scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Experimental Botany in 2011"


Journal ArticleDOI
TL;DR: The evidence that supports the role of SA during plant growth and development is reviewed by comparing experiments performed by exogenous application of SA with analysis of genotypes affected by SA levels and/or perception.
Abstract: In recent years salicylic acid (SA) has been the focus of intensive research due to its function as an endogenous signal mediating local and systemic plant defence responses against pathogens. It has also been found that SA plays a role during the plant response to abiotic stresses such as drought, chilling, heavy metal toxicity, heat, and osmotic stress. In this sense, SA appears to be, just like in mammals, an 'effective therapeutic agent' for plants. Besides this function during biotic and abiotic stress, SA plays a crucial role in the regulation of physiological and biochemical processes during the entire lifespan of the plant. The discovery of its targets and the understanding of its molecular modes of action in physiological processes could help in the dissection of the complex SA signalling network, confirming its important role in both plant health and disease. Here, the evidence that supports the role of SA during plant growth and development is reviewed by comparing experiments performed by exogenous application of SA with analysis of genotypes affected by SA levels and/or perception.

1,122 citations


Journal ArticleDOI
TL;DR: A better knowledge of the regulatory mechanisms of the flavonoids pathway is likely to favour the development of new biotechnological tools for the generation of value-added plants with optimized flavonoid content.
Abstract: Flavonoids are secondary metabolites involved in several aspects of plant development and defence. They colour fruits and flowers, favouring seed and pollen dispersal, and contribute to plant adaptation to environmental conditions such as cold or UV stresses, and pathogen attacks. Because they affect the quality of flowers (for horticulture), fruits and vegetables, and their derivatives (colour, aroma, stringency, etc.), flavonoids have a high economic value. Furthermore, these compounds possess pharmaceutical properties extremely attractive for human health. Thanks to easily detectable mutant phenotypes, such as modification of petal pigmentation and seeds exhibiting transparent testa, the enzymes involved in the flavonoid biosynthetic pathway have been characterized in several plant species. Conserved features as well as specific differences have been described. Regulation of structural gene expression appears tightly organized in a spatial and temporal way during plant development, and is orchestrated by a ternary complex involving transcription factors from the R2R3-MYB, basic helix-loop-helix (bHLH), and WD40 classes. This MYB-bHLH-WD40 (MBW) complex regulates the genes that encode enzymes specifically involved in the late steps of the pathway leading to the biosynthesis of anthocyanins and condensed tannins. Although several genes encoding transcription factors from these three families have been identified, many gaps remain in our understanding of the regulation of this biosynthetic pathway, especially about the respective roles of bHLH and WD40 proteins. A better knowledge of the regulatory mechanisms of the flavonoid pathway is likely to favour the development of new biotechnological tools for the generation of value-added plants with optimized flavonoid content.

908 citations


Journal ArticleDOI
TL;DR: This analysis shows the interplay of sugars, reactive oxygen species (ROS), and hormones with photosynthetic responses to drought, involving many metabolic events, and highlights how fragmented and often non-comparable the results are.
Abstract: Photosynthesis is one of the key processes to be affected by water deficits, via decreased CO2 diffusion to the chloroplast and metabolic constraints. The relative impact of those limitations varies with the intensity of the stress, the occurrence (or not) of superimposed stresses, and the species we are dealing with. Total plant carbon uptake is further reduced due to the concomitant or even earlier inhibition of growth. Leaf carbohydrate status, altered directly by water deficits or indirectly (via decreased growth), acts as a metabolic signal although its role is not totally clear. Other relevant signals acting under water deficits comprise: abscisic acid (ABA), with an impact on stomatal aperture and the regulation at the transcription level of a large number of genes related to plant stress response; other hormones that act either concurrently (brassinosteroids, jasmonates, and salycilic acid) or antagonistically (auxin, cytokinin, or ethylene) with ABA; and redox control of the energy balance of photosynthetic cells deprived of CO2 by stomatal closure. In an attempt to systematize current knowledge on the complex network of interactions and regulation of photosynthesis in plants subjected to water deficits, a meta-analysis has been performed covering >450 papers published in the last 15 years. This analysis shows the interplay of sugars, reactive oxygen species (ROS), and hormones with photosynthetic responses to drought, involving many metabolic events. However, more significantly it highlights (i) how fragmented and often non-comparable the results are and (ii) how hard it is to relate molecular events to plant physiological status, namely photosynthetic activity, and to stress intensity. Indeed, the same data set usually does not integrate these different levels of analysis. Considering these limitations, it was hard to find a general trend, particularly concerning molecular responses to drought, with the exception of the genes ABI1 and ABI3. These genes, irrespective of the stress type (acute versus chronic) and intensity, show a similar response to water shortage in the two plant systems analysed (Arabidopsis and barley). Both are associated with ABA-mediated metabolic responses to stress and the regulation of stomatal aperture. Under drought, ABI1 transcription is up-regulated while ABI3 is usually down-regulated. Recently ABI3 has been hypothesized to be essential for successful drought recovery.

839 citations


Journal ArticleDOI
TL;DR: The development of apoplastic barriers to Cd movement to the xylem is described and recent experiments indicating that their maturation is accelerated by high Cd concentrations in their immediate locality are highlighted.
Abstract: This article reviews the responses of plant roots to elevated rhizosphere cadmium (Cd) concentrations. Cadmium enters plants from the soil solution. It traverses the root through symplasmic or apoplasmic pathways before entering the xylem and being translocated to the shoot. Leaf Cd concentrations in excess of 5-10 μg g(-1) dry matter are toxic to most plants, and plants have evolved mechanisms to limit Cd translocation to the shoot. Cadmium movement through the root symplasm is thought to be restricted by the production of phytochelatins and the sequestration of Cd-chelates in vacuoles. Apoplasmic movement of Cd to the xylem can be restricted by the development of the exodermis, endodermis, and other extracellular barriers. Increasing rhizosphere Cd concentrations increase Cd accumulation in the plant, especially in the root. The presence of Cd in the rhizosphere inhibits root elongation and influences root anatomy. Cadmium concentrations are greater in the root apoplasm than in the root symplasm, and tissue Cd concentrations decrease from peripheral to inner root tissues. This article reviews current knowledge of the proteins involved in the transport of Cd across root cell membranes and its detoxification through sequestration in root vacuoles. It describes the development of apoplastic barriers to Cd movement to the xylem and highlights recent experiments indicating that their maturation is accelerated by high Cd concentrations in their immediate locality. It concludes that accelerated maturation of the endodermis in response to local Cd availability is of functional significance in protecting the shoot from excessive Cd loads.

839 citations


Journal ArticleDOI
TL;DR: A survey of 19 soils, with textures ranging from loamy sand to silty clay loam, found that mechanical impedance is often a major limitation to root elongation in these soils even under moderately wet conditions, and is important to consider in breeding programmes for drought-resistant crops.
Abstract: Root elongation in drying soil is generally limited by a combination of mechanical impedance and water stress. Relationships between root elongation rate, water stress (matric potential), and mechanical impedance (penetration resistance) are reviewed, detailing the interactions between these closely related stresses. Root elongation is typically halved in repacked soils with penetrometer resistances >0.8‐2 MPa, in the absence of water stress. Root elongation is halved by matric potentials drier than about ‐0.5 MPa in the absence of mechanical impedance. The likelihood of each stress limiting root elongation is discussed in relation to the soil strength characteristics of arable soils. A survey of 19 soils, with textures ranging from loamy sand to silty clay loam, found that ;10% of penetration resistances were >2 MPa at a matric potential of ‐10 kPa, rising to nearly 50% >2 MPa at ‐ 200 kPa. This suggests that mechanical impedance is often a major limitation to root elongation in these soils even under moderately wet conditions, and is important to consider in breeding programmes for drought-resistant crops. Root tip traits that may improve root penetration are considered with respect to overcoming the external (soil) and internal (cell wall) pressures resisting elongation. The potential role of root hairs in mechanically anchoring root tips is considered theoretically, and is judged particularly relevant to roots growing in biopores or from a loose seed bed into a compacted layer of soil.

787 citations


Journal ArticleDOI
TL;DR: This review summarizes recent studies highlighting the role of the DRE-binding family of TFs in the adaptive responses to different abiotic stresses and their structural and functional characters with emphasis on the expression and regulation of DREBs.
Abstract: Abiotic stresses such as drought, high salinity, and cold are common adverse environmental conditions that significantly influence plant growth and productivity worldwide. The phytohormone abscisic acid (ABA) plays an important role in physiological and developmental responses as well as in co-ordinating various stress signal transduction pathways in plants. DREBs (dehydration responsive element binding) are important plant transcription factors (TFs) that regulate the expression of many stress-inducible genes mostly in an ABA-independent manner and play a critical role in improving the abiotic stress tolerance of plants by interacting with a DRE/CRT cis-element present in the promoter region of various abiotic stress-responsive genes. This review summarizes recent studies highlighting the role of the DRE-binding family of TFs in the adaptive responses to different abiotic stresses and their structural and functional characters with emphasis on the expression and regulation of DREBs. The practical and application value of DREBs in crop improvement, such as stress tolerance engineering as well as marker-assisted selection (MAS), has also been discussed.

754 citations


Journal ArticleDOI
TL;DR: Results are interpreted as the signature of a transition from source to sink growth limitation under water deficit, suggesting release of the influence of C availability on sink organ growth.
Abstract: In plants, carbon (C) molecules provide building blocks for biomass production, fuel for energy, and exert signalling roles to shape development and metabolism. Accordingly, plant growth is well correlated with light interception and energy conversion through photosynthesis. Because water deficits close stomata and thus reduce C entry, it has been hypothesised that droughted plants are under C starvation and their growth under C limitation. In this review, these points are questioned by combining literature review with experimental and modelling illustrations in various plant organs and species. First, converging evidence is gathered from the literature that water deficit generally increases C concentration in plant organs. The hypothesis is raised that this could be due to organ expansion (as a major C sink) being affected earlier and more intensively than photosynthesis (C source) and metabolism. How such an increase is likely to interact with C signalling is not known. Hence, the literature is reviewed for possible links between C and stress signalling that could take part in this interaction. Finally, the possible impact of water deficit-induced C accumulation on growth is questioned for various sink organs of several species by combining published as well as new experimental data or data generated using a modelling approach. To this aim, robust correlations between C availability and sink organ growth are reported in the absence of water deficit. Under water deficit, relationships weaken or are modified suggesting release of the influence of C availability on sink organ growth. These results are interpreted as the signature of a transition from source to sink growth limitation under water deficit.

620 citations


Journal ArticleDOI
TL;DR: An integrated view on the early phase of seed germination is provided and it is shown that it is characterized by dynamic biomechanical changes together with very early alterations in transcript, protein, and hormone levels that set the stage for the later events.
Abstract: Most plant seeds are dispersed in a dry, mature state. If these seeds are non-dormant and the environmental conditions are favourable, they will pass through the complex process of germination. In this review, recent progress made with state-of-the-art techniques including genome-wide gene expression analyses that provided deeper insight into the early phase of seed germination, which includes imbibition and the subsequent plateau phase of water uptake in which metabolism is reactivated, is summarized. The physiological state of a seed is determined, at least in part, by the stored mRNAs that are translated upon imbibition. Very early upon imbibition massive transcriptome changes occur, which are regulated by ambient temperature, light conditions, and plant hormones. The hormones abscisic acid and gibberellins play a major role in regulating early seed germination. The early germination phase of Arabidopsis thaliana culminates in testa rupture, which is followed by the late germination phase and endosperm rupture. An integrated view on the early phase of seed germination is provided and it is shown that it is characterized by dynamic biomechanical changes together with very early alterations in transcript, protein, and hormone levels that set the stage for the later events. Early seed germination thereby contributes to seed and seedling performance important for plant establishment in the natural and agricultural ecosystem.

615 citations


Journal ArticleDOI
TL;DR: This review discusses the strategies to increase photosynthesis that are being proposed by the wheat yield consortium in order to increase wheat yields, and selection for photosynthetic capacity and efficiency is discussed.
Abstract: Past increases in yield potential of wheat have largely resulted from improvements in harvest index rather than increased biomass. Further large increases in harvest index are unlikely, but an opportunity exists for increasing productive biomass and harvestable grain. Photosynthetic capacity and efficiency are bottlenecks to raising productivity and there is strong evidence that increasing photosynthesis will increase crop yields provided that other constraints do not become limiting. Even small increases in the rate of net photosynthesis can translate into large increases in biomass and hence yield, since carbon assimilation is integrated over the entire growing season and crop canopy. This review discusses the strategies to increase photosynthesis that are being proposed by the wheat yield consortium in order to increase wheat yields. These include: selection for photosynthetic capacity and efficiency, increasing ear photosynthesis, optimizing canopy photosynthesis, introducing chloroplast CO2 pumps, increasing RuBP regeneration, improving the thermal stability of Rubisco activase, and replacing wheat Rubisco with that from other species with different kinetic properties.

551 citations


Journal ArticleDOI
TL;DR: The function of auxin conjugates has been mainly elucidated by mutant analysis in genes for synthesis or hydrolysis and a possible function for conjugate inferred from these results, but there is increasing evidence of the occurrence of peptides and proteins modified by IAA.
Abstract: Auxin conjugates are thought to play important roles as storage forms for the active plant hormone indole-3-acetic acid (IAA). In its free form, IAA comprises only up to 25% of the total amount of IAA, depending on the tissue and the plant species studied. The major forms of IAA conjugate are low molecular weight ester or amide forms, but there is increasing evidence of the occurrence of peptides and proteins modified by IAA. Since the discovery of genes and enzymes involved in synthesis and hydrolysis of auxin conjugates, much knowledge has been gained on the biochemistry and function of these compounds, but there is still much to discover. For example, recent work has shown that some auxin conjugate hydrolases prefer conjugates with longer-chain auxins such as indole-3-propionic acid and indole-3-butyric acid as substrate. Also, the compartmentation of these reactions in the cell or in tissues has not been resolved in great detail. The function of auxin conjugates has been mainly elucidated by mutant analysis in genes for synthesis or hydrolysis and a possible function for conjugates inferred from these results. In the evolution of land plants auxin conjugates seem to be connected with the development of certain traits such as embryo, shoot, and vasculature. Most likely, the synthesis of auxin conjugates was developed first, since it has been already detected in moss, whereas sequences typical of auxin conjugate hydrolases were found according to database entries first in moss ferns. The implications for the regulation of auxin levels in different species will be discussed.

524 citations


Journal ArticleDOI
TL;DR: Using isotopic screens, phylogenetic assessments, and 45 years of physiological data, it is now possible to identify most of the evolutionary lineages expressing the C(4) photosynthetic pathway, and is thus an outstanding system to study the mechanisms of evolutionary adaptation.
Abstract: Using isotopic screens, phylogenetic assessments, and 45 years of physiological data, it is now possible to identify most of the evolutionary lineages expressing the C 4 photosynthetic pathway. Here, 62 recognizable lineages of C 4 photosynthesis are listed. Thirty-six lineages (60%) occur in the eudicots. Monocots account for 26 lineages, with a minimum of 18 lineages being present in the grass family and six in the sedge family. Species exhibiting the C 3 ‐C 4 intermediate type of photosynthesis correspond to 21 lineages. Of these, 9 are not immediately associated with any C 4 lineage, indicating that they did not share common C 3 ‐C 4 ancestors with C 4 species and are instead an independent line. The geographic centre of origin for 47 of the lineages could be estimated. These centres tend to cluster in areas corresponding to what are now arid to semi-arid regions of southwestern North America, southcentral South America, central Asia, northeastern and southern Africa, and inland Australia. With 62 independent lineages, C 4 photosynthesis has to be considered one of the most convergent of the complex evolutionary phenomena on planet Earth, and is thus an outstanding system to study the mechanisms of evolutionary adaptation.

Journal ArticleDOI
TL;DR: Six complementary approaches are proposed, namely: optimizing developmental pattern to maximize spike fertility and grain number, optimizing spike growth to maximize grain number and dry matter harvest index, improving spike fertility through desensitizing floret abortion to environmental cues, and improving potential grain size and grain filling.
Abstract: A substantial increase in grain yield potential is required, along with better use of water and fertilizer, to ensure food security and environmental protection in future decades. For improvements in photosynthetic capacity to result in additional wheat yield, extra assimilates must be partitioned to developing spikes and grains and/or potential grain weight increased to accommodate the extra assimilates. At the same time, improvement in dry matter partitioning to spikes should ensure that it does not increase stem or root lodging. It is therefore crucial that improvements in structural and reproductive aspects of growth accompany increases in photosynthesis to enhance the net agronomic benefits of genetic modifications. In this article, six complementary approaches are proposed, namely: (i) optimizing developmental pattern to maximize spike fertility and grain number, (ii) optimizing spike growth to maximize grain number and dry matter harvest index, (iii) improving spike fertility through desensitizing floret abortion to environmental cues, (iv) improving potential grain size and grain filling, and (v) improving lodging resistance. Since many of the traits tackled in these approaches interact strongly, an integrative modelling approach is also proposed, to (vi) identify any trade-offs between key traits, hence to define target ideotypes in quantitative terms. The potential for genetic dissection of key traits via quantitative trait loci analysis is discussed for the efficient deployment of existing variation in breeding programmes. These proposals should maximize returns in food production from investments in increased crop biomass by increasing spike fertility, grain number per unit area and harvest index whilst optimizing the trade-offs with potential grain weight and lodging resistance.

Journal ArticleDOI
TL;DR: There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review, and increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required.
Abstract: Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.

Journal ArticleDOI
TL;DR: The results suggest that OsNRAMP1 participates in cellular Cd uptake and Cd transport within plants, and the higher expression of Os NRAMP1 in the roots could lead to an increase in Cd accumulation in the shoots.
Abstract: Cadmium (Cd) is a heavy metal toxic to humans and the accumulation of Cd in the rice grain is a major agricultural problem, particularly in Asia. The role of the iron transporter OsNRAMP1 in Cd uptake and transport in rice was investigated here. An OsNRAMP1:GFP fusion protein was localized to the plasma membrane in onion epidermal cells. The growth of yeast expressing OsNRAMP1 was impaired in the presence of Cd compared with yeast transformed with an empty vector. Moreover, the Cd content of OsNRAMP1-expressing yeast exceeded that of the vector control. The expression of OsNRAMP1 in the roots was higher in a high Cd-accumulating cultivar (Habataki) than a low Cd-accumulating cultivar (Sasanishiki) regardless of the presence of Cd, and the amino acid sequence of OsNRAMP1 showed 100% identity between Sasanishiki and Habataki. Over-expression of OsNRAMP1 in rice increased Cd accumulation in the leaves. These results suggest that OsNRAMP1 participates in cellular Cd uptake and Cd transport within plants, and the higher expression of OsNRAMP1 in the roots could lead to an increase in Cd accumulation in the shoots. Our results indicated that OsNRAMP1 is an important protein in high-level Cd accumulation in rice.

Journal ArticleDOI
TL;DR: The results demonstrated that Na+ and Cl– exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms, and showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown.
Abstract: Soil salinity affects large areas of the world's cultivated land, causing significant reductions in crop yield. Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions in high concentrations in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. It has previously been suggested that Cl(-) toxicity may also be an important cause of growth reduction in barley plants. Here, the extent to which specific ion toxicities of Na(+) and Cl(-) reduce the growth of barley grown in saline soils is shown under varying salinity treatments using four barley genotypes differing in their salt tolerance in solution and soil-based systems. High Na(+), Cl(-), and NaCl separately reduced the growth of barley, however, the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na(+) and Cl(-) stress. The results demonstrated that Na(+) and Cl(-) exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. High concentrations of Na(+) reduced K(+) and Ca(2+) uptake and reduced photosynthesis mainly by reducing stomatal conductance. By comparison, high Cl(-) concentration reduced photosynthetic capacity due to non-stomatal effects: there was chlorophyll degradation, and a reduction in the actual quantum yield of PSII electron transport which was associated with both photochemical quenching and the efficiency of excitation energy capture. The results also showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown.

Journal ArticleDOI
TL;DR: The evidence is summarized, mostly focusing on examples related to nitrogen acquisition, and abscisic acid, auxin, and cytokinins have been closely linked to nitrogen signalling.
Abstract: Nitrogen is the mineral nutrient that often limits plant growth and development. In response to changes in nitrogen supply, plants display elaborate responses at both physiological and morphological levels to adjust their growth and development. Because higher plants consist of multiple organs with different functions and nutritional requirements, they rely on local and long-distance signalling pathways to coordinate the responses at the whole-plant level. Phytohormones have been considered as signalling substances of such pathways. Amongst phytohormones, abscisic acid, auxin, and cytokinins have been closely linked to nitrogen signalling. Recent evidence has provided some insights into how nitrogen and the phytohormone signals are integrated to bring about changes in physiology and morphology. In this review, the evidence is summarized, mostly focusing on examples related to nitrogen acquisition.

Journal ArticleDOI
TL;DR: Two major genes for Na(+) exclusion in durum wheat, Nax1 and Nax2, were transferred into bread wheat in order to increase its capacity to restrict the accumulation of Na(+.
Abstract: Two major genes for Na(+) exclusion in durum wheat, Nax1 and Nax2, that were previously identified as the Na(+) transporters TmHKT1;4-A2 and TmHKT1;5-A, were transferred into bread wheat in order to increase its capacity to restrict the accumulation of Na(+) in leaves. The genes were crossed from tetraploid durum wheat (Triticum turgidum ssp. durum) into hexaploid bread wheat (Triticum aestivum) by interspecific crossing and marker-assisted selection for hexaploid plants containing one or both genes. Nax1 decreased the leaf blade Na(+) concentration by 50%, Nax2 decreased it by 30%, and both genes together decreased it by 60%. The signature phenotype of Nax1, the retention of Na(+) in leaf sheaths resulting in a high Na(+) sheath:blade ratio, was found in the Nax1 lines. This conferred an extra advantage under a combination of waterlogged and saline conditions. The effect of Nax2 on lowering the Na(+) concentration in bread wheat was surprising as this gene is very similar to the TaHKT1;5-D Na(+) transporter already present in bread wheat, putatively at the Kna1 locus. The results indicate that both Nax genes have the potential to improve the salt tolerance of bread wheat.

Journal ArticleDOI
TL;DR: A critical role for lignin was believed to contribute to the resistance of cotton to disease and the utility of RNA-Seq for gene expression profiles during the cotton defence response was demonstrated.
Abstract: The incompatible pathosystem between resistant cotton (Gossypium barbadense cv. 7124) and Verticillium dahliae strain V991 was used to study the cotton transcriptome changes after pathogen inoculation by RNA-Seq. Of 32,774 genes detected by mapping the tags to assembly cotton contigs, 3442 defence-responsive genes were identified. Gene cluster analyses and functional assignments of differentially expressed genes indicated a significant transcriptional complexity. Quantitative real-time PCR (qPCR) was performed on selected genes with different expression levels and functional assignments to demonstrate the utility of RNA-Seq for gene expression profiles during the cotton defence response. Detailed elucidation of responses of leucine-rich repeat receptor-like kinases (LRR-RLKs), phytohormone signalling-related genes, and transcription factors described the interplay of signals that allowed the plant to fine-tune defence responses. On the basis of global gene regulation of phenylpropanoid metabolism-related genes, phenylpropanoid metabolism was deduced to be involved in the cotton defence response. A closer look at the expression of these genes, enzyme activity, and lignin levels revealed differences between resistant and susceptible cotton plants. Both types of plants showed an increased level of expression of lignin synthesis-related genes and increased phenylalanine-ammonia lyase (PAL) and peroxidase (POD) enzyme activity after inoculation with V. dahliae, but the increase was greater and faster in the resistant line. Histochemical analysis of lignin revealed that the resistant cotton not only retains its vascular structure, but also accumulates high levels of lignin. Furthermore, quantitative analysis demonstrated increased lignification and cross-linking of lignin in resistant cotton stems. Overall, a critical role for lignin was believed to contribute to the resistance of cotton to disease.

Journal ArticleDOI
TL;DR: The role of miR172 in the regulation of plant development and responses to the environment has been investigated in this article, where it has been shown that miRNAs play important roles in regulating the transitions between developmental stages and in specifying floral organ identity.
Abstract: Since the discovery of miRNAs in plants it has become clear that they are central to the regulation of many aspects of plant development and responses to the environment. miR172 regulates expression of a small group of AP2-like transcription factors in an evolutionarily ancient interaction. miR172 functions in regulating the transitions between developmental stages and in specifying floral organ identity. These two roles are conserved across monocotyledons and dicotyledons. Investigations into the roles of miR172 and its targets in phase changes in the model plant Arabidopsis have illustrated that this process is governed by complex regulatory systems. In addition to its conserved roles, miR172 has also acquired specialized species-specific functions in other aspects of plant development such as cleistogamy and tuberization.

Journal ArticleDOI
TL;DR: In this article, an indica pyramiding line, DK151, and its recurrent parent, IR64, were evaluated under drought stress and non-stress conditions for three consecutive seasons.
Abstract: An indica pyramiding line, DK151, and its recurrent parent, IR64, were evaluated under drought stress and non-stress conditions for three consecutive seasons. DK151 showed significantly improved tolerance to drought. The DNA methylation changes in DK151 and IR64 under drought stress and subsequent recovery were assessed using methylation-sensitive amplified polymorphism analysis. Our results indicate that drought-induced genome-wide DNA methylation changes accounted for ∼12.1% of the total site-specific methylation differences in the rice genome. This drought-induced DNA methylation pattern showed three interesting properties. The most important one was its genotypic specificity reflected by large differences in the detected DNA methylation/demethylation sites between DK151 and IR64, which result from introgressed genomic fragments in DK151. Second, most drought-induced methylation/demethylation sites were of two major types distinguished by their reversibility, including 70% of the sites at which drought-induced epigenetic changes were reversed to their original status after recovery, and 29% of sites at which the drought-induced DNA demethylation/methylation changes remain even after recovery. Third, the drought-induced DNA methylation alteration showed a significant level of developmental and tissue specificity. Together, these properties are expected to have contributed greatly to rice response and adaptation to drought stress. Thus, induced epigenetic changes in rice genome can be considered as a very important regulatory mechanism for rice plants to adapt to drought and possibly other environmental stresses.

Journal ArticleDOI
TL;DR: This review summarizes present knowledge on the enzymes that synthesize cytokinins, form cytokinin conjugates, and carry out irreversible elimination of the hormones, including their phylogenetic analysis and possible variations in different organisms.
Abstract: Cytokinin hormones are important regulators of development and environmental responses of plants that execute their action via the molecular machinery of signal perception and transduction. The limiting step of the whole process is the availability of the hormone in suitable concentrations in the right place and at the right time to interact with the specific receptor. Hence, the hormone concentrations in individual tissues, cells, and organelles must be properly maintained by biosynthetic and metabolic enzymes. Although there are merely two active cytokinins, isopentenyladenine and its hydroxylated derivative zeatin, a variety of conjugates they may form and the number of enzymes/isozymes with varying substrate specificity involved in their biosynthesis and conversion gives the plant a variety of tools for fine tuning of the hormone level. Recent genome-wide studies revealed the existence of the respective coding genes and gene families in plants and in some bacteria. This review summarizes present knowledge on the enzymes that synthesize cytokinins, form cytokinin conjugates, and carry out irreversible elimination of the hormones, including their phylogenetic analysis and possible variations in different organisms.

Journal ArticleDOI
TL;DR: Through characterization of several of these PA targets, a molecular and genetic basis for PA's role in plant stress and development is emerging.
Abstract: Phosphatidic acid (PA) is an essential phospholipid involved in membrane biosynthesis and signal transduction in all eukaryotes. This review focuses on its role as lipid second messenger during plant stress, metabolism, and development. The contribution of different individual isoforms of enzymes that generate and break down PA will be discussed and the downstream responses highlighted, with particular focus on proteins that bind PA. Through characterization of several of these PA targets, a molecular and genetic basis for PA's role in plant stress and development is emerging.

Journal ArticleDOI
TL;DR: An overview of recent findings related to developmental switches occurring during in vitro culture is presented and an update on the detection of epigenetic variation in plant cell cultures will be provided and discussed in the light of recent progress in the plant epigenetics field.
Abstract: Epigenetic mechanisms are highly dynamic events that modulate gene expression. As more accurate and powerful tools for epigenetic analysis become available for application in a broader range of plant species, analysis of the epigenetic landscape of plant cell cultures may turn out to be crucial for understanding variant phenotypes. In vitro plant cell and tissue culture methodologies are important for many ongoing plant propagation and breeding programmes as well as for cutting-edge research in several plant model species. Although it has long been known that in vitro conditions induce variation at several levels, most studies using such conditions rely on the assumption that in vitro cultured plant cells/tissues mostly conform genotypically and phenotypically. However, when large-scale clonal propagation is the aim, there has been a concern in confirming true-to-typeness using molecular markers for evaluating stability. While in most reports genetic variation has been found to occur at relatively modest frequencies, variation in DNA methylation patterns seems to be much more frequent and in some cases it has been directly implicated in phenotypic variation. Recent advances in the field of epigenetics have uncovered highly dynamic mechanisms of chromatin remodelling occurring during cell dedifferentiation and differentiation processes on which in vitro adventitious plant regeneration systems are based. Here, an overview of recent findings related to developmental switches occurring during in vitro culture is presented. Additionally, an update on the detection of epigenetic variation in plant cell cultures will be provided and discussed in the light of recent progress in the plant epigenetics field.

Journal ArticleDOI
TL;DR: Attempts to increase RUE will focus on improving the performance and regulation of Rubisco, introduction of C(4)-like traits such as CO(2)-concentrating mechanisms, improvement of light interception, and improvement of photosynthesis at the spike and whole canopy levels.
Abstract: Theoretical considerations suggest that wheat yield potential could be increased by up to 50% through the genetic improvement of radiation use efficiency (RUE). However, to achieve agronomic impacts, structural and reproductive aspects of the crop must be improved in parallel. A Wheat Yield Consortium (WYC) has been convened that fosters linkage between ongoing research platforms in order to develop a cohesive portfolio of activities that will maximize the probability of impact in farmers’ fields. Attempts to increase RUE will focus on improving the performance and regulation of Rubisco, introduction of C4-like traits such as CO2-concentrating mechanisms, improvement of light interception, and improvement of photosynthesis at the spike and whole canopy levels. For extra photo-assimilates to translate into increased grain yield, reproductive aspects of growth must be tailored to a range of agroecosystems to ensure that stable expression of a high harvest index (HI) is achieved. Adequate partitioning among plant organs will be critical to achieve favourable expression of HI, and to ensure that plants with heavier grain have strong enough stems and roots to avoid lodging. Trait-based hybridization strategies will aim to achieve their simultaneous expression in elite agronomic backgrounds, and wide crossing will be employed to augment genetic diversity where needed; for example, to introduce traits for improving RUE from wild species or C4 crops. Genomic selection approaches will be employed, especially for difficult-to-phenotype traits. Genome-wide selection will be evaluated and is likely to complement crossing of complex but complementary traits by identifying favourable allele combinations among progeny. Products will be delivered to national wheat programmes worldwide via wellestablished international nursery systems and are expected to make a significant contribution to global food security.

Journal ArticleDOI
TL;DR: Quantitative real-time RT-PCR expression analysis of nine JA-responsive genes revealed that eight of them were induced in MYC3 and MYC4 overexpression plants, except for a pathogen-responsive gene, PDF1.2.1.
Abstract: The plant hormone jasmonate (JA) plays important roles in the regulation of plant defence and development. JASMONATE ZIM-DOMAIN (JAZ) proteins inhibit transcription factors that regulate early JA-responsive genes, and JA-induced degradation of JAZ proteins thus allows expression of these response genes. To date, MYC2 is the only transcription factor known to interact directly with JAZ proteins and regulate early JA responses, but the phenotype of myc2 mutants suggests that other transcription factors also activate JA responses. To identify JAZ1-interacting proteins, a yeast two-hybrid screen of an Arabidopsis cDNA library was performed. Two basic helix-loop-helix (bHLH) proteins, MYC3 and MYC4, were identified. MYC3 and MYC4 share high sequence similarity with MYC2, suggesting they may have similar biological functions. MYC3 and MYC4 interact not only with JAZ1 but also with other JAZ proteins (JAZ3 and JAZ9) in both yeast two-hybrid and pull-down assays. MYC2, MYC3, and MYC4 were all capable of inducing expression of JAZ::GUS reporter constructs following transfection of carrot protoplasts. Although myc3 and myc4 loss-of-function mutants showed no phenotype, transgenic plants overexpressing MYC3 and MYC4 had higher levels of anthocyanin compared to the wild-type plants. In addition, roots of MYC3 overexpression plants were hypersensitive to JA. Quantitative real-time RT-PCR expression analysis of nine JA-responsive genes revealed that eight of them were induced in MYC3 and MYC4 overexpression plants, except for a pathogen-responsive gene, PDF1.2. Similar to MYC2, MYC4 negatively regulates expression of PDF1.2. Together, these results suggest that MYC3 and MYC4 are JAZ-interacting transcription factors that regulate JA responses.

Journal ArticleDOI
TL;DR: Findings suggest that increases in RuBISCO activity and the function of thiol redox modification may underlie the amelioration of photosynthesis and that H(2)S plays an important role in plant photosynthesis regulation by modulating the expression of genes involved in photosynthetic and thiolRedox modification.
Abstract: Hydrogen sulphide (H(2)S) is emerging as a potential messenger molecule involved in modulation of physiological processes in animals and plants. In this report, the role of H(2)S in modulating photosynthesis of Spinacia oleracea seedlings was investigated. The main results are as follows. (i) NaHS, a donor of H(2)S, was found to increase the chlorophyll content in leaves. (ii) Seedlings treated with different concentrations of NaHS for 30 d exhibited a significant increase in seedling growth, soluble protein content, and photosynthesis in a dose-dependent manner, with 100 μM NaHS being the optimal concentration. (iii) The number of grana lamellae stacking into the functional chloroplasts was also markedly increased by treatment with the optimal NaHS concentration. (iv) The light saturation point (Lsp), maximum net photosynthetic rate (Pmax), carboxylation efficiency (CE), and maximal photochemical efficiency of photosystem II (F(v)/F(m)) reached their maximal values, whereas the light compensation point (Lcp) and dark respiration (Rd) decreased significantly under the optimal NaHS concentration. (v) The activity of ribulose-1,5-bisphosphate carboxylase (RuBISCO) and the protein expression of the RuBISCO large subunit (RuBISCO LSU) were also significantly enhanced by NaHS. (vi) The total thiol content, glutathione and cysteine levels, internal concentration of H(2)S, and O-acetylserine(thiol)lyase and L-cysteine desulphydrase activities were increased to some extent, suggesting that NaHS also induced the activity of thiol redox modification. (vii) Further studies using quantitative real-time PCR showed that the gene encoding the RuBISCO large subunit (RBCL), small subunit (RBCS), ferredoxin thioredoxin reductase (FTR), ferredoxin (FRX), thioredoxin m (TRX-m), thioredoxin f (TRX-f), NADP-malate dehydrogenase (NADP-MDH), and O-acetylserine(thiol)lyase (OAS) were up-regulated, but genes encoding serine acetyltransferase (SERAT), glycolate oxidase (GYX), and cytochrome oxidase (CCO) were down-regulated after exposure to the optimal concentration of H(2)S. These findings suggest that increases in RuBISCO activity and the function of thiol redox modification may underlie the amelioration of photosynthesis and that H(2)S plays an important role in plant photosynthesis regulation by modulating the expression of genes involved in photosynthesis and thiol redox modification.

Journal ArticleDOI
TL;DR: The role of inorganic ions for osmotic adjustment in halophytes is emphasized and calls for more in-depth studies of the mechanisms of vacuolar Na+ sequestration, control of Na+ and K+ xylem loading, and their transport to the shoot.
Abstract: Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) were studied by exposing plants to six salinity levels (0-500 mM NaCl range) for 70 d. Salt stress was administered either by pre-mixing of the calculated amount of NaCl with the potting mix before seeds were planted or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100 mM and 200 mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment in old leaves and between 80% and 85% of osmotic adjustment in young leaves was achieved by means of accumulation of inorganic ions (Na + ,K + , and Cl - ) at these NaCl levels, whilst the contribution of organic osmolytes was very limited. Consistently higher K + and lower Na + levels were found in young, as compared with old leaves, for all salinity treatments. The shoot sap K + progressively increased with increased salinity in old leaves; this is interpreted as evidence for the important role of free K + in leaf osmotic adjustment under saline conditions. A 5-fold increase in salinity level (from 100 mM to 500 mM) resulted in only a 50% increase in the sap Na + content, suggesting either a very strict control of xylem Na + loading or an efficient Na + removal from leaves. A very strong correlation between NaCl-induced K + and H + fluxes was observed in quinoa root, suggesting that a rapid NaCl-induced activation of H + -ATPase is needed to restore otherwise depolarized membrane potential and prevent further K + leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na + sequestration, control of Na + and K + xylem loading, and their transport to the shoot.

Journal ArticleDOI
TL;DR: One mechanism of resistance which has now been identified in a range of species relies on the efflux of organic anions such as malate and citrate from roots and is controlled by members of the ALMT and MATE families which encode membrane proteins that facilitate organic anion efflux across the plasma membrane.
Abstract: Acid soils restrict plant production around the world. One of the major limitations to plant growth on acid soils is the prevalence of soluble aluminium (Al 3+ ) ions which can inhibit root growth at micromolar concentrations. Species that show a natural resistance to Al 3+ toxicity perform better on acid soils. Our understanding of the physiology of Al 3+ resistance in important crop plants has increased greatly over the past 20 years, largely due to the application of genetics and molecular biology. Fourteen genes from seven different species are known to contribute to Al 3+ tolerance and resistance and several additional candidates have been identified. Some of these genes account for genotypic variation within species and others do not. One mechanism of resistance which has now been identified in a range of species relies on the efflux of organic anions such as malate and citrate from roots. The genes controlling this trait are members of the ALMT and MATE families which encode membrane proteins that facilitate organic anion efflux across the plasma membrane. Identification of these and other resistance genes provides opportunities for enhancing the Al 3+ resistance of plants by marker-assisted breeding and through biotechnology. Most attempts to enhance Al 3+ resistance in plants with genetic engineering have targeted genes that are induced by Al 3+ stress or that are likely to increase organic anion efflux. In the latter case, studies have either enhanced organic anion synthesis or increased organic anion transport across the plasma membrane. Recent developments in this area are summarized and the structure‐function of the TaALMT1 protein from wheat is discussed.

Journal ArticleDOI
TL;DR: The cross-compatibility of S. italica and S. viridis suggests that gene flow is likely between wild and domesticated accessions, and these grasses provide novel opportunities to study abiotic stress tolerance and as models for bioenergy feedstocks.
Abstract: Setaria italica and its wild ancestor Setaria viridis are diploid C(4) grasses with small genomes of ∼515 Mb. Both species have attributes that make them attractive as model systems. Setaria italica is a grain crop widely grown in Northern China and India that is closely related to the major food and feed crops maize and sorghum. A large collection of S. italica accessions are available and thus opportunities exist for association mapping and allele mining for novel variants that will have direct application in agriculture. Setaria viridis is the weedy relative of S. italica with many attributes suitable for genetic analyses including a small stature, rapid life cycle, and prolific seed production. Setaria sp. are morphologically similar to most of the Panicoideae grasses, including major biofuel feedstocks, switchgrass (Panicum virgatum) and Miscanthus (Miscanthus giganteus). They are broadly distributed geographically and occupy diverse ecological niches. The cross-compatibility of S. italica and S. viridis also suggests that gene flow is likely between wild and domesticated accessions. In addition to serving as excellent models for C(4) photosynthesis, these grasses provide novel opportunities to study abiotic stress tolerance and as models for bioenergy feedstocks.

Journal ArticleDOI
TL;DR: A new major quantitative trait locus (QTL) controlling RDR was detected on chromosome 9 by using 117 recombinant inbred lines derived from a cross between the lowland cultivar IR64, with shallow rooting, and the upland cultivar Kinandang Patong (KP), with deep rooting.
Abstract: Developing a deep root system is an important strategy for avoiding drought stress in rice. Using the 'basket' method, the ratio of deep rooting (RDR; the proportion of total roots that elongated through the basket bottom) was calculated to evaluate deep rooting. A new major quantitative trait locus (QTL) controlling RDR was detected on chromosome 9 by using 117 recombinant inbred lines (RILs) derived from a cross between the lowland cultivar IR64, with shallow rooting, and the upland cultivar Kinandang Patong (KP), with deep rooting. This QTL explained 66.6% of the total phenotypic variance in RDR in the RILs. A BC(2)F(3) line homozygous for the KP allele of the QTL had an RDR of 40.4%, compared with 2.6% for the homozygous IR64 allele. Fine mapping of this QTL was undertaken using eight BC(2)F(3) recombinant lines. The RDR QTL Dro1 (Deeper rooting 1) was mapped between the markers RM24393 and RM7424, which delimit a 608.4 kb interval in the reference cultivar Nipponbare. To clarify the influence of Dro1 in an upland field, the root distribution in different soil layers was quantified by means of core sampling. A line homozygous for the KP allele of Dro1 (Dro1-KP) and IR64 did not differ in root dry weight in the shallow soil layers (0-25 cm), but root dry weight of Dro1-KP in deep soil layers (25-50 cm) was significantly greater than that of IR64, suggesting that Dro1 plays a crucial role in increased deep rooting under upland field conditions.