scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Exposure Science and Environmental Epidemiology in 2005"


Journal ArticleDOI
TL;DR: In this article, a review of models for assessing intraurban exposure under six classes, including proximity-based assessments, statistical interpolation, land use regression models, line dispersion models, integrated emission-meteorological models, and hybrid models combining personal or household exposure monitoring with one of the preceding methods is presented.
Abstract: The development of models to assess air pollution exposures within cities for assignment to subjects in health studies has been identified as a priority area for future research. This paper reviews models for assessing intraurban exposure under six classes, including: (i) proximity-based assessments, (ii) statistical interpolation, (iii) land use regression models, (iv) line dispersion models, (v) integrated emission-meteorological models, and (vi) hybrid models combining personal or household exposure monitoring with one of the preceding methods. We enrich this review of the modelling procedures and results with applied examples from Hamilton, Canada. In addition, we qualitatively evaluate the models based on key criteria important to health effects assessment research. Hybrid models appear well suited to overcoming the problem of achieving population representative samples while understanding the role of exposure variation at the individual level. Remote sensing and activity-space analysis will complement refinements in pre-existing methods, and with expected advances, the field of exposure assessment may help to reduce scientific uncertainties that now impede policy intervention aimed at protecting public health.

1,023 citations


Journal ArticleDOI
TL;DR: The mean of the distribution of ambient contributions across study homes agreed well for themass balance and RCS models, but the distribution was somewhat broader when calculated using the mass balance model with measured air exchange rates.
Abstract: The Relationship of Indoor, Outdoor and Personal Air (RIOPA) study was designed to investigate residential indoor, outdoor and personal exposures to several classes of air pollutants, including volatile organic compounds, carbonyls and fine particles (PM2.5). Samples were collected from summer, 1999 to spring, 2001 in Houston (TX), Los Angeles (CA) and Elizabeth (NJ). Indoor, outdoor and personal PM2.5 samples were collected at 212 nonsmoking residences, 162 of which were sampled twice. Some homes were chosen due to close proximity to ambient sources of one or more target analytes, while others were farther from sources. Median indoor, outdoor and personal PM2.5 mass concentrations for these three sites were 14.4, 15.5 and 31.4 microg/m3, respectively. The contributions of ambient (outdoor) and nonambient sources to indoor and personal concentrations were quantified using a single compartment box model with measured air exchange rate and a random component superposition (RCS) statistical model. The median contribution of ambient sources to indoor PM2.5 concentrations using the mass balance approach was estimated to be 56% for all study homes (63%, 52% and 33% for California, New Jersey and Texas study homes, respectively). Reasonable variations in model assumptions alter median ambient contributions by less than 20%. The mean of the distribution of ambient contributions across study homes agreed well for the mass balance and RCS models, but the distribution was somewhat broader when calculated using the mass balance model with measured air exchange rates.

271 citations


Journal ArticleDOI
TL;DR: Investigating the exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol (TCP) in their everyday environments showed that the preschool children were exposed to chlor pyrifo and TCP from several sources, through several pathways and routes.
Abstract: As part of the Children's Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants (CTEPP) study, we investigated the exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol (TCP) in their everyday environments. During this study, the participants were still able to purchase and apply chlorpyrifos at their homes or day care centers. Participants were recruited randomly from 129 homes and 13 day care centers in six North Carolina counties. Monitoring was performed over a 48-h period at the children's homes and/or day care centers. Samples that were collected included duplicate plate, indoor and outdoor air, urine, indoor floor dust, play area soil, transferable residues (PUF roller), and surface wipes (hand, food preparation, and hard floor). The samples were extracted and analyzed by gas chromatography/mass spectrometry. Chlorpyrifos was detected in 100% of the indoor air and indoor floor dust samples from homes and day care centers. TCP was detected at homes and day care centers in 100% of the indoor floor dust and hard floor surface wipe, in >97% of the solid food, and in >95% of the indoor air samples. Generally, median levels of chlorpyrifos were higher than those of TCP in all media, except for solid food samples. For these samples, the median TCP concentrations were 12 and 29 times higher than the chlorpyrifos concentrations at homes and day care centers, respectively. The median urinary TCP concentration for the preschool children was 5.3 ng/ml and the maximum value was 104 ng/ml. The median potential aggregate absorbed dose (ng/kg/day) of chlorpyrifos for these preschool children was estimated to be 3 ng/kg/day. The primary route of exposure to chlorpyrifos was through dietary intake, followed by inhalation. The median potential aggregate absorbed dose of TCP for these children was estimated to be 38 ng/kg/day, and dietary intake was the primary route of exposure. The median excreted amount of urinary TCP for these children was estimated to be 117 ng/kg/day. A full regression model of the relationships among chlorpyrifos and TCP for the children in the home group explained 23% of the variability of the urinary TCP concentrations by the three routes of exposure (inhalation, ingestion, dermal absorption) to chlorpyrifos and TCP. However, a final reduced model via step-wise regression retained only chlorpyrifos through the inhalation route and explained 22% of the variability of TCP in the children's urine. The estimated potential aggregate absorbed doses of chlorpyrifos through the inhalation route were low (median value, 0.8 ng/kg/day) and could not explain most of the excreted amounts of urinary TCP. This suggested that there were other possible sources and pathways of exposure that contributed to the estimated potential aggregate absorbed doses of these children to chlorpyrifos and TCP. One possible pathway of exposure that was not accounted for fully is through the children's potential contacts with contaminated surfaces at homes and day care centers. In addition, other pesticides such as chlorpyrifos-methyl may have also contributed to the levels of TCP in the urine. Future studies should include additional surface measurements in their estimation of potential absorbed doses of preschool children to environmental pollutants. In conclusion, the results showed that the preschool children were exposed to chlorpyrifos and TCP from several sources, through several pathways and routes. .

224 citations


Journal ArticleDOI
TL;DR: The results from the RIOPA study can potentially provide information on the influence of ambient sources on indoor air concentrations and exposure for many air toxics and will furnish an opportunity to evaluate exposure models for these compounds.
Abstract: The Relationship of Indoor, Outdoor and Personal Air (RIOPA) Study was undertaken to evaluate the contribution of outdoor sources of air toxics, as defined in the 1990 Clean Air Act Amendments, to indoor concentrations and personal exposures. The concentrations of 18 volatile organic compounds (VOCs), 17 carbonyl compounds, and fine particulate matter mass (PM(2.5)) were measured using 48-h outdoor, indoor and personal air samples collected simultaneously. PM2.5 mass, as well as several component species (elemental carbon, organic carbon, polyaromatic hydrocarbons and elemental analysis) were also measured; only PM(2.5) mass is reported here. Questionnaires were administered to characterize homes, neighborhoods and personal activities that might affect exposures. The air exchange rate was also measured in each home. Homes in close proximity (<0.5 km) to sources of air toxics were preferentially (2:1) selected for sampling. Approximately 100 non-smoking households in each of Elizabeth, NJ, Houston, TX, and Los Angeles, CA were sampled (100, 105, and 105 respectively) with second visits performed at 84, 93, and 81 homes in each city, respectively. VOC samples were collected at all homes, carbonyls at 90% and PM(2.5) at 60% of the homes. Personal samples were collected from nonsmoking adults and a portion of children living in the target homes. This manuscript provides the RIOPA study design and quality control and assurance data. The results from the RIOPA study can potentially provide information on the influence of ambient sources on indoor air concentrations and exposure for many air toxics and will furnish an opportunity to evaluate exposure models for these compounds.

158 citations


Journal ArticleDOI
TL;DR: It is felt that carbon monoxide may be serving as a marker for combustion-derived pollutants, which is one large component of the diverse air pollutant mixture.
Abstract: There is conflicting evidence regarding the association between different size fractions of particulate matter (PM) and cardiac and respiratory morbidity and mortality. We investigated the short-term associations of four size fractions of particulate matter (PM(1), PM(2.5), PM(10), and PM(10-2.5)) and carbon monoxide with hospital admissions and emergency room (ER) visits for respiratory and cardiac conditions and mortality in Spokane, Washington. We used a log-linear generalized linear model to compare daily averages of PM and carbon monoxide with daily counts of the morbidity and mortality outcomes from January 1995 to June 2001. We examined pollution lags ranging from 0 to 3 days and compared our results to a similar log-linear generalized additive model. Effect estimates tended to be smaller and have larger standard errors for the generalized linear model. Overall, we saw no association with respiratory ER visits and any size fraction of PM. However, there was a suggestion of greater respiratory effect from fine PM when compared to coarse fraction. Carbon monoxide was associated with both all respiratory ER visits and visits for asthma at the 3-day lag. We feel that carbon monoxide may be serving as a marker for combustion-derived pollutants, which is one large component of the diverse air pollutant mixture. We also found no association with any size fraction of PM or CO with cardiac hospital admissions or mortality at the 0- to 3-day lag. We found no consistent associations between any size fraction of PM and cardiac or respiratory ER visits or hospital admissions.

131 citations


Journal ArticleDOI
TL;DR: Application of the model to serum sampling data from the cohort of US herbicide-manufacturing workers assembled by the National Institute of Occupational Safety and Health (NIOSH) indicates that previous estimates of peak serum lipid TCDD concentrations in dioxin-exposed manufacturing workers may have underestimated the maximum concentrations in these workers and other occupational cohorts by several-fold to an order of magnitude or more.
Abstract: Serial measurements of serum lipid 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) concentrations in 36 adults from Seveso, Italy, and three patients from Vienna, Austria, with initial serum lipid TCDD concentrations ranging from 130 to 144,000 ppt, were modeled using a modified version of a previously published toxicokinetic model for the distribution and elimination of dioxins. The original model structure accounted for a concentration-dependent increase in overall elimination rate for TCDD due to nonlinear distribution of TCDD to the liver (secondary to induction of the binding protein CYP1A2), from which elimination takes place via a first-order process. The original model structure was modified to include elimination due to lipid partitioning of TCDD from circulation into the large intestine, based on published human data. We optimized the fit of the modified model to the data by varying the hepatic elimination rate parameter for each of the 39 people. The model fits indicate that there is significant interindividual variability of TCDD elimination efficiency in humans and also demonstrate faster elimination in men compared to women, and in younger vs. older persons. The data and model results indicate that, for males, the mean apparent half-life for TCDD (as reflected in changes in predicted serum lipid TCDD level) ranges from less than 3 years at serum lipid levels above 10,000 ppt to over 10 years at serum lipid levels below 50 ppt. Application of the model to serum sampling data from the cohort of US herbicide-manufacturing workers assembled by the National Institute of Occupational Safety and Health (NIOSH) indicates that previous estimates of peak serum lipid TCDD concentrations in dioxin-exposed manufacturing workers, based on first-order back-extrapolations with half-lives of 7-9 years, may have underestimated the maximum concentrations in these workers and other occupational cohorts by several-fold to an order of magnitude or more. Such dose estimates, based on a single sampling point decades after last exposure, are highly variable and dependent on a variety of assumptions and factors that cannot be fully determined, including interindividual variations in elimination efficiency. Dose estimates for these cohorts should be re-evaluated in light of the demonstration of concentration-dependent elimination kinetics for TCDD, and the large degree of uncertainty in back-calculated dose estimates should be explicitly incorporated in quantitative estimates of TCDD's carcinogenic potency based on such data.

130 citations


Journal ArticleDOI
TL;DR: Type of bus, traffic congestion levels, and encounters with other diesel vehicles contributed to high exposure variability between runs, and pollutants tended to be higher on urban routes compared to the rural/suburban route, and substantially higher inside the bus cabins compared to ambient measurements.
Abstract: Real-time and integrated measurements of gaseous and particulate pollutants were conducted inside five conventional diesel school buses, a diesel bus with a particulate trap, and a bus powered by compressed natural gas (CNG) to determine the range of children's exposures during school bus commutes and conditions leading to high exposures. Measurements were made during 24 morning and afternoon commutes on two Los Angeles Unified School District bus routes from South to West Los Angeles, with seven additional runs on a rural/suburban route, and three runs to test the effect of window position. For these commutes, the mean concentrations of diesel vehicle-related pollutants ranged from 0.9 to 19 microg/m(3) for black carbon, 23 to 400 ng/m(3) for particle-bound polycyclic aromatic hydrocarbon (PB-PAH), and 64 to 220 microg/m(3) for NO(2). Concentrations of benzene and formaldehyde ranged from 0.1 to 11 microg/m(3) and 0.3 to 5 microg/m(3), respectively. The highest real-time concentrations of black carbon, PB-PAH and NO(2) inside the buses were 52 microg/m(3), 2000 ng/m(3), and 370 microg/m(3), respectively. These pollutants were significantly higher inside conventional diesel buses compared to the CNG bus, although formaldehyde concentrations were higher inside the CNG bus. Mean black carbon, PB-PAH, benzene and formaldehyde concentrations were higher when the windows were closed, compared with partially open, in part, due to intrusion of the bus's own exhaust into the bus cabin, as demonstrated through the use of a tracer gas added to each bus's exhaust. These same pollutants tended to be higher on urban routes compared to the rural/suburban route, and substantially higher inside the bus cabins compared to ambient measurements. Mean concentrations of pollutants with substantial secondary formation, such as PM(2.5), showed smaller differences between open and closed window conditions and between bus routes. Type of bus, traffic congestion levels, and encounters with other diesel vehicles contributed to high exposure variability between runs.

127 citations


Journal ArticleDOI
TL;DR: It is suggested that the hemostasis/inmflammation markers analyzed are associated adversely with environmentally relevant ambient pollutants, with the strongest associations in the upper range of the pollutant distributions, and in persons with a positive history of diabetes and CHD.
Abstract: To elucidate the health effects of air pollution, the short-term association of criteria pollutants (particles <10 microm in diameter [PM(10)], O(3), CO, NO(2), and SO(2)) with hemostatic and inflammatory markers were examined using a population-based sample of 10,208 middle-age males and females of the biracial cohort of Atherosclerosis Risk in Communities (ARIC) study. For each participant, we calculated the following pollutant exposures 1-3 days prior to the randomly allocated cohort examination date: PM(10), CO, NO(2), and SO(2) as 24-h averages, and O(3) as an 8-h average of the hourly measures. The hemostatic/inflammatory factors included fibrinogen, factor VIII-C, von Willebrand factor (vWF), albumin, and white blood cell count (WBC). Linear regression models were used to adjust for cardiovascular disease (CVD) risk factors, demographic and socioeconomic variables, and relevant meteorological variables. One standard deviation (SD) increment of PM(10) (12.8 microg/m(3)) was significantly (P < 0.05) associated with 3.93% higher of vWF among diabetics and 0.006 g/dl lower of serum albumin among persons with a history of CVD. One SD increment of CO (0.60 p.p.m.) was significantly (P < 0.01) associated with 0.018 g/dl lower of serum albumin. Significant curvilinear associations, indicative of threshold effects, for PM(10) with factor VIII-C, O(3) with fibrinogen and vWF, and SO(2) with factor VIII-C, WBC, and serum albumin were found. This population-based study suggest that the hemostasis/inmflammation markers analyzed, which are linked to higher risk of CHD, are associated adversely with environmentally relevant ambient pollutants, with the strongest associations in the upper range of the pollutant distributions, and in persons with a positive history of diabetes and CHD.

120 citations


Journal ArticleDOI
TL;DR: Although a single sample adequately predicted longer-term average exposure, a second sample collected at least 1 month following the first sample would reduce exposure measurement error.
Abstract: Widespread application of contemporary-use insecticides results in low-level exposure for a majority of the population through a variety of pathways. Urinary insecticide biomarkers account for all exposure pathways, but failure to account for temporal within-subject variability of urinary levels can lead to exposure misclassification. To examine temporal variability in urinary markers of contemporary-use insecticides, nine repeated urine samples were collected over 3 months from 10 men participating in an ongoing study of male reproductive health. These 90 samples were analyzed for urinary metabolites of chlorpyrifos (3,5,6-trichloro-2-pyridinol (TCPY)) and carbaryl (1-naphthol (1N)). Volume- based (unadjusted), as well as creatinine (CRE)- and specific gravity (SG)-adjusted concentrations were measured. TCPY had low reliability with an intraclass correlation coefficient between 0.15 and 0.21, while 1N was moderately reliable with an intraclass correlation coefficient between 0.55 and 0.61. When the 10 men were divided into tertiles based on 3-month geometric mean TCPY and 1N levels, a single urine sample performed adequately in classifying a subject into the highest or lowest exposure tertiles. Sensitivity and specificity ranged from 0.44 to 0.84 for TCPY and from 0.56 to 0.89 for 1N. Some differences in the results between unadjusted metabolite concentrations and concentrations adjusted for CRE and SG were observed. Questionnaires were used to assess diet in the 24 h preceding the collection of each urine sample. In mixed-effects models, TCPY was significantly associated with season as well as with consuming grapes and cheese, while 1N levels were associated with consuming strawberries. In conclusion, although a single sample adequately predicted longer-term average exposure, a second sample collected at least 1 month following the first sample would reduce exposure measurement error.

112 citations


Journal ArticleDOI
TL;DR: Of the four spot samples collected, first morning void samples were consistently found to be the best predictors of weighted-average daily metabolite concentration, when the data were creatinine-adjusted.
Abstract: A total organophosphorus pesticide exposure study was conducted in Washington State in 1998 in a sample population of 13 children aged 2.5-5.5 years. The children were roughly split between rural and suburban populations and had been previously identified as having potentially elevated organophosphorus pesticide exposures. One component of the study was urine collection and analysis. Urine samples were collected from each subject up to four times in 24 h in two different seasons. Samples were collected at specific time points: before bed, first morning void, after lunch, and before dinner. Urine samples were analyzed initially for the six nonspecific dialkylphosphate (DAP) metabolites and subsequently for eight specific metabolites including malathion dicarboxylic acid (MDA), 3,5,6-trichloro-2-pyridinol (TCPy), and paranitrophenol (PNP). Relatively large percentages of the urine samples contained quantifiable amounts of two of the nonspecific DAP metabolites (DMTP-97%; DETP-67%), and three of the specific metabolites (MDA (71%), TCPy (79%), and PNP (96%)). A percent deviation analysis was employed to determine which of the spot sample time points was the best predictor of the estimated volume-weighted daily average. Of the four spot samples collected, first morning void samples were consistently found to be the best predictors of weighted-average daily metabolite concentration. This finding also held when the data were creatinine-adjusted. The results of this analysis suggest that if spot sampling is to be conducted as part of a biological monitoring study, first morning void samples should be preferentially collected.

110 citations


Journal ArticleDOI
TL;DR: The process through which the ISEA adopted the IPCS glossary as the official ISEA glossary is described and plans for how the glossary can be used by ISEA and updated over time are discussed.
Abstract: The International Society for Exposure Analysis (ISEA) and its Nomenclature Committee have been involved since the mid-1990s in an intermittent but ongoing effort to develop an official ISEA glossary. Several related activities have stimulated greater interest and discussion nationally and internationally on a common exposure language. Among these activities are a 1997 Journal of Exposure Analysis and Environmental Epidemiology feature article on exposure and dose definitions and a 1999-initiated project of the International Programme on Chemical Safety (IPCS) (WHO/ILO/UNEP) to confront terminology issues hindering harmonization in the area of exposure assessment. Recently, the ISEA members voted in support of adopting the IPCS glossary as the official ISEA glossary, and the ISEA Executive Board agreed to accept this recommendation. In this feature article, we (1) describe the process through which the ISEA adopted the IPCS glossary as the official ISEA glossary, (2) present the joint IPCS/ISEA glossary of terms and their definitions, and (3) discuss plans for how the glossary can be used by ISEA and updated over time by ISEA and IPCS. The glossary is intended to be a living document that reflects the latest usage and maintains international harmonization of exposure terminology that can be practically applied to improve communication in exposure and related fields.

Journal ArticleDOI
TL;DR: The inhalation exposure from a typical 10–15 min shower contributes significantly to the total dose for chloroform in chlorinated drinking water but only to a moderate extent for HKs, while breath concentrations of the DBPs decreased rapidly after the exposure.
Abstract: Inhalation is an important exposure route for volatile water contaminants, including disinfection by-products (DBPs). A controlled human study was conducted on six subjects to determine the respiratory uptake of haloketones (HKs) and chloroform, a reference compound, during showering. Breath and air concentrations of the DBPs were measured using gas chromatography and electron capture detector during and following the inhalation exposures. A lower percentage of the HKs (10%) is released from shower water to air than that of chloroform (56%) under the experiment conditions due to the lower volatility of the HKs. Breath concentrations of the DBPs were elevated during the inhalation exposure, while breath concentrations decreased rapidly after the exposure. Approximately 85-90% of the inhaled HKs were absorbed, whereas only 70% of the inhaled chloroform was absorbed for the experiment conditions used. The respiratory uptake of the DBPs was estimated using a linear one-compartment model coupled with a plug flow stream model for the shower system. The internal dose of chloroform normalized to its water concentration was approximately four times that of the HKs after a 30-min inhalation exposure. Approximately 0.3-0.4% of the absorbed HKs and 2-9% of the absorbed chloroform were expired through lung excretion after the 30-min exposure. The inhalation exposure from a typical 10-15 min shower contributes significantly to the total dose for chloroform in chlorinated drinking water but only to a moderate extent for HKs.

Journal ArticleDOI
TL;DR: The personal exposure to PM2.5, BS and NO2 depends on many factors besides the outdoor levels, and that information on, for example, time of season or outdoor temperature and residence exposure, could improve the accuracy of the personal exposure estimation.
Abstract: Epidemiological studies have found negative associations between human health and particulate matter in urban air. In most studies outdoor monitoring of urban background has been used to assess exposure. In a field study, personal exposure as well as bedroom, front door and background concentrations of PM2.5, black smoke (BS), and nitrogen dioxide (NO2) were measured during 2-day periods in 30 subjects (20–33 years old) living and studying in central parts of Copenhagen. The measurements were repeated in the four seasons. Information on indoor exposure sources such as environmental tobacco smoke (ETS) and burning of candles was collected by questionnaires. The personal exposure, the bedroom concentration and the front door concentration was set as outcome variable in separate models and analysed by mixed effect model regression methodology, regarding subject levels as a random factor. Seasons were defined as a dichotomised grouping of outdoor temperature (above and below 8°C). For NO2 there was a significant association between personal exposure and both the bedroom, the front door and the background concentrations, whereas for PM2.5 and BS only the bedroom and the front door concentrations, and not the background concentration, were significantly associated to the personal exposure. The bedroom concentration was the strongest predictor of all three pollution measurements. The association between the bedroom and front door concentrations was significant for all three measurements, and the association between the front door and the background concentrations was significant for PM2.5 and NO2, but not for BS, indicating greater spatial variation for BS than for PM2.5 and NO2. For NO2, the relationship between the personal exposure and the front door concentration was dependent upon the “season”, with a stronger association in the warm season compared with the cold season, and for PM2.5 and BS the same tendency was seen. Time exposed to burning of candles was a significant predictor of personal PM2.5, BS and NO2 exposure, and time exposed to ETS only associated with personal PM2.5 exposure. These findings imply that the personal exposure to PM2.5, BS and NO2 depends on many factors besides the outdoor levels, and that information on, for example, time of season or outdoor temperature and residence exposure, could improve the accuracy of the personal exposure estimation.

Journal ArticleDOI
TL;DR: The longitudinal NHEXAS-Maryland study measured metals, PAHs, and pesticides in several media to capture temporal variability and provided only modest insight into the factors responsible for the temporal variability in the contaminant levels.
Abstract: Determinants of temporal variability in NHEXAS-Maryland environmental concentrations, exposures, and biomarkers

Journal ArticleDOI
TL;DR: Routine household uses of ammonia are unlikely to produce significant exposures when using standard cleaning solutions, but spillage or use of concentrated ammonia solutions in poorly ventilated areas can lead to potentially hazardous airborne ammonia exposures.
Abstract: There is scant information pertaining to airborne ammonia exposures from either spills or common household uses of ammonia-containing floor and tile cleaners or from spray-on glass cleaners. We assessed instantaneous and event-specific time-weighted average (TWA) exposures to airborne ammonia during spills and use (per label directions) of a household floor and tile cleaner and two spray-on window cleaners. Airborne ammonia levels measured at breathing zone height (BZH) above the spilled floor and tile cleaner product reached 500 p.p.m. within 5 min, while levels for spilled window cleaner were below 8 p.p.m. TWA exposures were assessed while tile walls and floors were cleaned in three different bathrooms of a residence, and during use of a spray-on glass cleaner while washing several large windows in an office setting. NIOSH Method 6015 was utilized with concurrent field measurements every 60 s using a Drager PAC III monitor with an electrochemical cell detector. Peak ammonia levels ranged from 16 to 28 p.p.m. and short-term TWA concentrations ranged from 9.4 to 13 p.p.m. during mixing (0.1% ammonia) and cleaning tiles in the three bathrooms. Ammonia exposures while using spray-on window cleaner were over 10-fold lower (TWA=0.65 p.p.m.). Use of the floor and tile cleaner mixed at 0.2% ammonia led to peak airborne ammonia levels within 3-5 min at 36-90 p.p.m., and use of full strength cleaner (3% ammonia) led to peak ammonia levels of 125 to >200 p.p.m. within 2-3 min. Spillage or intentional use of the full strength floor and tile cleaner led to airborne ammonia concentrations that exceed occupational short-term exposure limits, while spillage or use of the spray-on window cleaner did not approach potentially hazardous airborne ammonia levels and likely represents a minimal inhalation health hazard. We conclude that routine household uses of ammonia are unlikely to produce significant exposures when using standard cleaning solutions (0.1-0.2%), but spillage or use of concentrated ammonia solutions (e.g., 3%) in poorly ventilated areas can lead to potentially hazardous airborne ammonia exposures.

Journal ArticleDOI
TL;DR: The highest combined (hand and object) mouthing rates were observed among infants, suggesting that this age group has the greatest potential for exposure to environmental toxins.
Abstract: Children's mouthing and food-handling activities were measured during a study of nondietary ingestion of pesticides in a south Texas community. Mouthing data on 52 children, ranging in age from 7 to 53 months, were collected using questionnaires and videotaping. Data on children's play and hand-washing habits were also collected. Children were grouped into four age categories: infants (7-12 months), 1-year-olds (13-24 months), 2-year-olds (25-36 months) and preschoolers (37-53 months). The frequency and type of events prompting hand washing did not vary by age category except for hand washing after using the bathroom; this increased with increasing age category. Reported contact with grass and dirt also increased with increasing age category. The median hourly hand-to-mouth frequency for the four age groups ranged from 9.9 to 19.4, with 2-year-olds having the lowest frequency and preschoolers having the highest. The median hourly object to mouth frequency ranged from 5.5 to 18.1 across the four age categories; the frequency decreased as age increased (adjusted R(2)=0.179; P=0.003). The median hourly hand-to-food frequency for the four age groups ranged from 10.0 to 16.1, with the highest frequency being observed in the 1-year-olds. Hand-to-mouth frequency was associated with food contact frequency, particularly for children over 12 months of age (adjusted R(2)=0.291; P=0.002). The frequency and duration of hand-to-mouth, object-to-mouth and food-handling behaviors were all greater indoors than outdoors. Infants were more likely to remain indoors than children in other age groups. The time children spent playing on the floor decreased with increasing age (adjusted R(2)=0.096; P=0.031). Parental assessment was correlated with hand-to-mouth activity but not with object-to-mouth activity. The highest combined (hand and object) mouthing rates were observed among infants, suggesting that this age group has the greatest potential for exposure to environmental toxins.

Journal ArticleDOI
TL;DR: Pesticide hand loadings obtained following the videotaping sessions were associated with pesticide levels on surfaces and toys, but not with air levels, and were also associated with the number of locations where the children exhibited object-to-mouth behavior and with children's use of house space during the videotaped sessions.
Abstract: The role of children's activities in leading to pesticide exposure was evaluated by comparing pesticide loadings on the hands of children with the activities of the same children observed over a 4-h period. In all, 10 children ranging in age from 24 to 55 months were videotaped on the second day following a routine professional crack and crevice chlorpyrifos application in their homes. Before and following the video session, the children's hands were rinsed in isopropyl alcohol. Thus, only the chlorpyrifos that accumulated on and remained on the child's hands during the videotaping were removed for analysis after the videotaping session. The rinsate was analyzed for chlorpyrifos. The children's behaviors were quantified using virtual tracking device and the frequency and duration of behaviors, the hourly rate of behaviors, and the locations in which behaviors occurred were compared to hand loadings of pesticides. Pesticide hand loadings obtained following the videotaping sessions were associated with pesticide levels on surfaces and toys, but not with air levels. Pesticide loadings obtained following the videotaping sessions were also associated with frequencies, durations, and hourly rates of contact with bottles, and object-to-mouth behaviors, as well as contact duration with upholstered/textured surfaces. The hand loadings were also associated with the number of locations where the children exhibited object-to-mouth behavior and with children's use of house space during the videotaping sessions.

Journal ArticleDOI
TL;DR: A novel source-to-dose modeling study of population exposures to fine particulate matter (PM2.5) and ozone (O3) was conducted for urban Philadelphia and the MENTOR/SHEDS system presented in this study is capable of estimating intake dose based on activity level and inhalation rate, thus completing the source- to- dose modeling sequence.
Abstract: A novel source-to-dose modeling study of population exposures to fine particulate matter (PM2.5) and ozone (O3) was conducted for urban Philadelphia. The study focused on a 2-week episode, 11–24 July 1999, and employed the new integrated and mechanistically consistent source-to-dose modeling framework of MENTOR/SHEDS (Modeling Environment for Total Risk studies/Stochastic Human Exposure and Dose Simulation). The MENTOR/SHEDS application presented here consists of four components involved in estimating population exposure/dose: (1) calculation of ambient outdoor concentrations using emission-based photochemical modeling, (2) spatiotemporal interpolation for developing census-tract level outdoor concentration fields, (3) calculation of microenvironmental concentrations that match activity patterns of the individuals in the population of each census tract in the study area, and (4) population-based dosimetry modeling. It was found that the 50th percentiles of calculated microenvironmental concentrations of PM2.5 and O3 were significantly correlated with census-tract level outdoor concentrations, respectively. However, while the 95th percentiles of O3 microenvironmental concentrations were strongly correlated with outdoor concentrations, this was not the case for PM2.5. By further examining the modeled estimates of the 24-h aggregated PM2.5 and O3 doses, it was found that indoor PM2.5 sources dominated the contributions to the total PM2.5 doses for the upper 5 percentiles, Environmental Tobacco Smoking (ETS) being the most significant source while O3 doses due to time spent outdoors dominated the contributions to the total O3 doses for the upper 5 percentiles. The MENTOR/SHEDS system presented in this study is capable of estimating intake dose based on activity level and inhalation rate, thus completing the source-to-dose modeling sequence. The MENTOR/SHEDS system also utilizes a consistent basis of source characterization, exposure factors, and human activity patterns in conducting population exposure assessment of multiple co-occurring air pollutants, and this constitutes a primary distinction from previous studies of population exposure assessment, where different exposure factors and activity patterns would be used for different pollutants. Future work will focus on incorporating the effects of commuting patterns on population exposure/dose assessments as well as on extending the MENTOR/SHEDS applications to seasonal/annual studies and to other areas in the U.S.

Journal ArticleDOI
TL;DR: In the spring and summer of 2001, as part of a larger study investigating farm family pesticide exposure and home contamination in Iowa, urine and hand wipe samples were collected from 24 male farmers and 23 male nonfarmer controls.
Abstract: In the spring and summer of 2001, as part of a larger study investigating farm family pesticide exposure and home contamination in Iowa, urine and hand wipe samples were collected from 24 male farmers and 23 male nonfarmer controls. On two occasions approximately 1 month apart, one hand wipe sample and an evening and morning urine sample were collected from each participant. The samples were analyzed for the parent compound or metabolites of six commonly used agricultural pesticides: alachlor, atrazine, acetochlor, metolachlor, 2,4-dichlorophenoxyacetic acid (2,4-D) and chlorpyrifos. For atrazine, acetochlor, metolachlor and 2,4-D, farmers who reported applying the pesticide had significantly higher urinary metabolite levels than nonfarmers, farmers who did not apply the pesticide, and farmers who had the pesticide commercially applied (P-value <0.05). Generally, there were no differences in urinary pesticide metabolite levels between nonfarmers, farmers who did not apply the pesticide, and farmers who had the pesticide commercially applied. Among farmers who reported applying 2,4-D themselves, time since application, amount of pesticide applied, and the number of acres to which the pesticide was applied were marginally associated with 2,4-D urine levels. Among farmers who reported applying atrazine themselves, time since application and farm size were marginally associated with atrazine mercapturate urine levels. Farmers who reported using a closed cab to apply these pesticides had higher urinary pesticide metabolite levels, although the difference was not statistically significant. Farmers who reported using closed cabs tended to use more pesticides. The majority of the hand wipe samples were nondetectable. However, detection of atrazine in the hand wipes was significantly associated with urinary levels of atrazine above the median (P-value <0.01).

Journal ArticleDOI
TL;DR: In this article, the authors evaluated dermal absorption of two haloketones (1, 1-dichloropropanone and 1, 1,1-trichlorophoric acid) and chloroform while bathing by collecting and analyzing time profiles of expired breath samples of six human subjects.
Abstract: Dermal contact with some organic disinfection by-products (DBPs) such as trihalomethanes in chlorinated drinking water has been established to be an important exposure route. We evaluated dermal absorption of two haloketones (1,1-dichloropropanone and 1,1,1-trichloropropanone) and chloroform while bathing, by collecting and analyzing time profiles of expired breath samples of six human subjects during and following a 30-min bath. The DBP concentrations in breath increased towards a maximum concentration during bathing. The maximum haloketone breath concentration during dermal exposure ranged from 0.1 to 0.9 microg / m(3), which was approximately two orders of magnitude lower than the maximum chloroform breath concentration during exposure. Based on a one-compartment model, the in vivo permeability of chloroform, 1,1-dichloropropanone, and 1,1,1-trichloropropanone were approximated to be 0.015, 7.5 x 10(- 4), and 4.5 x 10(- 4) cm / h, respectively. Thus, haloketones are much less permeable across human skin under normal bathing conditions than is chloroform. These findings will be useful for future assessment of total human exposure and consequent health risk of these DBPs.

Journal ArticleDOI
TL;DR: Self-reported cellular phone use information is validated by comparing it with the cumulative emitted power and duration of calls measured by software-modified cellular phones (SMP) using a questionnaire developed for the international case–control study on the risk of the use of mobile phones in tumours of the brain or salivary gland.
Abstract: Assessment of radiofrequency exposure from cellular telephone daily use in an epidemiological study: German Validation study of the international case–control study of cancers of the brain—INTERPHONE-Study

Journal ArticleDOI
TL;DR: A pilot study was conducted in Durham, North Carolina, to determine whether useful data on open windows and doors could be acquired through a visual survey and indicated that the likelihood of one or more windows being opened tended to increase under the following conditions: occupancy at time of visit; session during April, May, or June; high population or housing density; window air conditioning (AC) units; absence of AC; large number of doors; and wind speed above 2 mph.
Abstract: Air pollution exposures in the residential microenvironment can be significantly affected by air exchange rate (AER). A number of studies have shown that AER in residences is significantly affected by the number and location of open windows and doors. A pilot study was conducted in Durham, North Carolina, to determine whether useful data on open windows and doors could be acquired through a visual survey. The study consisted of 72 2-h survey sessions conducted between October 24, 2001 and March 13, 2003. During the first hour of each session, a technician selected a set of corner residences in one of 48 census tracts and completed a survey form and meteorological measurements for each residence. During the second hour, the technician revisited each residence surveyed during the first hour. The resulting database included data on 2200 “residential visits” (1100 residences times two visits per residence). The technician observed one or more open windows during 20.0 percent of the residential visits. One or more open doors were observed during 13.4 percent of the residential visits; 28.2 percent of the residential visits were associated with at least one open window or door. A series of stepwise linear regression analyses were performed on the data to identify factors associated with open windows and doors. Results of these analyses indicated that the likelihood of one or more windows being opened tended to increase under the following conditions: occupancy at time of visit; session during April, May, or June; high population or housing density; window air conditioning (AC) units; absence of AC; large number of doors; and wind speed above 2 mph. The likelihood of open doors tended to increase under the following conditions: occupancy at time of visit; residence within city limits; session during April, May, or June; detached one-story residence; large number of doors; high housing density; school out; and residence within 10 m of road. Transition probabilities (closed to open and open to closed) were determined for windows and doors by time of day.

Journal ArticleDOI
TL;DR: Evidence is provided of a link between exposure to arsenic from drinking water and oxidative stress, which may play an important role in arsenic-involved injuries, and 8-OHdG levels in urine are significantly associated with arsenic species and metabolites in urine.
Abstract: Recent studies have shown that generation of reactive oxidants during arsenic metabolism can play an important role in arsenic-induced injury. The purpose of this study was to examine the relationship between arsenic in drinking water and oxidative stress in humans by measuring 8-Hydroxy-2′-deoxyguanosine (8-OHdG). We performed a cross-sectional study in an arsenic-affected village in Hetao Plain, Inner Mongolia, China. A total of 134 of the 143 inhabitants (93.7%) of the village participated in the study. The levels of 8-OHdG, arsenic and its metabolites were measured in urine collected from the participants. Regression analyses were performed to investigate the relationship between arsenic species and 8-OHdG levels in urine. In the polluted village, monomethylarsenic was significantly higher in subjects with arsenic dermatosis than those without dermatosis despite no difference in mean levels of arsenic in well water between both types of subject. For subjects with arsenic dermatosis, arsenic species and metabolites in urine are significantly associated with 8-OHdG, while there was no statistically significant relationship for subjects without arsenic dermatosis. For all residents of the polluted village, the levels of dimethylarsenic and 8-OHdG were significantly higher for those who had been exposed to well water for more than 12 years. These results provide evidence of a link between exposure to arsenic from drinking water and oxidative stress, which may play an important role in arsenic-involved injuries.

Journal ArticleDOI
TL;DR: This work defines a plausible exposure model for air pollutants that are relatively nonreactive and discusses how exposure varies, and concludes that general statements about the implications of measurement error need to be conditioned on the health effect study design and thehealth effect parameter to be estimated.
Abstract: Air pollution health effect studies are intended to estimate the effect of a pollutant on a health outcome. The definition of this effect depends upon the study design, disease model parameterization, and the type of analysis. Further limitations are imposed by the nature of exposure and our ability to measure it. We define a plausible exposure model for air pollutants that are relatively nonreactive and discuss how exposure varies. We discuss plausible disease models and show how their parameterizations are affected by different exposure partitions and by different study designs. We then discuss a measurement model conditional on ambient concentrations and incorporate this into the disease model. We use simulation studies to show the impact of a range of exposure model assumptions on estimation of the health effect in the ecologic time series design. This design only uses information from the time-varying ambient source exposure. When ambient and nonambient sources are independent, exposure variation due to nonambient source exposures behaves like Berkson measurement error and does not bias the effect estimates. Variation in the population attenuation of ambient concentrations over time does bias the estimates with the bias being either positive or negative depending upon the association of this parameter with ambient pollution. It is not realistic to substitute measured average personal exposures into time series studies because so much of the variation in personal exposures comes from nonambient sources that do not contribute information in the time series design. We conclude that general statements about the implications of measurement error need to be conditioned on the health effect study design and the health effect parameter to be estimated.

Journal ArticleDOI
TL;DR: Determination of phytoestrogen exposure in the US population will help to better understand phy toestrogen consumption in the United States and will assist in elucidating the potential role of phYtoestrogens in protecting against cancer and heart disease.
Abstract: We report population-based urinary concentrations of phytoestrogens stratified by age, sex, and composite racial/ethnic variables. We measured the isoflavones - genistein, daidzein, equol, and O-desmethylangolensin (O-DMA) - and the lignans - enterolactone and enterodiol - in approximately 2500 urine samples from individuals aged 6 years and older who participated in the National Health and Nutrition Examination Survey (NHANES) in 1999 and 2000. We detected all phytoestrogens in over 70% of the samples analyzed; enterolactone was detected in the highest concentrations, and daidzein was detected with the highest frequency. The geometric means for each phytoestrogen were as follows: genistein, 22.3 microg/g; daidzein, 68.6 microg/g; equol, 7.65 microg/g; O-DMA, 3.95 microg/g; enterolactone, 217 microg/g; and enterodiol, 24.3 microg/g creatinine. The 95th percentiles for each phytoestrogen were as follows: genistein, 380 microg/g; daidzein, 944 microg/g; equol, 50.3 microg/g; O-DMA, 217 microg/g; enterolactone, 2240 microg/g; and enterodiol, 240 microg/g creatinine. Multivariate analyses showed statistically significant differences among many of the demographic subgroups. Adolescents had higher concentrations of genistein and equol than adults. Non-Hispanic whites had higher concentrations of enterodiol and equol than Mexican Americans or non-Hispanic blacks. Non-Hispanic whites also had higher concentrations of enterolactone and O-DMA than Mexican Americans. Mexican Americans had higher concentrations of genistein than non-Hispanic blacks; however, the opposite was found for O-DMA. Determination of phytoestrogen exposure in the US population will help us to better understand phytoestrogen consumption in the US and will assist us in elucidating the potential role of phytoestrogens in protecting against cancer and heart disease.

Journal ArticleDOI
TL;DR: Exposure to tobacco smoke in the workplace doubled the risk for the detection of nicotine and cotinine in urine, and protection of nonsmokers from smoking family members at home needs more attention.
Abstract: In 1998, the German Environmental Survey (GerES III) recruited approximately 5000 adults between the ages of 18 and 69 years. The study population for these analyses consisted of 1580 smokers (34% of the total population) and 3126 nonsmokers. Nicotine and cotinine concentrations in urine were determined by HPLC methods with UV-detection and corrected for creatinine. Nicotine and cotinine concentrations differed between smokers and nonsmokers by factors of 10–100. The multiple linear regression models used for the analyses of nicotine detection in the urine of smokers explained 43.2% and 42.3% of the total volume-specific and creatinine-specific variances, respectively. Cigarette smoking was the major factor responsible for 41% of the total variance. The explained variances of the cotinine results were larger, 51.0% and 49.3% of the total variance were volume-specific and creatinine-specific, respectively. More than 20% of nonsmokers in GerES III were exposed to environmental tobacco smoke at home, at work or in other places. The logistic regression analysis approach used for the group of nonsmokers showed the greatest effects for those exposed to tobacco smoke at home (adjusted OR varied between 4 and 6). These results were seen for nicotine as well as for cotinine excretion. Exposure to tobacco smoke in the workplace doubled the risk for the detection of nicotine and cotinine in urine. When other risk factors such as age, sex, social status, community size, season of urine collection, and the consumption of food containing nicotine such as potatoes, cabbage, tea were included, the effect estimates for tobacco smoke exposure remained unchanged. A new federal bill to diminish environmental tobacco smoke (ETS) exposure in the workplace was recently passed in Germany, but protection of nonsmokers from smoking family members at home needs more attention.

Journal ArticleDOI
TL;DR: Results of this study showed that surface loading and skin condition (significant at alpha=0.05) are among the important parameters for characterizing residue transfers of riboflavin.
Abstract: To reduce the uncertainty associated with current estimates of children's exposure to pesticides by dermal contact and indirect ingestion, residue transfer data are required. Prior to conducting exhaustive studies, a screening study to identify the important parameters for characterizing these transfers was designed. A fluorescence imaging system was developed (Ivancic et al., in press) to facilitate collection of surface residue transfer data for repeated contacts. Next, parameters that affect residue transfer from surface-to-skin, skin-to-other objects, and skin-to-mouth were evaluated using the imaging system and the fluorescent tracer riboflavin as a surrogate for pesticide residues. Riboflavin was applied as a residue to surfaces of interest. Controlled transfer experiments were conducted by varying contact parameters with each trial. The mass of a tracer transferred was measured and the contact surface area estimated using video imaging techniques. Parameters evaluated included: surface type, surface loading, contact motion, pressure, duration, and skin condition. Transfers both onto, and off of, the hand were measured. To efficiently identify parameter changes resulting in significant effects, the Youden ruggedness test was used to select the combination of parameters varied in each contact trial. In this way, more than one parameter could be varied at a time and the number of trials required was minimized. Results of this study showed that surface loading and skin condition (significant at alpha=0.05) are among the important parameters for characterizing residue transfers of riboflavin. Duration of contact within the time range investigated does not have a significant effect on transfer of this tracer. Results of this study demonstrate the potential for collecting dermal transfer data using the Ivancic et al. fluorescence imaging system and provide preliminary data to reduce uncertainty associated with estimating dermal exposures resulting from contact with residue-contaminated surfaces. These data will also aid in determining what additional residue transfer data should be collected and what type of microactivity data are needed to estimate dermal and indirect ingestion exposure to residues on household surfaces.

Journal ArticleDOI
TL;DR: DREAM provides reproducible results for a broad range of tasks with dermal exposures to liquids, solids, as well as vapors, and appears to offer a useful advance for estimations of dermal exposure both for epidemiological research and for occupational hygiene practice.
Abstract: Valid and reliable semi-quantitative dermal exposure assessment methods for epidemiological research and for occupational hygiene practice, applicable for different chemical agents, are practically nonexistent. The aim of this study was to assess the reliability of a recently developed semi-quantitative dermal exposure assessment method (DREAM) by (i) studying inter-observer agreement, (ii) assessing the effect of individual observers on dermal exposure estimates for different tasks, and (iii) comparing inter-observer agreement for ranking of body parts according to their exposure level. Four studies were performed in which a total of 29 observers (mainly occupational hygienists) were asked to fill in DREAM while performing side-by-side observations for different tasks, comprising dermal exposures to liquids, solids, and vapors. Intra-class correlation coefficients ranged from 0.68 to 0.87 for total dermal exposure estimates, indicating good to excellent inter-observer agreement. The effects of individual observers on task estimates were estimated using a linear mixed effect model with logged DREAM estimates as explanatory variable; "task", "company/department", and the interaction of "task" and "company/department" as fixed effects; and "observer" as a random effect. Geometric mean (GM) dermal exposure estimates for different tasks were estimated by taking the exponent of the predicted betas for the tasks. By taking the exponent of the predicted observer's intercept (expωi), a multiplier (MO) was estimated for each observer. The effects of individual observers on task estimates were relatively small, as the maximum predicted mean observers' multiplier was only a factor 2, while predicted GMs of dermal exposure estimates for tasks ranged from 0 to 1226, and none of the predicted individual observers' multipliers differed significantly from 1 (t-test α = 0.05). Inter-observer agreement for ranking of dermal exposure of nine body parts was moderate to good, as median values of Spearman correlation coefficients for pairs of observers ranged from 0.29 to 0.93. DREAM provides reproducible results for a broad range of tasks with dermal exposures to liquids, solids, as well as vapors. DREAM appears to offer a useful advance for estimations of dermal exposure both for epidemiological research and for occupational hygiene practice.

Journal ArticleDOI
TL;DR: Bedroom concentrations were found to explain 90% of the variation of the measured personal exposure and predicted personal exposure nearly as well as an extended model that also included the outdoor contribution.
Abstract: Formaldehyde is a ubiquitous environmental pollutant and is probably carcinogenic to humans. Exposure to formaldehyde was investigated in the general population with personal as well as stationary measurements. The results from two campaigns in two Swedish cities are presented, including measurements of personal exposure among a total of 65 randomly selected subjects together with simultaneous measurements of individual indoor and outdoor concentrations. Diffusive GMD samplers were placed in the breathing zone, in the participants' bedrooms, and outside their homes for 24 h in campaign A and six days in campaign B. Repeated measurements were also conducted in order to study the variability between and within individuals. Median personal exposure to formaldehyde was 22 microg/m(3) (campaign A) and 23 microg/m(3) (campaign B), which is within the guideline value range of 12-60 microg/m(3) proposed in Sweden. Bedroom concentrations were generally slightly higher than personal exposure, while outdoor concentrations (measured only in campaign B) were low. In campaign B, the stationary measurements were used to model personal exposure. Bedroom concentrations were found to explain 90% of the variation of the measured personal exposure and predicted personal exposure nearly as well as an extended model that also included the outdoor contribution. Subjects living in single-family houses had significantly higher exposure to formaldehyde compared with subjects living in apartments. The 24-h and 6-day sampling periods yield a relatively low within-individual variability for formaldehyde measurements with GMD samplers.

Journal ArticleDOI
TL;DR: Personal nephelometers can provide high-quality data for assessing PM exposures on subjects and at fixed locations with a carefully developed QC procedure, and it is recommended that outdoor pDRs be operated in the active mode without a heater and the RH effect be corrected with an RH correction equation.
Abstract: Personal nephelometers provide useful real-time measurements of airborne particulate matter (PM). Recent studies have applied this tool to assess personal exposures and related health effects. However, a thorough quality control (QC) procedure for data collected from such a device in a large-scale exposure assessment study is lacking. We have evaluated the performance of a personal nephelometer (personal DataRAM or pDR) in the field. We present here a series of post hoc QC procedures for improving the quality of the pDR data. The correlations and the ratios between the pDRs and the collocated gravimetric measurements were used as indices of the pDR data quality. The pDR was operated in four modes: passive (no pump), active (with personal sampling pumps), active with a heated inlet, and a humidistat. The pDRs were worn by 21 asthmatic children, placed at their residences indoors and outdoors, as well as at a central site. All fixed-site pDRs were collocated with Harvard Impactors for PM2.5 (HI2.5). By examining the differences between the time-weighted average concentrations calculated from the real-time pDRs' readings and recorded internally by the pDRs, we identified 9.1% of the pDRs' measurements suffered from negative drifts. By comparing the pDRs' daily base level with the HI2.5 measurements, we identified 5.7% of the pDRs' measurements suffered from positive drifts. High relative humidity (RH) affected outdoor pDR measurements, even when a heater was used. Results from a series of chamber experiments suggest that the heated air stream cooled significantly after leaving the heater and entering the pDR light-scattering chamber. An RH correction equation was applied to the pDR measurements to remove the RH effect. The final R2 values between the fixed-site pDRs and the collocated HI2.5 measurements ranged between 0.53 and 0.72. We concluded that with a carefully developed QC procedure, personal nephelometers can provide high-quality data for assessing PM exposures on subjects and at fixed locations. We also recommend that outdoor pDRs be operated in the active mode without a heater and that the RH effect be corrected with an RH correction equation.