scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Experimental Medicine in 2011"


Journal ArticleDOI
TL;DR: HIF1α induction by mTOR represents a metabolic checkpoint for the differentiation of TH17 and Treg cells and is associated with good progenitor cell status in mice.
Abstract: Upon antigen stimulation, the bioenergetic demands of T cells increase dramatically over the resting state. Although a role for the metabolic switch to glycolysis has been suggested to support increased anabolic activities and facilitate T cell growth and proliferation, whether cellular metabolism controls T cell lineage choices remains poorly understood. We report that the glycolytic pathway is actively regulated during the differentiation of inflammatory T H 17 and Foxp3-expressing regulatory T cells (T reg cells) and controls cell fate determination. T H 17 but not T reg cell–inducing conditions resulted in strong up-regulation of the glycolytic activity and induction of glycolytic enzymes. Blocking glycolysis inhibited T H 17 development while promoting T reg cell generation. Moreover, the transcription factor hypoxia-inducible factor 1α (HIF1α) was selectively expressed in T H 17 cells and its induction required signaling through mTOR, a central regulator of cellular metabolism. HIF1α–dependent transcriptional program was important for mediating glycolytic activity, thereby contributing to the lineage choices between T H 17 and T reg cells. Lack of HIF1α resulted in diminished T H 17 development but enhanced T reg cell differentiation and protected mice from autoimmune neuroinflammation. Our studies demonstrate that HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of T H 17 and T reg cells.

1,377 citations


Journal ArticleDOI
TL;DR: Pulmonary fibrosis is a complex and heterogeneous disease; a more detailed and integrated understanding of the cellular and molecular mechanisms influencing its pathogenesis will aid the design of new therapies.
Abstract: Pulmonary fibrosis is a highly heterogeneous and lethal pathological process with limited therapeutic options. Although research on the pathogenesis of pulmonary fibrosis has frequently focused on the mechanisms that regulate the proliferation, activation, and differentiation of collagen-secreting myofibroblasts, recent studies have identified new pathogenic mechanisms that are critically involved in the initiation and progression of fibrosis in a variety of settings. A more detailed and integrated understanding of the cellular and molecular mechanisms of pulmonary fibrosis could help pave the way for effective therapeutics for this devastating and complex disease.

1,021 citations


Journal ArticleDOI
Wenzhong Xiao1, Wenzhong Xiao2, Michael N. Mindrinos1, Junhee Seok1, Joseph Cuschieri3, Alex G. Cuenca4, Hong Gao1, Douglas L. Hayden5, Laura Hennessy3, Ernest E. Moore6, Joseph P. Minei7, Paul E. Bankey8, Jeffrey L. Johnson6, Jason L. Sperry9, Avery B. Nathens10, Timothy R. Billiar9, Michael West11, Bernard H. Brownstein12, Philip H. Mason, Henry V. Baker4, Celeste C. Finnerty13, Marc G. Jeschke10, M. Cecilia Lopez4, Matthew B. Klein3, Richard L. Gamelli14, Nicole S. Gibran3, Brett D. Arnoldo7, Weihong Xu1, Yuping Zhang1, Steven E. Calvano15, Grace P. McDonald-Smith, David A. Schoenfeld2, John D. Storey16, J. Perren Cobb2, H. Shaw Warren2, Lyle L. Moldawer4, David N. Herndon13, Stephen F. Lowry15, Ronald V. Maier3, Ronald W. Davis1, Ronald G. Tompkins2, W. Xiao2, M. Mindrinos2, J. Seok2, J. Cuschieri2, R. Tompkins2, Roger J. Davis2, R. Maier2, L. Moldawer2, L. Hennessy2, E. Moore2, J. Minei2, P. Bankey2, J. Johnson2, J. Sperry2, A. Nathens2, T. Billiar2, M. West2, B. Brownstein2, D. Herndon2, H. Baker2, C. Finnerty2, M. Jeschke2, M. Lopez2, M. Klein2, R. Gamelli2, N. Gibran2, B. Arnoldo2, G. McDonald-Smith2, D. Schoenfeld2, J. P. Cobb2, Shaw Warren2, A. Cuenca2, S. Lowry2, S. Calvano2, Doug Hayden2, P. Mason2, H. Gao2, J. Storey2, Lily L. Altstein2, Ulysses J. Balis2, David G. Camp2, K. De Asit2, Brian G. Harbrecht2, Shari Honari2, Bruce A. McKinley2, Carol L. Miller-Graziano2, Frederick A. Moore2, Grant E. O'Keefe2, Laurence G. Rahme2, Daniel G. Remick2, Michael B. Shapiro2, Richard D. Smith2, Robert Tibshirani2, Mehmet Toner2, Bram Wispelwey2, Wing Hung Wong2 
TL;DR: It is shown that critical injury in humans induces a genomic storm with simultaneous changes in expression of innate and adaptive immunity genes that alter the status of these genes in the immune system.
Abstract: Human survival from injury requires an appropriate inflammatory and immune response. We describe the circulating leukocyte transcriptome after severe trauma and burn injury, as well as in healthy subjects receiving low-dose bacterial endotoxin, and show that these severe stresses produce a global reprioritization affecting >80% of the cellular functions and pathways, a truly unexpected “genomic storm.” In severe blunt trauma, the early leukocyte genomic response is consistent with simultaneously increased expression of genes involved in the systemic inflammatory, innate immune, and compensatory antiinflammatory responses, as well as in the suppression of genes involved in adaptive immunity. Furthermore, complications like nosocomial infections and organ failure are not associated with any genomic evidence of a second hit and differ only in the magnitude and duration of this genomic reprioritization. The similarities in gene expression patterns between different injuries reveal an apparently fundamental human response to severe inflammatory stress, with genomic signatures that are surprisingly far more common than different. Based on these transcriptional data, we propose a new paradigm for the human immunological response to severe injury.

958 citations


Journal ArticleDOI
TL;DR: The generation of antitumor CD8+ T cell responses requires type I interferon responsiveness in host antigen-presenting cells and the response is dominated by T-cells that secrete polypeptide A into the T cells of the immune system.
Abstract: Despite lack of tumor control in many models, spontaneous T cell priming occurs frequently in response to a growing tumor. However, the innate immune mechanisms that promote natural antitumor T cell responses are undefined. In human metastatic melanoma, there was a correlation between a type I interferon (IFN) transcriptional profile and T cell markers in metastatic tumor tissue. In mice, IFN-β was produced by CD11c+ cells after tumor implantation, and tumor-induced T cell priming was defective in mice lacking IFN-α/βR or Stat1. IFN signaling was required in the hematopoietic compartment at the level of host antigen-presenting cells, and selectively for intratumoral accumulation of CD8α+ dendritic cells, which were demonstrated to be essential using Batf3−/− mice. Thus, host type I IFNs are critical for the innate immune recognition of a growing tumor through signaling on CD8α+ DCs.

929 citations


Journal ArticleDOI
TL;DR: Dendritic cell responsiveness to type I interferon is required for the generation of antitumor T cell responses and tumor rejection.
Abstract: Cancer immunoediting is the process whereby the immune system suppresses neoplastic growth and shapes tumor immunogenicity. We previously reported that type I interferon (IFN-α/β) plays a central role in this process and that hematopoietic cells represent critical targets of type I IFN’s actions. However, the specific cells affected by IFN-α/β and the functional processes that type I IFN induces remain undefined. Herein, we show that type I IFN is required to initiate the antitumor response and that its actions are temporally distinct from IFN-γ during cancer immunoediting. Using mixed bone marrow chimeric mice, we demonstrate that type I IFN sensitivity selectively within the innate immune compartment is essential for tumor-specific T cell priming and tumor elimination. We further show that mice lacking IFNAR1 (IFN-α/β receptor 1) in dendritic cells (DCs; Itgax-Cre+Ifnar1f/f mice) cannot reject highly immunogenic tumor cells and that CD8α+ DCs from these mice display defects in antigen cross-presentation to CD8+ T cells. In contrast, mice depleted of NK cells or mice that lack IFNAR1 in granulocytes and macrophage populations reject these tumors normally. Thus, DCs and specifically CD8α+ DCs are functionally relevant targets of endogenous type I IFN during lymphocyte-mediated tumor rejection.

866 citations


Journal ArticleDOI
TL;DR: Generation of a Nur77 reporter mouse is used to demonstrate TCR signal strength during thymic selection and peripheral maintenance of conventional and nonconventional T cell subsets and presents a novel tool for studying antigen receptor activation in vivo.
Abstract: The ability of antigen receptors to engage self-ligands with varying affinity is crucial for lymphocyte development. To further explore this concept, we generated transgenic mice expressing GFP from the immediate early gene Nr4a1 (Nur77) locus. GFP was up-regulated in lymphocytes by antigen receptor stimulation but not by inflammatory stimuli. In T cells, GFP was induced during positive selection, required major histocompatibility complex for maintenance, and directly correlated with the strength of T cell receptor (TCR) stimulus. Thus, our results define a novel tool for studying antigen receptor activation in vivo. Using this model, we show that regulatory T cells (Treg cells) and invariant NKT cells (iNKT cells) perceived stronger TCR signals than conventional T cells during development. However, although Treg cells continued to perceive strong TCR signals in the periphery, iNKT cells did not. Finally, we show that Treg cell progenitors compete for recognition of rare stimulatory TCR self-ligands.

861 citations


Journal ArticleDOI
TL;DR: Mice lacking miR-146a exhibit exaggerated inflammatory responses, autoimmunity, and increased rate of tumorigenesis.
Abstract: Excessive or inappropriate activation of the immune system can be deleterious to the organism, warranting multiple molecular mechanisms to control and properly terminate immune responses. MicroRNAs (miRNAs), ∼22-nt-long noncoding RNAs, have recently emerged as key posttranscriptional regulators, controlling diverse biological processes, including responses to non-self. In this study, we examine the biological role of miR-146a using genetically engineered mice and show that targeted deletion of this gene, whose expression is strongly up-regulated after immune cell maturation and/or activation, results in several immune defects. Collectively, our findings suggest that miR-146a plays a key role as a molecular brake on inflammation, myeloid cell proliferation, and oncogenic transformation.

805 citations


Journal ArticleDOI
TL;DR: ROS generated by mitochondrial respiration are needed for optimal proinflammatory cytokine production in healthy cells, and are elevated in cells from patients with an autoinflammatory disorder.
Abstract: Reactive oxygen species (ROS) have an established role in inflammation and host defense, as they kill intracellular bacteria and have been shown to activate the NLRP3 inflammasome. Here, we find that ROS generated by mitochondrial respiration are important for normal lipopolysaccharide (LPS)-driven production of several proinflammatory cytokines and for the enhanced responsiveness to LPS seen in cells from patients with tumor necrosis factor receptor-associated periodic syndrome (TRAPS), an autoinflammatory disorder caused by missense mutations in the type 1 TNF receptor (TNFR1). We find elevated baseline ROS in both mouse embryonic fibroblasts and human immune cells harboring TRAPS-associated TNFR1 mutations. A variety of antioxidants dampen LPS-induced MAPK phosphorylation and inflammatory cytokine production. However, gp91(phox) and p22(phox) reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits are dispensable for inflammatory cytokine production, indicating that NADPH oxidases are not the source of proinflammatory ROS. TNFR1 mutant cells exhibit altered mitochondrial function with enhanced oxidative capacity and mitochondrial ROS generation, and pharmacological blockade of mitochondrial ROS efficiently reduces inflammatory cytokine production after LPS stimulation in cells from TRAPS patients and healthy controls. These findings suggest that mitochondrial ROS may be a novel therapeutic target for TRAPS and other inflammatory diseases.

753 citations


Journal ArticleDOI
TL;DR: Although scarce after annual influenza vaccination, B cells producing antibodies capable of neutralizing multiple influenza strains are abundant in humans infected with pandemic 2009 H1N1 influenza.
Abstract: The 2009 pandemic H1N1 influenza pandemic demonstrated the global health threat of reassortant influenza strains. Herein, we report a detailed analysis of plasmablast and monoclonal antibody responses induced by pandemic H1N1 infection in humans. Unlike antibodies elicited by annual influenza vaccinations, most neutralizing antibodies induced by pandemic H1N1 infection were broadly cross-reactive against epitopes in the hemagglutinin (HA) stalk and head domain of multiple influenza strains. The antibodies were from cells that had undergone extensive affinity maturation. Based on these observations, we postulate that the plasmablasts producing these broadly neutralizing antibodies were predominantly derived from activated memory B cells specific for epitopes conserved in several influenza strains. Consequently, most neutralizing antibodies were broadly reactive against divergent H1N1 and H5N1 influenza strains. This suggests that a pan-influenza vaccine may be possible, given the right immunogen. Antibodies generated potently protected and rescued mice from lethal challenge with pandemic H1N1 or antigenically distinct influenza strains, making them excellent therapeutic candidates.

746 citations


Journal ArticleDOI
TL;DR: Results highlight two antagonistic, tightly balanced pathways that regulate maintenance of HSCs/progenitors in the niche during homeostasis, in which MΦ cross talk with the Nestin+ niche cell promotes retention, and in contrast, SNS signals enhance egress.
Abstract: Hematopoietic stem cells (HSCs) reside in specialized bone marrow (BM) niches regulated by the sympathetic nervous system (SNS). Here, we have examined whether mononuclear phagocytes modulate the HSC niche. We defined three populations of BM mononuclear phagocytes that include Gr-1(hi) monocytes (MOs), Gr-1(lo) MOs, and macrophages (MΦ) based on differential expression of Gr-1, CD115, F4/80, and CD169. Using MO and MΦ conditional depletion models, we found that reductions in BM mononuclear phagocytes led to reduced BM CXCL12 levels, the selective down-regulation of HSC retention genes in Nestin(+) niche cells, and egress of HSCs/progenitors to the bloodstream. Furthermore, specific depletion of CD169(+) MΦ, which spares BM MOs, was sufficient to induce HSC/progenitor egress. MΦ depletion also enhanced mobilization induced by a CXCR4 antagonist or granulocyte colony-stimulating factor. These results highlight two antagonistic, tightly balanced pathways that regulate maintenance of HSCs/progenitors in the niche during homeostasis, in which MΦ cross talk with the Nestin(+) niche cell promotes retention, and in contrast, SNS signals enhance egress. Thus, strategies that target BM MΦ hold the potential to augment stem cell yields in patients that mobilize HSCs/progenitors poorly.

741 citations


Journal ArticleDOI
TL;DR: Whole-exome sequencing reveals activating STAT1 mutations in some patients with autosomal dominant chronic mucocutaneous candidiasis disease.
Abstract: Chronic mucocutaneous candidiasis disease (CMCD) may be caused by autosomal dominant (AD) IL-17F deficiency or autosomal recessive (AR) IL-17RA deficiency. Here, using whole-exome sequencing, we identified heterozygous germline mutations in STAT1 in 47 patients from 20 kindreds with AD CMCD. Previously described heterozygous STAT1 mutant alleles are loss-of-function and cause AD predisposition to mycobacterial disease caused by impaired STAT1-dependent cellular responses to IFN-γ. Other loss-of-function STAT1 alleles cause AR predisposition to intracellular bacterial and viral diseases, caused by impaired STAT1-dependent responses to IFN-α/β, IFN-γ, IFN-λ, and IL-27. In contrast, the 12 AD CMCD-inducing STAT1 mutant alleles described here are gain-of-function and increase STAT1-dependent cellular responses to these cytokines, and to cytokines that predominantly activate STAT3, such as IL-6 and IL-21. All of these mutations affect the coiled-coil domain and impair the nuclear dephosphorylation of activated STAT1, accounting for their gain-of-function and dominance. Stronger cellular responses to the STAT1-dependent IL-17 inhibitors IFN-α/β, IFN-γ, and IL-27, and stronger STAT1 activation in response to the STAT3-dependent IL-17 inducers IL-6 and IL-21, hinder the development of T cells producing IL-17A, IL-17F, and IL-22. Gain-of-function STAT1 alleles therefore cause AD CMCD by impairing IL-17 immunity.

Journal ArticleDOI
Edwina Naik1, Vishva M. Dixit1
TL;DR: Recent work indicates that mitochondrial ROS act via several pathways to elicit proinflammatory cytokines in human and mouse cells and this work is likely to be important for understanding the role of ROS in inflammation.
Abstract: High levels of reactive oxygen species (ROS) are observed in chronic human diseases such as neurodegeneration, Crohn’s disease, and cancer. In addition to the presence of oxidative stress, these diseases are also characterized by deregulated inflammatory responses, including but not limited to proinflammatory cytokine production. New work exploring the mechanisms linking ROS and inflammation find that ROS derived from mitochondria act as signal-transducing molecules that provoke the up-regulation of inflammatory cytokine subsets via distinct molecular pathways.

Journal ArticleDOI
TL;DR: In glioblastoma multiforme, the most common adult primary brain tumor, the glycolytic enzyme hexokinase 2 facilitates growth and therapeutic resistance.
Abstract: Proliferating embryonic and cancer cells preferentially use aerobic glycolysis to support growth, a metabolic alteration commonly referred to as the “Warburg effect.” Here, we show that the glycolytic enzyme hexokinase 2 (HK2) is crucial for the Warburg effect in human glioblastoma multiforme (GBM), the most common malignant brain tumor. In contrast to normal brain and low-grade gliomas, which express predominantly HK1, GBMs show increased HK2 expression. HK2 expression correlates with worse overall survival of GBM patients. Depletion of HK2, but neither HK1 nor pyruvate kinase M2, in GBM cells restored oxidative glucose metabolism and increased sensitivity to cell death inducers such as radiation and temozolomide. Intracranial xenografts of HK2-depleted GBM cells showed decreased proliferation and angiogenesis, but increased invasion, as well as diminished expression of hypoxia inducible factor 1α and vascular endothelial growth factor. In contrast, exogenous HK2 expression in GBM cells led to increased proliferation, therapeutic resistance, and intracranial growth. Growth was dependent on both glucose phosphorylation and mitochondrial translocation mediated by AKT signaling, which is often aberrantly activated in GBMs. Collectively, these findings suggest that therapeutic strategies to modulate the Warburg effect, such as targeting of HK2, may interfere with growth and therapeutic sensitivity of some GBMs.

Journal ArticleDOI
TL;DR: Next generation sequencing and copy number analysis provide insights into the complexity of the CLL coding genome, and reveal an association between NOTCH1 mutational activation and poor prognosis.
Abstract: The pathogenesis of chronic lymphocytic leukemia (CLL), the most common leukemia in adults, is still largely unknown. The full spectrum of genetic lesions that are present in the CLL genome, and therefore the number and identity of dysregulated cellular pathways, have not been identified. By combining next-generation sequencing and copy number analysis, we show here that the typical CLL coding genome contains <20 clonally represented gene alterations/case, including predominantly nonsilent mutations, and fewer copy number aberrations. These analyses led to the discovery of several genes not previously known to be altered in CLL. Although most of these genes were affected at low frequency in an expanded CLL screening cohort, mutational activation of NOTCH1, observed in 8.3% of CLL at diagnosis, was detected at significantly higher frequency during disease progression toward Richter transformation (31.0%), as well as in chemorefractory CLL (20.8%). Consistent with the association of NOTCH1 mutations with clinically aggressive forms of the disease, NOTCH1 activation at CLL diagnosis emerged as an independent predictor of poor survival. These results provide initial data on the complexity of the CLL coding genome and identify a dysregulated pathway of diagnostic and therapeutic relevance.

Journal ArticleDOI
TL;DR: Increased numbers of innate lymphoid cells in patients with inflammatory bowel disease are found to be associated with better prognosis and decreased likelihood of long-term disease progression.
Abstract: Results of experimental and genetic studies have highlighted the role of the IL-23/IL-17 axis in the pathogenesis of inflammatory bowel disease (IBD). IL-23–driven inflammation has been primarily linked to Th17 cells; however, we have recently identified a novel population of innate lymphoid cells (ILCs) in mice that produces IL-17, IL-22, and IFN-γ in response to IL-23 and mediates innate colitis. The relevance of ILC populations in human health and disease is currently poorly understood. In this study, we have analyzed the role of IL-23–responsive ILCs in the human intestine in control and IBD patients. Our results show increased expression of the Th17-associated cytokine genes IL17A and IL17F among intestinal CD3− cells in IBD. IL17A and IL17F expression is restricted to CD56− ILCs, whereas IL-23 induces IL22 and IL26 in the CD56+ ILC compartment. Furthermore, we observed a significant and selective increase in CD127+CD56− ILCs in the inflamed intestine in Crohn’s disease (CD) patients but not in ulcerative colitis patients. These results indicate that IL-23–responsive ILCs are present in the human intestine and that intestinal inflammation in CD is associated with the selective accumulation of a phenotypically distinct ILC population characterized by inflammatory cytokine expression. ILCs may contribute to intestinal inflammation through cytokine production, lymphocyte recruitment, and organization of the inflammatory tissue and may represent a novel tissue-specific target for subtypes of IBD.

Journal ArticleDOI
TL;DR: VISTA suppresses T cell proliferation and cytokine production and can influence autoimmunity and antitumor responses in mice.
Abstract: The immunoglobulin (Ig) superfamily consists of many critical immune regulators, including the B7 family ligands and receptors. In this study, we identify a novel and structurally distinct Ig superfamily inhibitory ligand, whose extracellular domain bears homology to the B7 family ligand PD-L1. This molecule is designated V-domain Ig suppressor of T cell activation (VISTA). VISTA is primarily expressed on hematopoietic cells, and VISTA expression is highly regulated on myeloid antigen-presenting cells (APCs) and T cells. A soluble VISTA-Ig fusion protein or VISTA expression on APCs inhibits T cell proliferation and cytokine production in vitro. A VISTA-specific monoclonal antibody interferes with VISTA-induced suppression of T cell responses by VISTA-expressing APCs in vitro. Furthermore, anti-VISTA treatment exacerbates the development of the T cell-mediated autoimmune disease experimental autoimmune encephalomyelitis in mice. Finally, VISTA overexpression on tumor cells interferes with protective antitumor immunity in vivo in mice. These findings show that VISTA, a novel immunoregulatory molecule, has functional activities that are nonredundant with other Ig superfamily members and may play a role in the development of autoimmunity and immune surveillance in cancer.

Journal ArticleDOI
TL;DR: Expression of TSLP in pancreatic cancer correlates with Th2 deviation of antitumor immunity that is associated with decrease of patient survival.
Abstract: Pancreatic cancer is a very aggressive disease characterized by a marked desmoplasia with a predominant Th2 (GATA-3+) over Th1 (T-bet+) lymphoid infiltrate. We found that the ratio of GATA-3+/T-bet+ tumor-infiltrating lymphoid cells is an independent predictive marker of patient survival. Patients surgically treated for stage IB/III disease with a ratio inferior to the median value had a statistically significant prolonged overall survival, implying an active role for Th2 responses in disease progression. Thymic stromal lymphopoietin (TSLP), which favors Th2 cell polarization through myeloid dendritic cell (DC) conditioning, was secreted by cancer-associated fibroblasts (CAFs) after activation with tumor-derived tumor necrosis factor α and interleukin 1β. TSLP-containing supernatants from activated CAFs induced in vitro myeloid DCs to up-regulate the TSLP receptor (TSLPR), secrete Th2-attracting chemokines, and acquire TSLP-dependent Th2-polarizing capability in vitro. In vivo, Th2 chemoattractants were expressed in the tumor and in the stroma, and TSLPR-expressing DCs were present in the tumor stroma and in tumor-draining but not in nondraining lymph nodes. Collectively, this study identifies in pancreatic cancer a cross talk between tumor cells and CAFs, resulting in a TSLP-dependent induction of Th2-type inflammation which associates with reduced patient survival. Thus, blocking TSLP production by CAFs might help to improve prognosis in pancreatic cancer.

Journal ArticleDOI
TL;DR: Human B1 cells consist of CD20+CD27+CD43+CD70− cells bearing a skewed B cell receptor repertoire, and are present in umbilical cord and adult peripheral blood.
Abstract: B1 cells differ in many ways from conventional B cells, most prominently in the production of natural immunoglobulin, which is vitally important for protection against pathogens. B1 cells have also been implicated in the pathogenesis of autoimmune dyscrasias and malignant diseases. It has been impossible to accurately study B1 cells during health and illness because the nature of human B1 cells has not been successfully defined. This has produced controversy regarding the existence of human B1 cells. Here, we determined the phenotype of human B1 cells by testing sort-purified B cell fractions for three fundamental B1 cell functions based on mouse studies: spontaneous IgM secretion, efficient T cell stimulation, and tonic intracellular signaling. We found that a small population of CD20+CD27+CD43+ cells present in both umbilical cord and adult peripheral blood fulfilled these criteria and expressed a skewed B cell receptor repertoire. These B cells express little or no surface CD69 and CD70, both of which are markedly up-regulated after activation of CD20+CD27−CD43− (naive) and CD20+CD27+CD43− (memory) B cells. This work identifies human B1 cells as CD20+CD27+CD43+CD70−. We determined that the proportion of B1 cells declines with age, which may contribute to disease susceptibility. Identification of human B1 cells provides a foundation for future studies on the nature and role of these cells in human disease.

Journal ArticleDOI
TL;DR: Blocking CCL2 nitration in tumors promoted CD8+ influx and reduced tumor growth and prolonged survival in mice when combined with adoptive cell therapy.
Abstract: Tumor-promoted constraints negatively affect cytotoxic T lymphocyte (CTL) trafficking to the tumor core and, as a result, inhibit tumor killing. The production of reactive nitrogen species (RNS) within the tumor microenvironment has been reported in mouse and human cancers. We describe a novel RNS-dependent posttranslational modification of chemokines that has a profound impact on leukocyte recruitment to mouse and human tumors. Intratumoral RNS production induces CCL2 chemokine nitration and hinders T cell infiltration, resulting in the trapping of tumor-specific T cells in the stroma that surrounds cancer cells. Preconditioning of the tumor microenvironment with novel drugs that inhibit CCL2 modification facilitates CTL invasion of the tumor, suggesting that these drugs may be effective in cancer immunotherapy. Our results unveil an unexpected mechanism of tumor evasion and introduce new avenues for cancer immunotherapy.

Journal ArticleDOI
TL;DR: Ehninger and Trumpp discuss the role of monocytes/macrophages and other niche cells in the regulation of HSC mobilization and retention.
Abstract: Stem cell niches are defined as the cellular and molecular microenvironments that regulate stem cell function together with stem cell autonomous mechanisms. This includes control of the balance between quiescence, self-renewal, and differentiation, as well as the engagement of specific programs in response to stress. In mammals, the best understood niche is that harboring bone marrow hematopoietic stem cells (HSCs). Recent studies have expanded the number of cell types contributing to the HSC niche. Perivascular mesenchymal stem cells and macrophages now join the previously identified sinusoidal endothelial cells, sympathetic nerve fibers, and cells of the osteoblastic lineage to form similar, but distinct, niches that harbor dormant and self-renewing HSCs during homeostasis and mediate stem cell mobilization in response to granulocyte colony-stimulating factor.

Journal ArticleDOI
TL;DR: Adult mouse LSK cells unable to undergo autophagy contain fewer HSCs, accumulate mitochondria, and fail to reconstitute lethally irradiated mice.
Abstract: The role of autophagy, a lysosomal degradation pathway which prevents cellular damage, in the maintenance of adult mouse hematopoietic stem cells (HSCs) remains unknown Although normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs leads to leukemia Therefore, mechanisms protecting HSCs from cellular damage are essential to prevent hematopoietic malignancies In this study, we crippled autophagy in HSCs by conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system This resulted in the loss of normal HSC functions, a severe myeloproliferation, and death of the mice within weeks The hematopoietic stem and progenitor cell compartment displayed an accumulation of mitochondria and reactive oxygen species, as well as increased proliferation and DNA damage HSCs within the Lin(-)Sca-1(+)c-Kit(+) (LSK) compartment were significantly reduced Although the overall LSK compartment was expanded, Atg7-deficient LSK cells failed to reconstitute the hematopoietic system of lethally irradiated mice Consistent with loss of HSC functions, the production of both lymphoid and myeloid progenitors was impaired in the absence of Atg7 Collectively, these data show that Atg7 is an essential regulator of adult HSC maintenance

Journal ArticleDOI
TL;DR: By transactivating expression of miRNAs that repress expression of the ZEB1 and ZEB2 transcription factors, p53 inhibits the epithelial–mesenchymal transition.
Abstract: p53 suppresses tumor progression and metastasis. Epithelial–mesenchymal transition (EMT) is a key process in tumor progression and metastasis. The transcription factors ZEB1 and ZEB2 promote EMT. Here, we show that p53 suppresses EMT by repressing expression of ZEB1 and ZEB2. By profiling 92 primary hepatocellular carcinomas (HCCs) and 9 HCC cell lines, we found that p53 up-regulates microRNAs (miRNAs), including miR-200 and miR-192 family members. The miR-200 family members transactivated by p53 then repress ZEB1/2 expression. p53-regulated miR-192 family members also repress ZEB2 expression. Inhibition or overexpression of the miRNAs affects p53-regulated EMT by altering ZEB1 and ZEB2 expression. Our findings indicate that p53 can regulate EMT, and that p53-regulated miRNAs are critical mediators of p53-regulated EMT.

Journal ArticleDOI
TL;DR: Reduced miR-204 expression facilitates the excessive proliferation and apoptosis resistance of pulmonary artery smooth muscle cells characteristic of human pulmonary arterial hypertension.
Abstract: Pulmonary arterial hypertension (PAH) is characterized by enhanced proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs). Because microRNAs have been recently implicated in the regulation of cell proliferation and apoptosis, we hypothesized that these regulatory molecules might be implicated in the etiology of PAH. In this study, we show that miR-204 expression in PASMCs is down-regulated in both human and rodent PAH. miR-204 down-regulation correlates with PAH severity and accounts for the proliferative and antiapoptotic phenotypes of PAH-PASMCs. STAT3 activation suppresses miR-204 expression, and miR-204 directly targets SHP2 expression, thereby SHP2 up-regulation, by miR-204 down-regulation, activates the Src kinase and nuclear factor of activated T cells (NFAT). STAT3 also directly induces NFATc2 expression. NFAT and SHP2 were needed to sustain PAH-PASMC proliferation and resistance to apoptosis. Finally, delivery of synthetic miR-204 to the lungs of animals with PAH significantly reduced disease severity. This study uncovers a new regulatory pathway involving miR-204 that is critical to the etiology of PAH and indicates that reestablishing miR-204 expression should be explored as a potential new therapy for this disease.

Journal ArticleDOI
TL;DR: This work has shown that acute hantavirus infection in humans triggers a rapid expansion and long-term persistence of NK cells, which in turn influences the ability of these cells to reprogram and reprogram themselves for use in wound healing.
Abstract: Natural killer (NK) cells are known to mount a rapid response to several virus infections. In experimental models of acute viral infection, this response has been characterized by prompt NK cell activation and expansion followed by rapid contraction. In contrast to experimental model systems, much less is known about NK cell responses to acute viral infections in humans. We demonstrate that NK cells can rapidly expand and persist at highly elevated levels for >60 d after human hantavirus infection. A large part of the expanding NK cells expressed the activating receptor NKG2C and were functional in terms of expressing a licensing inhibitory killer cell immunoglobulin-like receptor (KIR) and ability to respond to target cell stimulation. These results demonstrate that NK cells can expand and remain elevated in numbers for a prolonged period of time in humans after a virus infection. In time, this response extends far beyond what is considered normal for an innate immune response.

Journal ArticleDOI
TL;DR: As shown using clonal assays, the mouse HSC population undergoes quantitative as well as qualitative changes with age, including lineage differentiation, HSC pool size, marrow-homing efficiency, and self-renewal.
Abstract: Hematopoietic stem cell (HSC) populations change with aging, but the extent to which this is caused by qualitative versus quantitative alterations in HSC subtypes is unclear. Using clonal assays, in this study we show that the aging HSC compartment undergoes both quantitative and qualitative changes. We observed a variable increase of HSC pool size with age, accompanied by the accumulation of predominantly myeloid-biased HSCs that regenerate substantially fewer mature progeny than young myeloid-biased HSCs and exhibit reduced self-renewal activity as measured by long-term secondary transplantation. Old HSCs had a twofold reduction in marrow-homing efficiency and a similar decrease in functional frequency as measured using long-term transplantation assays. Similarly, old HSCs had a twofold reduced seeding efficiency and a significantly delayed proliferative response compared with young HSCs in long-term stromal cell co-cultures but were indistinguishable in suspension cultures. We show that these functional defects are characteristics of most or all old HSCs and are not indicative of a nonfunctional subset of cells that express HSC markers. Furthermore, we demonstrate that cells with functional properties of old HSCs can be generated directly from young HSCs by extended serial transplantation, which is consistent with the possibility that they arise through a process of cellular aging.

Journal ArticleDOI
TL;DR: Entry into the germinal center requires antigen-bearing B cells to compete for cognate T cell help at the T–B border.
Abstract: The germinal center (GC) reaction is essential for the generation of the somatically hypermutated, high-affinity antibodies that mediate adaptive immunity Entry into the GC is limited to a small number of B cell clones; however, the process by which this limited number of clones is selected is unclear In this study, we demonstrate that low-affinity B cells intrinsically capable of seeding a GC reaction fail to expand and become activated in the presence of higher-affinity B cells even before GC coalescence Live multiphoton imaging shows that selection is based on the amount of peptide–major histocompatibility complex (pMHC) presented to cognate T cells within clusters of responding B and T cells at the T–B border We propose a model in which T cell help is restricted to the B cells with the highest amounts of pMHC, thus allowing for a dynamic affinity threshold to be imposed on antigen-binding B cells

Journal ArticleDOI
TL;DR: In this article, the authors found that type II strains of Toxoplasma gondii activate more NF-κB than type I or type III strains, and using forward genetics, they found that this difference is a result of the polymorphic protein GRA15, a novel dense granule protein which T.gondii secretes into the host cell upon invasion.
Abstract: NF-κB is an integral component of the immune response to Toxoplasma gondii. Although evidence exists that T. gondii can directly modulate the NF-κB pathway, the parasite-derived effectors involved are unknown. We determined that type II strains of T. gondii activate more NF-κB than type I or type III strains, and using forward genetics we found that this difference is a result of the polymorphic protein GRA15, a novel dense granule protein which T. gondii secretes into the host cell upon invasion. A GRA15-deficient type II strain has a severe defect in both NF-κB nuclear translocation and NF-κB-mediated transcription. Furthermore, human cells expressing type II GRA15 also activate NF-κB, demonstrating that GRA15 alone is sufficient for NF-κB activation. Along with the rhoptry protein ROP16, GRA15 is responsible for a large part of the strain differences in the induction of IL-12 secretion by infected mouse macrophages. In vivo bioluminescent imaging showed that a GRA15-deficient type II strain grows faster compared with wild-type, most likely through its reduced induction of IFN-γ. These results show for the first time that a dense granule protein can modulate host signaling pathways, and dense granule proteins can therefore join rhoptry proteins in T. gondii's host cell-modifying arsenal.

Journal ArticleDOI
TL;DR: Fumarates suppress Th1 responses by blocking IL-12 and IL-23 production by dendritic cells via distinct pathways through distinct pathways.
Abstract: Fumarates improve multiple sclerosis (MS) and psoriasis, two diseases in which both IL-12 and IL-23 promote pathogenic T helper (Th) cell differentiation. However, both diseases show opposing responses to most established therapies. First, we show in humans that fumarate treatment induces IL-4–producing Th2 cells in vivo and generates type II dendritic cells (DCs) that produce IL-10 instead of IL-12 and IL-23. In mice, fumarates also generate type II DCs that induce IL-4–producing Th2 cells in vitro and in vivo and protect mice from experimental autoimmune encephalomyelitis. Type II DCs result from fumarate-induced glutathione (GSH) depletion, followed by increased hemoxygenase-1 (HO-1) expression and impaired STAT1 phosphorylation. Induced HO-1 is cleaved, whereupon the N-terminal fragment of HO-1 translocates into the nucleus and interacts with AP-1 and NF-κB sites of the IL-23p19 promoter. This interaction prevents IL-23p19 transcription without affecting IL-12p35, whereas STAT1 inactivation prevents IL-12p35 transcription without affecting IL-23p19. As a consequence, GSH depletion by small molecules such as fumarates induces type II DCs in mice and in humans that ameliorate inflammatory autoimmune diseases. This therapeutic approach improves Th1- and Th17-mediated autoimmune diseases such as psoriasis and MS by interfering with IL-12 and IL-23 production.

Journal ArticleDOI
TL;DR: Aifantis and colleagues examine the conflicting roles of Notch signaling in various cancer types and suggest that notch signaling should be considered as a central player in the treatment of these types of cancer.
Abstract: Notch signaling is often considered a model hematopoietic proto-oncogene because of its role as the main trigger of T cell acute lymphoblastic leukemia (T-ALL). Although its role in T-ALL is well characterized and further supported by a high frequency of activating NOTCH1 mutations in T-ALL patients, it still remains an open question whether the effects of Notch signaling are causative in other types of cancer, including solid tumors. Growing evidence supported by recent studies unexpectedly shows that Notch signaling can also have a potent tumor suppressor function in both solid tumors and hematological malignancies. We discuss the intriguing possibility that the pleiotropic functions of Notch can be tumor suppressive or oncogenic depending on the cellular context.

Journal ArticleDOI
TL;DR: BMP7 released by bone marrow stromal cells induces reversible senescence of prostate cancer stem-like cells, and BMPR2 expression inversely correlates with bone metastasis and recurrence in prostate cancer patients.
Abstract: Metastatic disease is the major cause of cancer deaths, and recurrent tumors at distant organs are a critical issue. However, how metastatic tumor cells become dormant and how and why tumors recur in target organs are not well understood. In this study, we demonstrate that BMP7 (bone morphogenetic protein 7) secreted from bone stromal cells induces senescence in prostate cancer stem-like cells (CSCs) by activating p38 mitogen-activated protein kinase and increasing expression of the cell cycle inhibitor, p21, and the metastasis suppressor gene, NDRG1 (N-myc downstream-regulated gene 1). This effect of BMP7 depended on BMPR2 (BMP receptor 2), and BMPR2 expression inversely correlated with recurrence and bone metastasis in prostate cancer patients. Importantly, this BMP7-induced senescence in CSCs was reversible upon withdrawal of BMP7. Furthermore, treatment of mice with BMP7 significantly suppressed the growth of CSCs in bone, whereas the withdrawal of BMP7 restarted growth of these cells. These results suggest that the BMP7–BMPR2–p38–NDRG1 axis plays a critical role in dormancy and recurrence of prostate CSCs in bone and suggest a potential therapeutic utility of BMP7 for recurrent metastatic disease.