI
TL;DR: The antioxidant function of tocochromanols in plants is reviewed, with particular attention to specific roles attributed to different tocopherol homologues (particularly alpha- and gamma-tocopherol) and the possible functions of tocotrienols, which are only present in a range of unrelated plant groups and are almost exclusively found in seeds and fruits.
Abstract: Tocopherols and tocotrienols, collectively known as tocochromanols, are lipid-soluble molecules that belong to the group of vitamin E compounds and are essential in the human diet. Not surprisingly, most of what is known about the biological functions of tocochromanols comes from studies of mammalian systems, yet they have been shown to be synthesized only by photosynthetic organisms. The last decade has seen a radical change in the appreciation of the biological role of tocochromanols in plants thanks to a detailed characterization of mutant and transgenic plants, including several Arabidopsis thaliana mutants, the sucrose export defective1 (sxd1) maize mutant, and some transgenic potato and tobacco lines altered in tocochromanol biosynthesis. Recent findings indicate that tocopherols may play important roles in plants beyond their antioxidant function in photosynthetic membranes. Plants deficient in tocopherols show alterations in germination and export of photoassimilates, and growth, leaf senescence, and plant responses to abiotic stresses, thus suggesting that tocopherols may influence a number of physiological processes in plants. Thus, in this review not only the antioxidant function of tocochromanols in plants, but also these new emerging possible roles will be considered. Particular attention will be paid to specific roles attributed to different tocopherol homologues (particularly alpha- and gamma-tocopherol) and the possible functions of tocotrienols, which in contrast to tocopherols are only present in a range of unrelated plant groups and are almost exclusively found in seeds and fruits.

Journal ArticleDOI
TL;DR: This article describes the initial achievement towards the water-saving and drought resistance of rice and provides some details on the rationale and the specific steps and methods used.
Abstract: Rice is the staple food and rice production consumes about 50% of the fresh water resources in China. In addition, drought is one of the most important constraints in rice resulting in large yield losses and limiting the average yield increase of the country. There is an urgent need to enhance water-saving (W) capacity or drought resistance (DR) of rice. WDR varieties can be developed through introgressing the water-saving and drought resistance capacity mainly from the traditional upland to the commercialized paddy rice cultivars. The breeding target is a high yield potential under irrigation, an acceptable grain quality, and water consumption reduced by about 50% compared with paddy rice. In a water-limited environment, a higher level of drought resistance and reduced yield loss by drought stress are required. In recent years, the field drought-resistance screening facility was established and the evaluation standard was developed. Some DR rice varieties were identified and used in both molecular mapping and breeding programmes. Several WDR varieties were developed and released to farmers. This article describes our initial achievement towards this goal and provides some details on the rationale and the specific steps and methods used.

Journal ArticleDOI
TL;DR: It is indicated that HDA6-involved histone modifications modulate seed germination and the salt stress response, as well as ABA- and salt stress-induced gene expression in Arabidopsis.
Abstract: Histone modifications play an important role in the epigenetic regulation of gene expression. All histone modifications are reversible, which may therefore provide a flexible way for regulating gene expression during the plant's development and during the plant response to environmental stimuli. The reversible acetylation and deacetylation of specific lysine residues on core histones are catalysed by histone acetyltransferases and histone deacetylases (HDAs). HDA6 is an RPD3-type histone deacetylase in Arabidopsis. The Arabidopsis HDA6 mutant, axe1-5, and HDA6 RNA-interfering plants displayed a phenotype that was hypersensitive to ABA and salt stress. Compared with wild-type plants, the expression of the ABA and abiotic stress-responsive genes, ABI1, ABI2, KAT1, KAT2, DREB2A, RD29A, and RD29B, was decreased in axe1-5 and HDA6 RNA-interfering plants when treated with ABA or salt stress. It was found that both ABA and salt stress could enrich the gene activation markers, histone H3K9K14 acetylation, and H3K4 trimethylation, but decrease the gene repression marker, H3K9 dimethylation, of the ABA and abiotic stress-responsive genes. Our study indicates that HDA6-involved histone modifications modulate seed germination and the salt stress response, as well as ABA- and salt stress-induced gene expression in Arabidopsis.

Journal ArticleDOI
TL;DR: A generic cereal crop growth and development model is outlined here, designed to exhibit reliable predictive skill at the crop level while also introducing sufficient physiological rigour for complex phenotypic responses to become emergent properties of the model dynamics.
Abstract: Progress in molecular plant breeding is limited by the ability to predict plant phenotype based on its genotype, especially for complex adaptive traits. Suitably constructed crop growth and development models have the potential to bridge this predictability gap. A generic cereal crop growth and development model is outlined here. It is designed to exhibit reliable predictive skill at the crop level while also introducing sufficient physiological rigour for complex phenotypic responses to become emergent properties of the model dynamics. The approach quantifies capture and use of radiation, water, and nitrogen within a framework that predicts the realized growth of major organs based on their potential and whether the supply of carbohydrate and nitrogen can satisfy that potential. The model builds on existing approaches within the APSIM software platform. Experiments on diverse genotypes of sorghum that underpin the development and testing of the adapted crop model are detailed. Genotypes differing in height were found to differ in biomass partitioning among organs and a tall hybrid had significantly increased radiation use efficiency: a novel finding in sorghum. Introducing these genetic effects associated with plant height into the model generated emergent simulated phenotypic differences in green leaf area retention during grain filling via effects associated with nitrogen dynamics. The relevance to plant breeding of this capability in complex trait dissection and simulation is discussed.

Journal ArticleDOI
TL;DR: Evidence is provided here that PYR/PYL/RCAR receptors can also drive the phosphorylation of the slow anion channel SLAC1 to provide a fast and timely response to the ABA signal.
Abstract: The phytohormone abscisic acid (ABA) plays a central role in plant development and in plant adaptation to both biotic and abiotic stressors. In recent years, knowledge of ABA metabolism and signal transduction has advanced rapidly to provide detailed glimpses of the hormone's activities at the molecular level. Despite this progress, many gaps in understanding have remained, particularly at the early stages of ABA perception by the plant cell. The search for an ABA receptor protein has produced multiple candidates, including GCR2, GTG1, and GTG2, and CHLH. In addition to these candidates, in 2009 several research groups converged on a novel family of Arabidopsis proteins that bind ABA, and thereby interact directly with a class of protein phosphatases that are well known as critical players in ABA signal transduction. The PYR/PYL/RCAR receptor family is homologous to the Bet v 1-fold and START domain proteins. It consists of 14 members, nearly all of which appear capable of participating in an ABA receptor-signal complex that responds to the hormone by activating the transcription of ABA-responsive genes. Evidence is provided here that PYR/PYL/RCAR receptors can also drive the phosphorylation of the slow anion channel SLAC1 to provide a fast and timely response to the ABA signal. Crystallographic studies have vividly shown the mechanics of ABA binding to PYR/PYL/RCAR receptors, presenting a model that bears some resemblance to the binding of gibberellins to GID1 receptors. Since this ABA receptor family is highly conserved in crop species, its discovery is likely to usher a new wave of progress in the elucidation and manipulation of plant stress responses in agricultural settings.

Journal ArticleDOI
TL;DR: TaSnRK2.4 can significantly strengthen tolerance to drought, salt, and freezing stresses and does not retard the growth of transgenic Arabidopsis plants under well-watered conditions, which implies that Ta SnRK 2.4 could be utilized in transgenic breeding to improve abiotic stresses in crops.
Abstract: Osmotic stresses such as drought, salinity, and cold are major environmental factors that limit agricultural productivity worldwide. Protein phosphorylation/dephosphorylation are major signalling events induced by osmotic stress in higher plants. Sucrose non-fermenting 1-related protein kinase2 family members play essential roles in response to hyperosmotic stresses in Arabidopsis, rice, and maize. In this study, the function of TaSnRK2.4 in drought, salt, and freezing stresses in Arabidopsis was characterized. A translational fusion protein of TaSnRK2.4 with green fluorescent protein showed subcellular localization in the cell membrane, cytoplasm, and nucleus. To examine the role of TaSnRK2.4 under various environmental stresses, transgenic Arabidopsis plants overexpressing wheat TaSnRK2.4 under control of the cauliflower mosaic virus 35S promoter were generated. Overexpression of TaSnRK2.4 resulted in delayed seedling establishment, longer primary roots, and higher yield under normal growing conditions. Transgenic Arabidopsis overexpressing TaSnRK2.4 had enhanced tolerance to drought, salt, and freezing stresses, which were simultaneously supported by physiological results, including decreased rate of water loss, enhanced higher relative water content, strengthened cell membrane stability, improved photosynthesis potential, and significantly increased osmotic potential. The results show that TaSnRK2.4 is involved in the regulation of enhanced osmotic potential, growth, and development under both normal and stress conditions, and imply that TaSnRK2.4 is a multifunctional regulatory factor in Arabidopsis. Since the overexpression of TaSnRK2.4 can significantly strengthen tolerance to drought, salt, and freezing stresses and does not retard the growth of transgenic Arabidopsis plants under well-watered conditions, TaSnRK2.4 could be utilized in transgenic breeding to improve abiotic stresses in crops.

Journal ArticleDOI
TL;DR: Al3+-induced ethylene production is likely to act as a signal to alter auxin distribution in roots by disrupting AUX1- and PIN2-mediated auxin polar transport, leading to arrest of root elongation.
Abstract: Aluminium (Al) is phytotoxic when solubilized into Al(3+) in acidic soils. One of the earliest and distinct symptoms of Al(3+) toxicity is inhibition of root elongation. To decipher the mechanism by which Al(3+) inhibits root elongation, the role of ethylene and auxin in Al(3+)-induced inhibition of root elongation in Arabidopsis thaliana was investigated using the wild type and mutants defective in ethylene signalling (etr1-3 and ein2-1) and auxin polar transport (aux1-7 and pin2). Exposure of wild-type Arabidopsis to AlCl(3) led to a marked inhibition of root elongation, and elicited a rapid ethylene evolution and enhanced activity of the ethylene reporter EBS:GUS in root apices. Root elongation in etr1-3 and ein2-1 mutants was less inhibited by Al(3+) than that in wild-type plants. Ethylene synthesis inhibitors, Co(2+) and aminoethoxyvinylglycine (AVG), and an antagonist of ethylene perception (Ag(+)) abolished the Al(3+)-induced inhibition of root elongation. There was less inhibition of root elongation by Al(3+) in aux1-7 and pin2 mutants than in the wild type. The auxin polar transport inhibitor, naphthylphthalamic acid (NPA), substantially alleviated the Al(3+)-induced inhibition of root elongation. The Al(3+) and ethylene synthesis precursor aminocyclopropane carboxylic acid (ACC) increased auxin reporter DR5:GUS activity in roots. The Al(3+)-induced increase in DR5:GUS activity was reduced by AVG, while the Al(3+)-induced increase in EBS:GUS activity was not altered by NPA. Al(3+) and ACC increased transcripts of AUX1 and PIN2, and this effect was no longer observed in the presence of AVG and Co(2+). These findings indicate that Al(3+)-induced ethylene production is likely to act as a signal to alter auxin distribution in roots by disrupting AUX1- and PIN2-mediated auxin polar transport, leading to arrest of root elongation.

Journal ArticleDOI
TL;DR: Under most environments, GPD was significantly related to post-anthesis N uptake independently of anthesis date and total N at anthesis, and is an interesting potential target in breeding as it appears to be relatively robust across different environments and would be valuable in increasing total N uptake by maturity.
Abstract: In plants, carbon and nitrogen (N) economies are intimately linked at the physiological and biochemical level. The strong genetic negative correlation between grain yield and grain protein concentration observed in various cereals is an illustration of this inter-relationship. Studies have shown that deviation from this negative relationship (grain protein deviation or GPD) has a genetic basis, but its physiological basis is still poorly understood. This study analysed data on 27 genotypes grown in multienvironment field trials, representing a wide range of agricultural practices and climatic conditions. The objective was to identify physiological processes related to the genetic variability in GPD. Under most environments, GPD was significantly related to post-anthesis N uptake independently of anthesis date and total N at anthesis. The underlying physiological trait might be related to genotypic differences in either access to soil N, regulation of N uptake by plant N status, or ability to maintain root activity during the grain-filling period. GPD is an interesting potential target in breeding as it appears to be relatively robust across different environments and would be valuable in increasing total N uptake by maturity.

Journal ArticleDOI
TL;DR: Overexpression of ZFP179 in rice increased salt tolerance and the transgenic seedlings showed hypersensitivity to exogenous ABA, and the increased levels of free proline and soluble sugars were observed in transgenic plants compared to wild-type plants under salt stress.
Abstract: The Cys2/His2-type zinc finger proteins have been implicated in different cellular processes involved in plant development and stress responses. Through microarray analysis, a salt-responsive zinc finger protein gene ZFP179 was identified and subsequently cloned from rice seedlings. ZFP179 encodes a 17.95 kDa protein with two C2H2-type zinc finger motifs having transcriptional activation activity. The real-time RT-PCR analysis showed that ZFP179 was highly expressed in immature spikes, and markedly induced in the seedlings by NaCl, PEG 6000, and ABA treatments. Overexpression of ZFP179 in rice increased salt tolerance and the transgenic seedlings showed hypersensitivity to exogenous ABA. The increased levels of free proline and soluble sugars were observed in transgenic plants compared to wild-type plants under salt stress. The ZFP179 transgenic rice exhibited significantly increased tolerance to oxidative stress, the reactive oxygen species (ROS)-scavenging ability, and expression levels of a number of stress-related genes, including OsDREB2A, OsP5CS OsProT, and OsLea3 under salt stress. Our studies suggest that ZFP179 plays a crucial role in the plant response to salt stress, and is useful in developing transgenic crops with enhanced tolerance to salt stress.

Journal ArticleDOI
TL;DR: An integrative analysis of the host response to different mycorrhizal fungi was performed, and results suggest that specific responses to particular fungi underlie the differential impact of individual AM fungi on plant physiology, and particularly on its ability to cope with biotic stresses.
Abstract: Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. The symbiosis significantly affects the host physiology in terms of nutrition and stress resistance. Despite the lack of host range specificity of the interaction, functional diversity between AM fungal species exists. The interaction is finely regulated according to plant and fungal characters, and plant hormones are believed to orchestrate the modifications in the host plant. Using tomato as a model, an integrative analysis of the host response to different mycorrhizal fungi was performed combining multiple hormone determination and transcriptional profiling. Analysis of ethylene-, abscisic acid-, salicylic acid-, and jasmonate-related compounds evidenced common and divergent responses of tomato roots to Glomus mosseae and Glomus intraradices, two fungi differing in their colonization abilities and impact on the host. Both hormonal and transcriptional analyses revealed, among others, regulation of the oxylipin pathway during the AM symbiosis and point to a key regulatory role for jasmonates. In addition, the results suggest that specific responses to particular fungi underlie the differential impact of individual AM fungi on plant physiology, and particularly on its ability to cope with biotic stresses.

Journal ArticleDOI
TL;DR: Map-based cloning of ORE14 revealed that it encodes ARF2, a member of the auxin response factor (ARF) protein family, which modulates early auxin-induced gene expression in plants, and data suggest that ARf2 positively regulates leaf senescence in Arabidopsis.
Abstract: Auxin regulates a variety of physiological and developmental processes in plants. Although auxin acts as a suppressor of leaf senescence, its exact role in this respect has not been clearly defined, aside from circumstantial evidence. It was found here that ARF2 functions in the auxin-mediated control of Arabidopsis leaf longevity, as discovered by screening EMS mutant pools for a delayed leaf senescence phenotype. Two allelic mutations, ore14-1 and 14-2, caused a highly significant delay in all senescence parameters examined, including chlorophyll content, the photochemical efficiency of photosystem II, membrane ion leakage, and the expression of senescence-associated genes. A delay of senescence symptoms was also observed under various senescence-accelerating conditions, where detached leaves were treated with darkness, phytohormones, or oxidative stress. These results indicate that the gene defined by these mutations might be a key regulatory genetic component controlling functional leaf senescence. Map-based cloning of ORE14 revealed that it encodes ARF2, a member of the auxin response factor (ARF) protein family, which modulates early auxin-induced gene expression in plants. The ore14/arf2 mutation also conferred an increased sensitivity to exogenous auxin in hypocotyl growth inhibition, thereby demonstrating that ARF2 is a repressor of auxin signalling. Therefore, the ore14/arf2 lesion appears to cause reduced repression of auxin signalling with increased auxin sensitivity, leading to delayed senescence. Altogether, our data suggest that ARF2 positively regulates leaf senescence in Arabidopsis.

Journal ArticleDOI
TL;DR: The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants.
Abstract: The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and a-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[ 13 C6]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective a-keto acids, utilizing a-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6 kDa and 42.7 kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants.

Journal ArticleDOI
TL;DR: It is concluded that two water-saving mechanisms may operate under well-watered conditions in tolerant pearl millet: a low Tr even at low VPD conditions, which may relate to leaf ABA; and a sensitivity to higher VPD that further restricts Tr, which suggests the involvement of hydraulic signals.
Abstract: It was previously shown that pearl millet genotypes carrying a terminal drought tolerance quantitative trait locus (QTL) had a lower transpiration rate (Tr; g cm(-2) d(-1)) under well-watered conditions than sensitive lines. Here experiments were carried out to test whether this relates to leaf abscisic acid (ABA) and Tr concentration at high vapour pressure deficit (VPD), and whether that leads to transpiration efficiency (TE) differences. These traits were measured in tolerant/sensitive pearl millet genotypes, including near-isogenic lines introgressed with a terminal drought tolerance QTL (NIL-QTLs). Most genotypic differences were found under well-watered conditions. ABA levels under well-watered conditions were higher in tolerant genotypes, including NIL-QTLs, than in sensitive genotypes, and ABA did not increase under water stress. Well-watered Tr was lower in tolerant than in sensitive genotypes at all VPD levels. Except for one line, Tr slowed down in tolerant lines above a breakpoint at 1.40-1.90 kPa, with the slope decreasing >50%, whereas sensitive lines showed no change in that Tr response across the whole VPD range. It is concluded that two water-saving (avoidance) mechanisms may operate under well-watered conditions in tolerant pearl millet: (i) a low Tr even at low VPD conditions, which may relate to leaf ABA; and (ii) a sensitivity to higher VPD that further restricts Tr, which suggests the involvement of hydraulic signals. Both traits, which did not lead to TE differences, could contribute to absolute water saving seen in part due to dry weight increase differences. This water saved would become critical for grain filling and deserves consideration in the breeding of terminal drought-tolerant lines.

Journal ArticleDOI
TL;DR: It is concluded that, in addition to pod abortion, flower abortion is an important factor limiting yield in chickpea exposed to terminal drought and that water deficit impaired the function of the pistil/style more than the pollen.
Abstract: Terminal drought during the reproductive stage is a major constraint to yield of chickpea in many regions of the world. Termination of watering (WS) during podding in a small-seeded desi chickpea (Cicer arietinum L.) cultivar, Rupali, and a large-seeded kabuli chickpea cultivar, Almaz, induced a decrease in predawn leaf water potential (LWP), in the rate of photosynthesis, and in stomatal conductance. Compared to well-watered (WW) controls, the WS treatment reduced flower production by about two-thirds. In the WW treatment, about 15% of the flowers aborted and 42% (Rupali) and 67% (Almaz) of the pods aborted, whereas in the WS treatment 37% and 56% of the flowers aborted and 54% and 73% of the pods aborted, resulting in seed yields of 33% and 15% of the yields in WW plants in Rupali and Almaz, respectively. In vitro pollen viability and germination in Rupali decreased by 50% and 89% in the WS treatment, and pollen germination decreased by 80% in vivo when pollen from a WS plant was placed on a stigma of a WW plant. While about 37% of the germinated pollen tubes from WW plants and 22% from the WS plants reached the ovary in the WW plants, less than 3% of pollen grains reached the ovary when pollen from either WS or WW plants was placed on a stigma of a WS plant. It is concluded that, in addition to pod abortion, flower abortion is an important factor limiting yield in chickpea exposed to terminal drought and that water deficit impaired the function of the pistil/style more than the pollen.

Journal ArticleDOI
TL;DR: The results obtained show that both ethylene and NO are involved in the up-regulation of many important Fe-regulated genes of Arabidopsis, such as AtFIT, AtBHLH38, AtbHLH39, AtFRO2, AtIRT1, atNAS1, AtNAS2, atFRD3, AtMYB72, and others.
Abstract: In a previous work it was shown that ethylene participates in the up-regulation of several Fe acquisition genes of Arabidopsis, such as AtFIT, AtFRO2, and AtIRT1. In this work the relationship between ethylene and Fe-related genes in Arabidopsis has been looked at in more depth. Genes induced by Fe deficiency regulated by ethylene were searched for. For this, studies were conducted, using microarray analysis and reverse transcription-PCR (RT-PCR), to determine which of the genes up-regulated by Fe deficiency are simultaneously suppressed by two different ethylene inhibitors (cobalt and silver thiosulphate), assessing their regulation by ethylene in additional experiments. In a complementary experiment, it was determined that the Fe-related genes up-regulated by ethylene were also responsive to nitric oxide (NO). Further studies were performed to analyse whether Fe deficiency up-regulates the expression of genes involved in ethylene biosynthesis [S-adenosylmethionine synthetase, 1-aminocyclopropane-1-carboxylate (ACC) synthase, and ACC oxidase genes] and signalling (AtETR1, AtCTR1, AtEIN2, AtEIN3, AtEIL1, and AtEIL3). The results obtained show that both ethylene and NO are involved in the up-regulation of many important Fe-regulated genes of Arabidopsis, such as AtFIT, AtbHLH38, AtbHLH39, AtFRO2, AtIRT1, AtNAS1, AtNAS2, AtFRD3, AtMYB72, and others. In addition, the results show that Fe deficiency up-regulates genes involved in both ethylene synthesis (AtSAM1, AtSAM2, AtACS4, AtACS6, AtACS9, AtACO1, and AtACO2) and signalling (AtETR1, AtCTR1, AtEIN2, AtEIN3, AtEIL1, and AtEIL3) in the roots.