scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Experimental Medicine in 1993"


Journal ArticleDOI
TL;DR: Gko mice have been developed which fail to produce IFN-gamma (gko), because of a targeted disruption of the gene for IFNs, and succumb to a rapid and fatal course of tuberculosis that could be delayed, but not prevented, by treatment with exogenous recombinant IFN.
Abstract: Tuberculosis, a major health problem in developing countries, has reemerged in recent years in many industrialized countries. The increased susceptibility of immunocompromised individuals to tuberculosis, and many experimental studies indicate that T cell-mediated immunity plays an important role in resistance. The lymphokine interferon gamma (IFN-gamma) is thought to be a principal mediator of macrophage activation and resistance to intracellular pathogens. Mice have been developed which fail to produce IFN-gamma (gko), because of a targeted disruption of the gene for IFN-gamma. Upon infection with Mycobacterium tuberculosis, although they develop granulomas, gko mice fail to produce reactive nitrogen intermediates and are unable to restrict the growth of the bacilli. In contrast to control mice, gko mice exhibit heightened tissue necrosis and succumb to a rapid and fatal course of tuberculosis that could be delayed, but not prevented, by treatment with exogenous recombinant IFN-gamma.

2,401 citations


Journal ArticleDOI
TL;DR: It is shown that mice in which the IFN-gamma gene has been disrupted were unable to contain or control a normally sublethal dose of M. tuberculosis, delivered either intravenously or aerogenically, and that despite the lack of protective immunity, some DTH-like reactivity could still be elicited.
Abstract: The expression of protective immunity to Mycobacterium tuberculosis in mice is mediated by T lymphocytes that secrete cytokines. These molecules then mediate a variety of roles, including the activation of parasitized host macrophages, and the recruitment of other mononuclear phagocytes to the site of the infection in order to initiate granuloma formation. Among these cytokines, interferon gamma (IFN-gamma) is believed to play a key role is these events. In confirmation of this hypothesis, we show in this study that mice in which the IFN-gamma gene has been disrupted were unable to contain or control a normally sublethal dose of M. tuberculosis, delivered either intravenously or aerogenically. In such mice, a progressive and widespread tissue destruction and necrosis, associated with very high numbers of acid-fast bacilli, was observed. In contrast, despite the lack of protective immunity, some DTH-like reactivity could still be elicited. These data, therefore, indicate that although IFN-gamma may not be needed for DTH expression, it plays a pivotal and essential role in protective cellular immunity to tuberculosis infection.

1,968 citations


Journal ArticleDOI
TL;DR: IL-12 and CD16+ cells appear to have inhibitory effects on the development of IL-4-producing cells and to play an inductive role in promoting Th1-like responses.
Abstract: The effects exerted on the in vitro development of antigen-specific T cell lines and T cell clones by addition or neutralization of interleukin 12 (IL-12) in lymphocyte bulk culture were examined. T cell lines specific for Dermatophagoides pteronyssinus group I (Der p I) derived in the presence of IL-12 exhibited reduced ability to produce IL-4 and increased ability to produce interferon gamma (IFN-gamma), and developed into Der p I-specific CD4+ T cell clones showing a T helper type 0 (Th0)- or Th1-, instead of Th2-, like cytokine profile. In contrast, purified protein derivative (PPD)-specific T cell lines derived in the presence of anti-IL-12 antibody exhibited an increased ability to produce IL-4 and developed into PPD-specific CD4+ T cell clones showing a Th0-, instead of Th1-, like profile. The influence of IL-12 on the cytokine secretion profile of Der p I-specific T cell lines was not prevented by addition to lymphocyte bulk cultures of anti-IFN-gamma antibody, but could be at least partially inhibited by the removal from bulk cultures of CD16+ cells. Thus, IL-12 and CD16+ cells appear to have inhibitory effects on the development of IL-4-producing cells and to play an inductive role in promoting Th1-like responses.

1,700 citations


Journal ArticleDOI
TL;DR: It is shown that IL-10 is a potent inhibitor of NKSF/IL-12 production from human peripheral blood mononuclear cells activated with Staphylococcus aureus or lipopolysaccharide (LPS), and that antibodies against NKSF-12, TNF-alpha, or IL-1 beta can significantly inhibit IFN-gamma production in response to various stimuli.
Abstract: Natural killer cell stimulatory factor or interleukin 12 (NKSF/IL-12) is a heterodimeric cytokine produced by monocytes/macrophages, B cells, and possibly other accessory cell types primarily in response to bacteria or bacterial products. NKSF/IL-12 mediates pleiomorphic biological activity on T and NK cells and, alone or in synergy with other inducers, is a powerful stimulator of interferon gamma (IFN-gamma) production. IL-10 is a potent inhibitor of monocyte-macrophage activation, that inhibits production of tumor necrosis factor alpha (TNF-alpha), IL-1 and also IFN-gamma from lymphocytes acting at the level of accessory cells. Because TNF-alpha and IL-1 are not efficient inducers of IFN-gamma, the mechanism by which IL-10 inhibits IFN-gamma production is not clear. In this paper, we show that IL-10 is a potent inhibitor of NKSF/IL-12 production from human peripheral blood mononuclear cells activated with Staphylococcus aureus or lipopolysaccharide (LPS). Both the production of the free NKSF/IL-12 p40 chain and the biologically active p70 heterodimer are blocked by IL-10. NKSF/IL-12 p40 chain mRNA accumulation is strongly induced by S. aureus or LPS and downregulated by IL-10, whereas the p35 mRNA is constitutively expressed and only minimally regulated by S. aureus, LPS, or IL-10. Although IL-10 is able to block the production of NKSF/IL-12, a powerful inducer of IFN-gamma both in vitro and in vivo, the mechanism of inhibition of IFN-gamma by IL-10 cannot be explained only on the basis of inhibition of NKSF/IL-12 because IL-10 can partially inhibit IFN-gamma production induced by NKSF/IL-12, and also, the IFN-gamma production in response to various stimuli in the presence of neutralizing antibodies to NKSF/IL-12. Our findings that antibodies against NKSF/IL-12, TNF-alpha, or IL-1 beta can significantly inhibit IFN-gamma production in response to various stimuli and that NKSF/IL-12 and IL-1 beta can overcome the IL-10-mediated inhibition of IFN-gamma, suggest that IL-10 inhibition of IFN-gamma production is primarily due to its blocking production from accessory cells of the IFN-gamma-inducer NKSF/IL-12, as well as the costimulating molecule IL-1 beta.

1,481 citations


Journal ArticleDOI
TL;DR: It is demonstrated that IL-12 has potent in vivo antitumor and antimetastatic effects against murine tumors and as well the critical role of CD8+ T cells in mediating the antitumors effects against subcutaneous tumors.
Abstract: It has recently been demonstrated that in vivo administration of murine interleukin 12 (IL-12) to mice results in augmentation of cytotoxic natural killer (NK)/lymphocyte-activated killer cell activity, enhancement of cytolytic T cell generation, and induction of interferon gamma secretion. In this study, the in vivo activity of murine IL-12 against a number of murine tumors has been evaluated. Experimental pulmonary metastases or subcutaneous growth of the B16F10 melanoma were markedly reduced in mice treated intraperitoneally with IL-12, resulting in an increase in survival time. The therapeutic effectiveness of IL-12 was dose dependent and treatment of subcutaneous tumors could be initiated up to 14 d after injection of tumor cells. Likewise, established experimental hepatic metastases and established subcutaneous M5076 reticulum cell sarcoma and Renca renal cell adenocarcinoma tumors were effectively treated by IL-12 at doses which resulted in no gross toxicity. Local peritumoral injection of IL-12 into established subcutaneous Renca tumors resulted in regression and complete disappearance of these tumors. IL-12 was as effective in NK cell-deficient beige mice or in mice depleted of NK cell activity by treatment with antiasialo GM1, suggesting that NK cells are not the primary cell type mediating the antitumor effects of this cytokine. However, the efficacy of IL-12 was greatly reduced in nude mice suggesting the involvement of T cells. Furthermore, depletion of CD8+ but not CD4+ T cells significantly reduced the efficacy of IL-12. These results demonstrate that IL-12 has potent in vivo antitumor and antimetastatic effects against murine tumors and demonstrate as well the critical role of CD8+ T cells in mediating the antitumor effects against subcutaneous tumors.

1,196 citations


Journal ArticleDOI
TL;DR: The process of leukocyte emigration can be dissected into three successive stages: rolling, mediated by the selectin class of adhesion molecules; tight adhesion,mediated by the leukocytes integrins and their endothelial cell counter-receptors; and now transmigration, which, based on these studies, requires PECAM-1.
Abstract: Platelet/endothelial cell adhesion molecule 1 (PECAM-1; CD31) is crucial to the process of leukocyte transmigration through intercellular junctions of vascular endothelial cells. A monoclonal antibody to PECAM, or recombinant soluble PECAM, blocks transendothelial migration of monocytes by 70-90%. Pretreating either the monocytes or the endothelial junctions with antibody blocks transmigration. If the endothelium is first activated by cytokines, anti-PECAM antibody or soluble recombinant PECAM again block transmigration of both monocytes and neutrophils. Anti-PECAM does not block chemotaxis of either cell type. Light and electron microscopy reveal that leukocytes blocked in transmigration remain tightly bound to the apical surface of the endothelial cell, precisely over the intercellular junction. Thus, the process of leukocyte emigration can be dissected into three successive stages: rolling, mediated by the selectin class of adhesion molecules; tight adhesion, mediated by the leukocyte integrins and their endothelial cell counter-receptors; and now transmigration, which, based on these studies, requires PECAM-1.

1,159 citations


Journal ArticleDOI
TL;DR: In this article, a 1,749-bp fragment from the 5'-flanking region of the iNOS gene was cloned from a mouse genomic library, and used S1 nuclease mapping and primer extension to identify the mRNA transcription start site within it.
Abstract: Inducible nitric oxide synthase (iNOS) can be expressed by many types of mammalian cells in response to diverse signals acting synergistically, including cytokines and microbial products. We previously showed that induction of iNOS in mouse macrophages by interferon gamma (IFN-gamma) and lipopolysaccharide (LPS) was at the transcriptional level. From a mouse genomic library, we now cloned a 1,749-bp fragment from the 5'-flanking region of the iNOS gene, and used S1 nuclease mapping and primer extension to identify the mRNA transcription start site within it. The mRNA initiation site is preceded by a TATA box and at least 22 oligonucleotide elements homologous to consensus sequences for the binding of transcription factors involved in the inducibility of other genes by cytokines or bacterial products. These include 10 copies of IFN-gamma response element; 3 copies of gamma-activated site; 2 copies each of nuclear factor-kappa B, IFN-alpha-stimulated response element, activating protein 1, and tumor necrosis factor response element; and one X box. Plasmids in which all or the downstream one half or one third of this region of iNOS were linked to a reporter gene encoding chloramphenicol acetyltransferase were transfected into cells of the RAW264.7 macrophage-like line. All these constructs conferred inducibility of the iNOS promoter by LPS, but only the construct containing all 1,749 bp conferred synergistic inducibility by IFN-gamma plus LPS.

1,134 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that in mice transgenic for anti-H-2Kk,b antibody genes, a homogeneous clone of developing B cells can be analyzed for the outcome of autoantigen encounter, surface immunoglobulin M+/idiotype+ immature B cells binding to self-antigens in the bone marrow are induced to alter the specificity of their antigen receptors.
Abstract: A central paradigm of immunology is clonal selection: lymphocytes displaying clonally distributed antigen receptors are generated and subsequently selected by antigen for growth or elimination. Here we show that in mice transgenic for anti-H-2Kk,b antibody genes, in which a homogeneous clone of developing B cells can be analyzed for the outcome of autoantigen encounter, surface immunoglobulin M+/idiotype+ immature B cells binding to self-antigens in the bone marrow are induced to alter the specificity of their antigen receptors. Transgenic bone marrow B cells encountering membrane-bound Kb or Kk proteins modify their receptors by expressing the V(D)J recombinase activator genes and assembling endogenously encoded immunoglobulin light chain variable genes. This (auto)antigen-directed change in the specificity of newly generated lymphocytes is termed receptor editing.

1,048 citations


Journal ArticleDOI
TL;DR: Thalidomide inhibition of lipopolysaccharide-induced tumor necrosis factor alpha production is examined and it is found that the drug enhances the degradation of TNF-alpha mRNA, providing an explanation for the synergistic effects of these drugs.
Abstract: We have examined the mechanism of thalidomide inhibition of lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-alpha) production and found that the drug enhances the degradation of TNF-alpha mRNA. Thus, the half-life of the molecule was reduced from approximately 30 to approximately 17 min in the presence of 50 micrograms/ml of thalidomide. Inhibition of TNF-alpha production was selective, as other LPS-induced monocyte cytokines were unaffected. Pentoxifylline and dexamethasone, two other inhibitors of TNF-alpha production, are known to exert their effects by means of different mechanisms, suggesting that the three agents inhibit TNF-alpha synthesis at distinct points of the cytokine biosynthetic pathway. These observations provide an explanation for the synergistic effects of these drugs. The selective inhibition of TNF-alpha production makes thalidomide an ideal candidate for the treatment of inflammatory conditions where TNF-alpha-induced toxicities are observed and where immunity must remain intact.

1,046 citations


Journal ArticleDOI
TL;DR: The cloning of a cDNA is reported that directs the expression of the antigen recognized by HLA-A2 melanoma patients, and this cDNA corresponds to the transcript of the tyrosinase gene.
Abstract: Lymphocytes of melanoma patients can be restimulated in vitro with autologous tumor cells to generate antitumor cytolytic T lymphocytes (CTL). Previous reports have indicated that, when such CTL are obtained from HLA-A2 melanoma patients, they often display broad reactivity on A2 melanoma cell lines. Such antitumor CTL clones, which appeared to recognize the same antigen, were isolated from two patients. We report here the cloning of a cDNA that directs the expression of the antigen recognized by these CTL. This cDNA corresponds to the transcript of the tyrosinase gene. The gene was found to be active in all tested melanoma samples and in most melanoma cell lines. Among normal cells, only melanocytes appear to express the gene. The tyrosinase antigen presented by HLA-A2 may therefore constitute a useful target for specific immunotherapy of melanoma. But possible adverse effects of antityrosinase immunization, such as the destruction of normal melanocytes and its consequences, will have to be examined before clinical pilot studies can be undertaken.

1,027 citations


Journal ArticleDOI
TL;DR: Most of the peptides derived from endogenous proteins that intersect the endocytic/class II pathway, even though class II molecules are thought to function mainly in the presentation of exogenous foreign peptide antigens, were derived from major histocompatibility complex-related molecules.
Abstract: Naturally processed peptides were acid extracted from immunoaffinity-purified HLA-DR2, DR3, DR4, DR7, and DR8. Using the complementary techniques of mass spectrometry and Edman microsequencing, > 200 unique peptide masses were identified from each allele, ranging from 1,200 to 4,000 daltons (10-34 residues in length), and a total of 201 peptide sequences were obtained. These peptides were derived from 66 different source proteins and represented sets nested at both the amino- and carboxy-terminal ends with an average length of 15-18 amino acids. Strikingly, most of the peptides (> 85%) were derived from endogenous proteins that intersect the endocytic/class II pathway, even though class II molecules are thought to function mainly in the presentation of exogenous foreign peptide antigens. The predominant endogenous peptides were derived from major histocompatibility complex-related molecules. A few peptides derived from exogenous bovine serum proteins were also bound to every allele. Four prominent promiscuous self-peptide sets (capable of binding to multiple HLA-DR alleles) as well as 84 allele-specific peptide sets were identified. Binding experiments confirmed that the promiscuous peptides have high affinity for the binding groove of all HLA-DR alleles examined. A potential physiologic role for these endogenous self-peptides as immunomodulators of the cellular immune response is discussed.

Journal ArticleDOI
TL;DR: In this paper, the fate of anti-DNA antibody-bearing B cells in normal mice was determined by generating transgenic mice bearing the heavy (H) and light (L) chain genes of a well-characterized anti-double-stranded DNA antibody.
Abstract: To determine the fate of anti-DNA antibody-bearing B cells in normal mice, we generated transgenic mice bearing the heavy (H) and light (L) chain genes of a well-characterized anti-double-stranded DNA antibody. This antibody was originally isolated from a diseased MRL/lpr mouse and has characteristics common to spontaneously arising anti-DNA antibodies. Results show that the H/L transgene (tg) immunoglobulin receptor is not expressed by animals bearing both tgs, although single tg animals (H or L) express their transgenes. Young H/L tg animals express few B cells, whereas adult H/L tg animals maintain almost normal B cell numbers. Analysis of the immunoglobulin receptors used by adult B cells shows that all contain the tg H chain in association with endogenous L chains. These B cells transcribe the L tg as well as the rearranged endogenous L chain gene, and loss of endogenous L chain gene transcription results in resurrection of the 3H9 H/L tg product. Examination of the endogenous L chains used by these cells shows that they represent a highly restricted subset of V genes. Taken together, these data suggest that autoreactive transgenic B cells can rearrange endogenous L chain genes to alter surface receptors. Those L chains that compete successfully with the L tg for H chain binding, and that create a nonautoreactive receptor, allow the B cell to escape deletion. We suggest that this receptor editing is a mechanism used by immature autoreactive B cells to escape tolerance.

Journal ArticleDOI
TL;DR: It is concluded that surface expression of alpha 4 integrin is important in CD4 T cell entry into brain parenchyma and may be crucial in allowing activated effector T cells to leave blood and enter the brain and other tissues to clear infections.
Abstract: Cloned CD4 T cell lines that recognize the Ac1-16 peptide of myelin basic protein bound to I-Au were isolated and used to analyze the immunopathogenesis of experimental autoimmune encephalomyelitis (EAE). T helper type 1 (Th1) clones induced disease, while Th2 clones did not. Using variants of a single cloned Th1 line, the surface expression of alpha 4 integrins (very late antigen 4 [VLA-4]) was identified as a major pathogenic factor. Encephalitogenic clones and nonencephalitogenic variants differ by 10-fold in their level of surface expression of alpha 4 integrin and in their ability to bind to endothelial cells and recombinant vascular cell adhesion molecule 1 (VCAM-1). The alpha 4 integrin-high, disease-inducing cloned Th1 T cells enter brain parenchyma in abundance, while alpha 4 integrin-low, nonencephalitogenic Th1 cells do not. Moreover, antibodies to alpha 4 integrin, its ligand VCAM-1, and intercellular adhesion molecule 1 all influence the pathogenicity of this encephalitogenic clone in vivo. The importance of the expression of VLA-4 for encephalitogenicity is not unique to cloned T cell lines, as similar results were obtained using myelin basic protein-primed lymph node T cells. alpha 4 integrin levels did not affect antigen responsiveness or production of the Th1 cytokines interleukin 2, interferon gamma, and lymphotoxin/tumor necrosis factor beta; and antibodies against alpha 4 integrin did not block antigen recognition in vitro. Thus, we conclude that surface expression of alpha 4 integrin is important in CD4 T cell entry into brain parenchyma. A general conclusion of these studies is that alpha 4 integrins may be crucial in allowing activated effector T cells to leave blood and enter the brain and other tissues to clear infections.

Journal ArticleDOI
TL;DR: It is concluded that Fas was involved in the Ca(2+)-independent component of cytotoxicity mediated by at least two sources of T cells, namely nonantigen-specific in vitro activated hybridoma cells, and antigen- specific in vivo raised peritoneal exudate lymphocytes.
Abstract: Mechanisms of T cell-mediated cytotoxicity remain poorly defined at the molecular level. To investigate some of these mechanisms, we used as target cells, on the one hand, thymocytes from lpr and gld mouse mutants, and on the other hand, L1210 cells transfected or not with the apoptosis-inducing Fas molecule. These independent mutant or transfectant-based approaches both led to the conclusion that Fas was involved in the Ca(2+)-independent component of cytotoxicity mediated by at least two sources of T cells, namely nonantigen-specific in vitro activated hybridoma cells, and antigen-specific in vivo raised peritoneal exudate lymphocytes. Thus, in these cases, T cell-mediated cytotoxicity involved transduction via Fas of the target cell death signal.

Journal ArticleDOI
TL;DR: The protective effect of IL-10 was reversed by prior injection of neutralizing anti-IL-10 antibodies, and correlated with a substantial decrease in endotoxin-induced TNF-alpha release, which implicate IL- 10 as a candidate for treatment of bacterial sepsis, and more generally as an effective antiinflammatory reagent.
Abstract: Interleukin 10 (IL-10) decreases production of IL-1, IL-6, and tumor necrosis factor alpha (TNF-alpha) in vitro, and neutralization of IL-10 in mice leads to elevation of the same monokines. We test here whether this monokine-suppressing property of IL-10 confers on it the capacity to protect mice from lipopolysaccharide-induced shock, a monokine-mediated inflammatory reaction. A single injection of 0.5-1 microgram of recombinant murine IL-10 reproducibly protected BALB/c mice from a lethal intraperitoneal injection of endotoxin. This result was obtained whether the IL-10 was administered concurrently with, or 30 min after the injection of endotoxin. The protective effect of IL-10 was reversed by prior injection of neutralizing anti-IL-10 antibodies, and correlated with a substantial decrease in endotoxin-induced TNF-alpha release. These data implicate IL-10 as a candidate for treatment of bacterial sepsis, and more generally as an effective antiinflammatory reagent.

Journal ArticleDOI
TL;DR: It is concluded that IL-10 inhibits in vivo TNF secretion and protects against the lethality of endotoxin in a murine model of septic shock.
Abstract: Because of its ability to efficiently inhibit in vitro cytokine production by activated macrophages, we hypothesized that interleukin (IL) 10 might be of particular interest in preventing endotoxin-induced toxicity. We therefore examined the effects of IL-10 administration before lipopolysaccharide (LPS) challenge in mice. A marked reduction in the amounts of LPS-induced tumor necrosis factor (TNF) release in the circulation was observed after IL-10 pretreatment at doses at low as 10 U. IL-10 also efficiently prevented the hypothermia generated by the injection of 100 micrograms LPS. Finally, pretreatment with a single injection of 1,000 U IL-10 completely prevented the mortality consecutive to the challenge with 500 micrograms LPS, a dose that was lethal in 50% of the control mice. We conclude that IL-10 inhibits in vivo TNF secretion and protects against the lethality of endotoxin in a murine model of septic shock.

Journal ArticleDOI
TL;DR: It is concluded that rMuIL-12 prevents deleterious Th2 T cell responses and promotes curative Th1 responses in an IFN-gamma- dependent fashion during murine leishmaniasis.
Abstract: Resistant C57BL/6 mice infected with Leishmania major are self-healing, whereas susceptible BALB/c mice fail to contain cutaneous infection and subsequently undergo fatal visceral dissemination. These disparate outcomes are mediated by dissimilar expansions of T helper type 1 (Th1) and Th2 CD4+ T lymphocyte subsets in vivo during cure and progression of disease. Because interleukin 12 (IL-12) has potent T cell growth and interferon gamma (IFN-gamma) stimulatory effects, we studied its effect on CD4+ T cell differentiation during murine leishmaniasis. Treatment with recombinant murine (rMu)IL-12 during the first week of infection cured 89% of normally susceptible BALB/c mice, as defined by decreased size of infected footpads and 1,000-10,000-fold reduced parasite burdens, and provided durable resistance against reinfection. Cure was associated with markedly depressed production of IL-4 by lymph node cells cultured with antigen or mitogen, but preserved or increased production of IFN-gamma relative to untreated mice. IL-4 and IFN-gamma mRNA associated with CD4+ T lymphocytes isolated from infected lymph nodes showed similar reciprocal changes in response to rMuIL-12 therapy. A single injection of anti-IFN-gamma monoclonal antibody abrogated the protective effect of rMuIL-12 therapy and restored Th2 cytokine responses. We conclude that rMuIL-12 prevents deleterious Th2 T cell responses and promotes curative Th1 responses in an IFN-gamma-dependent fashion during murine leishmaniasis. Since BALB/c leishmaniasis cannot be cured with rMuIFN-gamma alone, additional direct effects of IL-12 during T cell subset selection are suggested. Because rMuIL-12 is uniquely protective in this well-characterized model of chronic parasitism, differences in IL-12 production may underlie heterogenous host responses to L. major and other intracellular pathogens.

Journal ArticleDOI
TL;DR: It is demonstrated that the IP-10 gene encodes for an inflammatory mediator that specifically stimulates the directional migration of T cells and monocytes as well as potentiates T cell adhesion to endothelium.
Abstract: The human cytokine interferon-inducible protein 10 (IP-10) is a small glycoprotein secreted by activated T cells, monocytes, endothelial cells, and keratinocytes, and is structurally related to a family of chemotactic cytokines called chemokines. Although this protein is present in sites of delayed-type hypersensitivity reactions and lepromatous leprosy lesions, the biological activity of IP-10 remains unknown. We report here that recombinant human IP-10 stimulated significant in vitro chemotaxis of human peripheral blood monocytes but not neutrophils. Recombinant human IP-10 also stimulated chemotaxis of stimulated, but not unstimulated, human peripheral blood T lymphocytes. Phenotypic analysis of the stimulated T cell population responsive to IP-10 demonstrated that stimulated CD4+ and CD29+ T cells migrated in response to IP-10. This resembles the biological activity of the previously described T cell chemoattractant RANTES. Using an endothelial cell adhesion assay, we demonstrated that stimulated T cells pretreated with optimal doses of IP-10 exhibited a greatly enhanced ability to bind to an interleukin 1-treated endothelial cell monolayer. These results demonstrate that the IP-10 gene encodes for an inflammatory mediator that specifically stimulates the directional migration of T cells and monocytes as well as potentiates T cell adhesion to endothelium.

Journal ArticleDOI
TL;DR: It is suggested that IL-12 has an important role in initiating a Th1 response and protective immunity in resistant mice, as seen in the case of highly susceptible BALB/c mice.
Abstract: Resistance to Leishmania major in mice is associated with the appearance of distinct T helper type 1 (Th1) and Th2 subsets. T cells from lymph nodes draining cutaneous lesions of resistant mice are primarily interferon gamma (IFN-gamma)-producing Th1 cells. In contrast, T cells from susceptible mice are principally Th2 cells that generate interleukin 4 (IL-4). Although existing evidence is supportive of a role for IFN-gamma in the generation of Th1 cells, additional factors may be required for a protective response to be maintained. A potential candidate is IL-12, a heterodimeric cytokine produced by monocytes and B cells that has multiple effects on T and natural killer cell function, including inducing IFN-gamma production. Using an experimental leishmanial model we have observed that daily intraperitoneal administration at the time of parasite challenge of either 0.33 micrograms IL-12 (a consecutive 5 d/wk for 5 wk) or 1.0 micrograms IL-12 per mouse (only a consecutive 5 d) caused a > 75% reduction in parasite burden at the site of infection, in highly susceptible BALB/c mice. Delay of treatment by 1 wk had less of a protective effect. Concomitant with these protective effects was an increase in IFN-gamma and a decrease in IL-4 production, as measured by enzyme-linked immunosorbent assay of supernatants generated from popliteal lymph node cells stimulated with leishmanial antigen in vitro. The reduction in parasite numbers induced by IL-12 therapy was still apparent at 10 wk postinfection. In addition, we observed that the administration of a rabbit anti-recombinant murine IL-12 polyclonal antibody (200 micrograms i.p. every other day for 25 d) at the time of infection to resistant C57Bl/6 mice exacerbated disease. These effects were accompanied by a shift in IFN-gamma production in vitro by antigen-stimulated lymph node cells indicative of a Th2-like response. These findings suggest that IL-12 has an important role in initiating a Th1 response and protective immunity.

Journal ArticleDOI
TL;DR: Frequency analysis of the TNF-alpha polymorphism, using the polymerase chain reaction and single-stranded conformational polymorphism in HLA-typed individuals, reveals a very strong association between the uncommon TNF allele and HLA A1, B8, and DR3 alleles.
Abstract: The tumor necrosis factor (TNF) alpha gene lies within the class III region of the major histocompatibility complex (MHC), telomeric to the class II and centromeric to the class I region. We have recently described the first polymorphism within the human TNF-alpha locus. This is biallelic and lies within the promoter region. Frequency analysis of the TNF-alpha polymorphism, using the polymerase chain reaction and single-stranded conformational polymorphism, in HLA-typed individuals, reveals a very strong association between the uncommon TNF allele and HLA A1, B8, and DR3 alleles. This is the first association between TNF-alpha and other MHC alleles and raises the possibility that the uncommon TNF-alpha allele may contribute to the many autoimmune associations of the A1,B8,DR3 haplotype.

Journal ArticleDOI
TL;DR: The data indicate that antigenicity of hSp70 preparations derives, not from hsp70 per se, but from associated peptides, which may suggest a novel method of using the peptide-binding property of hSP70 for specific vaccination against cancer and infectious diseases.
Abstract: Vaccination of mice with heat shock protein 70 (hsp70) preparations derived from the Meth A sarcoma, but not from normal tissues, renders the mice immune to a substantial challenge with Meth A sarcoma. The immunogenicity is dose dependent and tumor specific. Treatment of an antigenically active hsp70 preparation with ATP followed by removal of low-molecular weight material leaves hsp70 intact, as judged by SDS-PAGE but results in loss of antigenicity, as judged by tumor rejection assays. Separation of this low-molecular weight material on a C18 reverse-phase column shows a diverse array of peptides with molecular mass between 1,000 and 5,000 daltons. Our data indicate that antigenicity of hsp70 preparations derives, not from hsp70 per se, but from associated peptides. These observations may suggest a novel method of using the peptide-binding property of hsp70 for specific vaccination against cancer and infectious diseases.

Journal ArticleDOI
TL;DR: The expression of particular TCRs by DN alpha/beta T cells from multiple donors indicates that these cells, or at least a subpopulation of cells with this phenotype, recognize a limited spectrum of antigens and suggests that they may use nonpolymorphic antigen-presenting molecules.
Abstract: CD4-CD8- (double negative [DN]) alpha/beta T cells are a largely uncharacterized subpopulation of unknown function. To investigate whether these cells are selected to recognize particular antigens or antigen-presenting molecules, DN alpha/beta T cells were purified from the peripheral blood of five normal donors and their T cell receptor (TCR) alpha and beta chains were examined. Random cloning of TCR alpha chains by single-sided polymerase chain reaction (PCR) amplification identified an invariant rearrangement between V alpha 24 and J alpha Q, with no N region diversity, which was expressed preferentially by DN alpha/beta T cells from all donors. Random cloning also identified a precise V alpha 7.2-J alpha (IGRJa14) rearrangement, with two variable amino acids encoded in the V-J junction, which was enriched in the DN alpha/beta T cell preparations from some, but not all, donors. Analysis of TCR beta chains by quantitative PCR amplification demonstrated that the expression of four V beta gene families, V beta 2, 8, 11, and 13, was markedly increased in these DN alpha/beta T cell preparations. The expression of particular TCRs by DN alpha/beta T cells from multiple donors indicates that these cells, or at least a subpopulation of cells with this phenotype, recognize a limited spectrum of antigens and suggests that they may use nonpolymorphic antigen-presenting molecules.

Journal ArticleDOI
Yoram Vodovotz1, Christian Bogdan1, Jihye Paik1, Qiao-wen Xie1, Carl Nathan1 
TL;DR: The potency of TGF-beta as a deactivator of NO production may reflect its ability to suppress iNOS expression by three distinct mechanisms: decreased stability and translation of iN OS mRNA, and increased degradation of inOS protein.
Abstract: Activated mouse peritoneal macrophages produce nitric oxide (NO) via a nitric oxide synthase that is inducible by interferon gamma (IFN-gamma): iNOS. We have studied the mechanisms by which transforming growth factor beta 1 (TGF-beta) suppresses IFN-gamma-stimulated NO production. TGF-beta treatment reduced iNOS specific activity and iNOS protein in both cytosolic and particulate fractions as assessed by Western blot with monospecific anti-iNOS immunoglobulin G. TGF-beta reduced iNOS mRNA without affecting the transcription of iNOS by decreasing iNOS mRNA stability. Even after iNOS was already expressed, TGF-beta reduced the amount of iNOS protein. This was due to reduction of iNOS mRNA translation and increased degradation of iNOS protein. The potency of TGF-beta as a deactivator of NO production (50% inhibitory concentration, 5.6 +/- 2 pM) may reflect its ability to suppress iNOS expression by three distinct mechanisms: decreased stability and translation of iNOS mRNA, and increased degradation of iNOS protein. This is the first evidence that iNOS is subject to other than transcriptional regulation.

Journal ArticleDOI
TL;DR: It is shown here that NO production is elevated in the inflamed joints of SCW-treated rats and the ability of a NOS inhibitor to modulate the disease is demonstrated.
Abstract: Nitric oxide (NO), a toxic radical gas produced during the metabolism of L-arginine by NO synthase (NOS), has been implicated as a mediator of immune and inflammatory responses. A single injection of streptococcal cell wall fragments (SCW) induces the accumulation of inflammatory cells within the synovial tissue and a cell-mediated immune response that leads destructive lesions. We show here that NO production is elevated in the inflamed joints of SCW-treated rats. Administration of NG-monomethyl-L-arginine, an inhibitor of NOS, profoundly reduced the synovial inflammation and tissue damage as measured by an articular index and reflected in the histopathology. These studies implicate the NO pathway in the pathogenesis of an inflammatory arthritis and demonstrate the ability of a NOS inhibitor to modulate the disease.

Journal ArticleDOI
TL;DR: The findings suggest that downregulation of antigen processing may be one of the strategies used by tumors to escape immune surveillance and potential therapeutic applications include enhancing antigen processing at the level of the transcription of MHC-encoded proteasome and transporter genes.
Abstract: Intracellular antigens must be processed before presentation to CD8+ T cells by major histocompatibility complex (MHC) class I molecules. Using a recombinant vaccinia virus (Vac) to transiently express the Kd molecule, we studied the antigen processing efficiency of 26 different human tumor lines. Three cell lines, all human small cell lung carcinoma, consistently failed to process endogenously synthesized proteins for presentation to Kd-restricted, Vac-specific T cells. Pulse-chase experiments showed that MHC class I molecules were not transported by these cell lines from the endoplasmic reticulum to the cell surface. This finding suggested that peptides were not available for binding to nascent MHC molecules in the endoplasmic reticulum. Northern blot analysis of these cells revealed low to nondetectable levels of mRNAs for MHC-encoded proteasome components LMP-7 and LMP-2, as well as the putative peptide transporters TAP-1 and TAP-2. Treatment of cells with interferon gamma enhanced expression of these mRNAs and reversed the observed functional and biochemical deficits. Our findings suggest that downregulation of antigen processing may be one of the strategies used by tumors to escape immune surveillance. Potential therapeutic applications of these findings include enhancing antigen processing at the level of the transcription of MHC-encoded proteasome and transporter genes.

Journal ArticleDOI
TL;DR: Identification here of pure mononucleosome as a lupus-specific immunogen for the Th cells that selectively help the pathogenic anti-DNA autoantibody producing B cells of l upus could lead to the design of specific therapy against this pathogenic autoimmune response.
Abstract: Only a fraction (12%) of 268 "autoreactive" T cell clones derived from lupus-prone mice can selectively induce the production of pathogenic anti-DNA autoantibodies in vitro and accelerate the development of lupus nephritis when transferred in vivo. The CDR3 loops of T cell receptor beta chains expressed by these pathogenic T helper (Th) clones contain a recurrent motif of anionic residues suggesting that they are selected by autoantigens with cationic residues. Herein, we found that approximately 50% of these pathogenic Th clones were specific for nucleosomal antigens, but none of them responded to cationic idiopeptides shared by variable regions of pathogenic anti-DNA autoantibodies. Nucleosomes did not stimulate the T cells as a nonspecific mitogen or superantigen. Only the pathogenic Th cells of lupus responded to nucleosomal antigens that were processed and presented via the major histocompatibility class II pathway. Although the presentation of purified mononucleosomes to the Th clones could be blocked by inhibitors of endosomal proteases, neither of the two components of the nucleosomes--free DNA or histones by themselves--could stimulate the Th clones. Thus critical peptide epitopes for the Th cells were probably protected during uptake and processing of the nucleosome particle as a whole. The nucleosome-specific Th clones preferentially augmented the production of IgG autoantibodies to histone-DNA complex in vitro. In vivo, nucleosome-specific, CD4+ T cells were not detectable in normal mice, but they were found in the spleens of lupus-prone mice as early as 1 mo of age, long before other autoimmune manifestations. Immunization of young, preautoimmune lupus mice with nucleosomes augmented the production of autoantibodies and markedly accelerated the development of severe glomerulonephritis. Previously, crude preparations containing nucleosomes were shown by others to have polyclonal mitogenic activity for B cells from normal as well as lupus mice. Identification here of pure mononucleosome as a lupus-specific immunogen for the Th cells that selectively help the pathogenic anti-DNA autoantibody producing B cells of lupus could lead to the design of specific therapy against this pathogenic autoimmune response.

Journal ArticleDOI
TL;DR: A novel, CD40- dependent pathway for inducing B cell expression of B7/BB1 and enhancing B cell antigen-presenting cell activity is demonstrated that can be initiated via cell-cell contact with alpha-CD3-stimulated CD4+ T cells.
Abstract: Cognate interactions between antigen-presenting B and T cells play crucial roles in immunologic responses. T cells that have been activated via the crosslinking of CD3 are able to induce B cell proliferation and immunoglobulin secretion in a major histocompatibility complex-unrestricted and contact-dependent manner. We find that such activated human CD4+ T cells, but not control Ig-treated T cells, may induce normal or leukemic B cells to express B7/BB1 and significantly higher levels of CD54 intercellular adhesion molecule 1 via a process that also requires direct cell-cell contact. To discern what cell surface molecule(s) may be responsible for signalling B cells to express B7/BB1, we added various monoclonal antibodies (mAbs) specific for T or B cell accessory molecules or control mAbs to cocultures of alpha-CD3-activated T cells and resting B cells. We find that only alpha-CD40 mAbs can significantly inhibit the increased expression of B7/BB1, suggesting that the ligand for CD40 expressed on activated T cells may be an important inducer of B7/BB1 expression. Subsequent experiments in fact demonstrate that alpha-CD40 mAbs, but not control mAbs, induce changes in B cell phenotype similar to those induced by activated T cells when the mAbs are presented on Fc gamma RII (CDw32)-expressing L cells. These phenotypic changes have significant effects on B cell function. Whereas chronic lymphocytic leukemia (CLL) B cells normally are very poor stimulators in allogeneic mixed lymphocyte reactions (MLRs), CLL-B cells preactivated via CD40 crosslinking are significantly better presenters of alloantigen, affecting up to 30-fold-greater stimulation of T cell proliferation than that induced by control treated or nontreated CLL-B cells. Similarly, the MLR of T cells stimulated by allogeneic nonleukemic B cells can be enhanced significantly if the stimulator B cells are preactivated via CD40 crosslinking. The enhanced MLR generated by such preactivated B cells may be inhibited by blocking B7/BB1-CD28 interaction with CTLA4Ig. These studies demonstrate a novel, CD40-dependent pathway for inducing B cell expression of B7/BB1 and enhancing B cell antigen-presenting cell activity that can be initiated via cell-cell contact with alpha-CD3-stimulated CD4+ T cells.

Journal ArticleDOI
TL;DR: Data indicate that the stimulation of NK cells, through the production of IFN-gamma, plays an important role in initiating Th1 cell differentiation in leishmaniasis and in controlling early resistance to L. major.
Abstract: Infection of mice with the protozoan Leishmania major provides an excellent model to define the factors involved in T helper (Th) subset development, since Th1 cells confer protection in resistant strains of mice, whereas Th2 cells are associated with the fatal outcome of susceptible mice. We previously found that interferon gamma (IFN-gamma) was required for Th1 cell development after infection of mice with L. major. In this report, we evaluate the contribution of natural killer (NK) cells to IFN-gamma levels early in L. major infection. NK cell activity was higher in resistant C3H/HeN mice than in susceptible BALB/c mice during the first week of infection, and removal of NK cells significantly decreased IFN-gamma levels and promoted interleukin 4 (IL-4) production in both the draining lymph nodes and spleen. IFN-gamma production by NK cells required the presence of CD4+ T cells or IL-2, but not CD8+ T cells. Enhanced disease, as measured by parasite numbers and lesion development, was observed in NK cell-depleted mice. Furthermore, a comparison of the NK cell response and the subsequent parasite burden in several inbred strains of mice demonstrated that NK cells mediate early resistance to L. major. Together, these data indicate that the stimulation of NK cells, through the production of IFN-gamma, plays an important role in initiating Th1 cell differentiation in leishmaniasis and in controlling early resistance to L. major.

Journal ArticleDOI
TL;DR: In this article, CD40 ligand-transfected cells provided a potent costimulus for monocyte TNF-alpha and IL-6 production in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF), IL-3, or IFN-gamma.
Abstract: CD40 is a member of the tumor necrosis factor (TNF) receptor family of cell surface proteins and was originally described as a B cell restricted antigen. Treatment of primary human monocytes with granulocyte/macrophage colony-stimulating factor (GM-CSF), interleukin 3 (IL-3), or interferon gamma (IFN-gamma) resulted in the induction of CD40 mRNA and enhancement of cell surface protein expression. CD40 was found to mediate monocyte adhesion to cells expressing recombinant CD40 ligand. CD40 ligand-transfected cells provided a potent costimulus for monocyte TNF-alpha and IL-6 production in the presence of GM-CSF, IL-3, or IFN-gamma, and enhanced IL-8 production stimulated by GM-CSF or IL-3. In addition, CD40 ligand-transfected cells acting in the absence of a costimulus induced monocytes to become tumoricidal against a human melanoma cell target. Collectively, these data indicate that CD40 ligand is pleiotropic with potent biological activity on monocytes.

Journal ArticleDOI
TL;DR: Differences in gene expression during B lymphopoiesis at two distinct ontogenic timings are reported, in fetal liver and adult BM: both TdT and the precursor lymphocyte regulated myosin-like light chain are expressed at high levels in the Pro-B cell stage in bone marrow, but are absent from the corresponding fraction in fetal Liver.
Abstract: The expression of B lineage associated genes during early B cell differentiation stages is not firmly established. Using cell surface markers and multiparameter flow cytometry, bone marrow (BM) cells can be resolved into six fractions, representing sequential stages of development; i.e., pre-Pro-B, early Pro-B, late Pro-B/large Pre-B, small Pre-B, immature B, and mature B cells. Here we quantitate the levels of several B lineage associated genes in each of these fractions by RT-PCR, demonstrating different patterns of expression. We find that expression of terminal deoxynucleotidyl transferase (TdT), lambda 5, and VpreB is predominantly restricted to the Pro-B stages. Rag-1 and Rag-2 expression is also tightly regulated, and is found largely in the Pro-B through small Pre-B stages. Mb-1 is present from Pro-B throughout the pathway at high levels. Finally, Bcl-2 is expressed at high levels only at the pre-Pro-B and mature B stages, whereas it is low during all the intermediate stages. We also correlate this expression data with an analysis of the onset of Ig gene rearrangement as assessed by amplifying D-JH, VH-DJH, and VK-JK. Finally, we report differences in gene expression during B lymphopoiesis at two distinct ontogenic timings, in fetal liver and adult BM: both TdT and the precursor lymphocyte regulated myosin-like light chain are expressed at high levels in the Pro-B cell stage in bone marrow, but are absent from the corresponding fraction in fetal liver. In contrast, lambda 5, VpreB, Rag-1, and Rag-2 are expressed at comparable levels.