scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Fluid Mechanics in 2003"


Journal ArticleDOI
TL;DR: A hierarchy of low-dimensional Galerkin models is proposed for the viscous, incompressible flow around a circular cylinder building on the pioneering works of Stuart (1958), Deane et al. (1991), and Ma & Karniadakis (2002) as mentioned in this paper.
Abstract: A hierarchy of low-dimensional Galerkin models is proposed for the viscous, incompressible flow around a circular cylinder building on the pioneering works of Stuart (1958), Deane et al. (1991), and Ma & Karniadakis (2002). The empirical Galerkin model is based on an eight-dimensional Karhunen–Loeve decomposition of a numerical simulation and incorporates a new ‘shift-mode’ representing the mean-field correction. The inclusion of the shift-mode significantly improves the resolution of the transient dynamics from the onset of vortex shedding to the periodic von Karman vortex street. In addition, the Reynolds-number dependence of the flow can be described with good accuracy. The inclusion of stability eigenmodes further enhances the accuracy of fluctuation dynamics. Mathematical and physical system reduction approaches lead to invariant-manifold and to mean-field models, respectively. The corresponding two-dimensional dynamical systems are further reduced to the Landau amplitude equation.

989 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigate two simple configurations of steady pressure-driven Stokes flow in a circular pipe whose surface contains periodically distributed regions of zero surface shear stress and the effective slip length of the resulting flow is evaluated as a function of the degrees of freedom describing the surface heterogeneities, namely the relative width of the no-slip and no-shear stress regions and their distribution along the pipe.
Abstract: Nano-bubbles have recently been observed experimentally on smooth hydrophobic surfaces; cracks on a surface can likewise be the site of bubbles when partially wetting fluids are used. Because these bubbles may provide a zero shear stress boundary condition and modify considerably the friction generated by the solid boundary, it is of interest to quantify their influence on pressure-driven flow, with particular attention given to small geometries. We investigate two simple configurations of steady pressure-driven Stokes flow in a circular pipe whose surface contains periodically distributed regions of zero surface shear stress. In the spirit of experimental studies probing slip at solid surfaces, the effective slip length of the resulting flow is evaluated as a function of the degrees of freedom describing the surface heterogeneities, namely the relative width of the no-slip and no-shear stress regions and their distribution along the pipe. Comparison of the model with experimental studies of pressure-driven flow in capillaries and microchannels reporting slip is made and a possible interpretation of the experimental results is offered which is consistent with a large number of distributed slip domains such as nano-size and micron-size nearly flat bubbles coating the solid surface. Further, the possibility is suggested of a shear-dependent effective slip length, and an explanation is proposed for the seemingly paradoxical behaviour of the measured slip length increasing with system size, which is consistent with experimental results to date.

696 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated spanwise structure and growth mechanisms in a turbulent boundary layer and found that the dominant motions of the flow are large-scale regions of momentum deficit elongated in the streamwise direction.
Abstract: Spanwise structure and growth mechanisms in a turbulent boundary layer are investigated experimentally. PIV measurements are obtained in the streamwise– spanwise (x–z)-plane from the buffer layer to the top of the logarithmic region at Reθ = 1015 and 7705. The dominant motions of the flow are shown to be large-scale regions of momentum deficit elongated in the streamwise direction. Throughout the logarithmic layer, the regions are consistently bordered by vortices organized in the streamwise direction, offering strong support for a vortex packet model. Additionally, evidence is presented for the existence and organization of hairpin vortices in the region y + < 60. Statistical evidence is also presented for two important aspects of the vortex packet paradigm: vortex organization in the streamwise direction, and the clear association of the hairpin signature with local minima in streamwise velocity. Several spanwise lengthscales are shown to vary linearly with distance from the wall, revealing self-similar growth of spanwise structure in an average sense. Inspection of the data, however, suggests that individual structures do not grow strictly self-similarly in time. It is proposed that additional scale growth occurs by the merging of vortex packets on an eddy-by-eddy basis via a vortex re-connection mechanism similar to that suggested by Wark & Nagib (1989). The proposed mechanism provides a link between vortex-pairing concepts and the observed coalescence of streaky low-speed regions in the inner layer.

611 citations


Journal ArticleDOI
TL;DR: In this paper, the homotopy analysis method is employed to give analytic solutions of magnetohydrodynamic viscous flows of non-Newtonian fluids over a stretching sheet.
Abstract: A powerful, easy-to-use analytic technique for nonlinear problems, the homotopy analysis method, is employed to give analytic solutions of magnetohydrodynamic viscous flows of non-Newtonian fluids over a stretching sheet. For the so-called second-order and third-order power-law fluids, the explicit analytic solutions are given by recursive formulas with constant coefficients. Also, for real power-law index and magnetic field parameter in a quite large range, an analytic approach is proposed. All of our analytic results agree well with numerical ones. In particular, a simple analytic formula of the dimensionless velocity gradient at the wall is found, which is accurate for all real power-law indices and magnetic field parameters. This analytic formula can give sufficiently accurate results for the skin friction on the moving sheet that it would find wide application in industries. Physically, they indicate that the magnetic field tends to increase the skin friction, and that this effect is more pronounced for shear-thinning than for shear-thickening fluids.

566 citations


Journal ArticleDOI
TL;DR: In this article, a feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices, which contributed 28% to −uw while occupying only 4% of the total area at z+=92.
Abstract: Stereoscopic particle image velocimetry (PIV) was used to measure all three instantaneous components of the velocity field in streamwise–spanwise planes of a turbulent boundary layer at Reτ=1060 (Reθ=2500). Datasets were obtained in the logarithmic layer and beyond. The vector fields in the log layer (z+=92 and 150) revealed signatures of vortex packets similar to those proposed by Adrian and co-workers in their PIV experiments. Groups of legs of hairpin vortices appeared to be coherently arranged in the streamwise direction. These regions also generated substantial Reynolds shear stress, sometimes as high as 40 times −uw. A feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices. Identified patches contributed 28% to −uw while occupying only 4% of the total area at z+=92. At z+=150, these patches occupied 4.5% of the total area while contributing 25% to −uw. Beyond the log layer (z+=198 and 530), the spatial organization into packets is seen to break down.

517 citations


Journal ArticleDOI
TL;DR: In this article, the stability analysis of flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations, and a stabilized finite element method is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation.
Abstract: Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier–Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, α (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for α < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < α < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of α a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

431 citations


Journal ArticleDOI
TL;DR: In this article, a quantitative model for the adjustment of the spatially averaged time-mean flow of ad eep turbulent boundary layer over small roughness elements to a canopy of larger three-dimensional roughness element is developed.
Abstract: Am odel is developed for the adjustment of the spatially averaged time-mean flow of ad eep turbulent boundary layer over small roughness elements to a canopy of larger three-dimensional roughness elements. Scaling arguments identify three stages of the adjustment. First, the drag and the finite volumes of the canopy elements decelerate air parcels; the associated pressure gradient decelerates the flow within an impact region upwind of the canopy. Secondly, within an adjustment region of length of order Lc downwind of the leading edge of the canopy, the flow within the canopy decelerates substantially until it comes into a local balance between downward transport of momentum by turbulent stresses and removal of momentum by the drag of the canopy elements. The adjustment length, Lc ,i s proportional to(i) the reciprocal of the roughness density (defined to be the frontal area of canopy elements per unit floor area) and (ii) the drag coefficient of individual canopy elements. Further downstream, within a roughness-change region ,t hecanopy is shown to affect the flow above as if it were a change in roughness length, leading to the development of an internal boundary layer. A quantitative model for the adjustment of the flow is developed by calculating analytically small perturbations to a logarithmic turbulent velocity profile induced by the drag due to a sparse canopy with L/Lc � 1, where L is the length of the canopy. These linearized solutions are then evaluated numerically with a nonlinear correction to account for the drag varying with the velocity. A further correction is derived to account for the finite volume of the canopy elements. The calculations are shown to agree with experimental measurements in a fine-scale vegetation canopy, when the drag is more important than the finite volume effects, and a canopy of coarse-scale cuboids, when the finite volume effects are of comparable importance to the drag in the impact region. An expression is derived showing how the effective roughness length of the canopy, z eff 0 ,i s related to the drag in the canopy. The value of z eff varies smoothly with fetch through the adjustment region from the roughness length of the upstream surface to the equilibrium roughness length of the canopy. Hence, the analysis shows how to resolve the unphysical flow singularities obtained with previous models of flow over sudden changes in surface roughness.

393 citations


Journal ArticleDOI
TL;DR: In this article, direct numerical simulations have been carried out for a fully developed turbulent channel flow with a smooth upper wall and a lower wall consisting of square bars separated by a rectangular cavity.
Abstract: Direct numerical simulations have been carried out for a fully developed turbulent channel flow with a smooth upper wall and a lower wall consisting of square bars separated by a rectangular cavity. A wide range of of the Clauser roughness function reflects that of the form drag.

371 citations


Journal ArticleDOI
TL;DR: In this article, the Comte-Bellot and Corrsin data set is used to evaluate the ability of large-eddy simulations to reproduce both spectral and higher-order statistics of the resolved velocity field.
Abstract: Measurements of nearly isotropic turbulence downstream of an active grid are performed as a high-Reynolds-number (Re λ ≃720) update of the Comte-Bellot & Corrsin data set. Energy spectra at four downstream distances from the grid, ranging from x/M = 20 to x/M = 48, are measured and documented for subsequent initialization of, and comparison with, large-eddy simulations (LES). Data are recorded using an array of four X-wire probes which enables measurement of filtered velocities, filtered in the streamwise (using Taylor's hypothesis) and cross-stream directions. Different filter sizes are considered by varying the separation between the four probes. Higher-order statistics of filtered velocity are quantified by measuring probability density functions, and hyper-flatness and skewness coefficients of two-point velocity increments. The data can be used to study the ability of LES to reproduce both spectral and higher-order statistics of the resolved velocity field. In this study, the Smagorinsky, dynamic Smagorinsky, and dynamic mixed nonlinear models are considered. They are implemented in simulations of decaying isotropic turbulence using a pseudospectral code with initial conditions that match the measured energy spectra at x/ M = 20

367 citations


Journal ArticleDOI
TL;DR: In this paper, a numerical model for two-dimensional flow around an airfoil undergoing prescribed heaving motions in a viscous flow is presented, and the model is used to examine the flow characteristics and power coefficients of a symmetric aerodynamic model.
Abstract: A numerical model for two-dimensional flow around an airfoil undergoing prescribed heaving motions in a viscous flow is presented. The model is used to examine the flow characteristics and power coefficients of a symmetric airfoil heaving sinusoidally over a range of frequencies and amplitudes. Both periodic and aperiodic solutions are found. Additionally, some flows are asymmetric in that the upstroke is not a mirror image of the downstroke. For a given Strouhal number – defined as the product of dimensionless frequency and heave amplitude – the maximum efficiency occurs at an intermediate heaving frequency. This is in contrast to ideal flow models, in which efficiency increases monotonically as frequency decreases. In accordance with Wang (2000), the separation of the leading-edge vortices at low heaving frequencies leads to diminished thrust and efficiency. At high frequencies, the efficiency decreases similarly to inviscid theory. Interactions between leading- and trailing-edge vortices are categorized, and the effects of this interaction on efficiency are discussed. Additionally, the efficiency is related to the proximity of the heaving frequency to the frequency of the most spatially unstable mode of the average velocity profile of the wake; the greatest efficiency occurs when the two frequencies are nearly identical. The importance of viscous effects for low-Reynolds-number flapping flight is discussed.

361 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the motion of Purcell's swimmer, a planar, fore-aft-symmetric three-link flagellum or propulsive mechanism that translates by alternating moving its front and rear segments.
Abstract: Using slender-body hydrodynamics in the inertialess limit, we examine the motion of Purcell’s swimmer, a planar, fore–aft-symmetric three-link flagellum or propulsive mechanism that translates by alternately moving its front and rear segments. Purcell (1976) concluded via symmetry arguments that the net displacement of such a swimmer must follow a straight line, but the direction and other details of the motion have never been investigated. Numerical results indicate that the direction of net translation and the speed of Purcell’s swimmer depend on the angular amplitude of the swimming strokes as well as on the relative length of the links. Analytical results are presented for small rotations about the straightened configuration, and physical arguments are given to qualitatively explain the propulsive dynamics. The optimal swimmer configurations under the conditions of constant forcing and of minimum mechanical work are determined. We use a definition of efficiency based on the straightened configuration as a reference state to compare Purcell’s swimmer with the previously treated swimming motions of an undulating rod and a rotating helix. Finally, we demonstrate the importance of the anisotropy in the local hydrodynamic slender-body drag to swimming motions at low Reynolds number by showing that, in general, any inextensible swimmer in an otherwise quiescent fluid cannot alter its average position under conditions of locally isotropic drag.

Journal ArticleDOI
TL;DR: In this article, the Navier-Stokes equations can be rewritten as a set of linearized inhomogeneous Euler equations with source terms that are exactly the same as those that would result from externally imposed shear stress and energy flux perturbations.
Abstract: The purpose of this article is to show that the Navier-Stokes equations can be rewritten as a set of linearized inhomogeneous Euler equations (in convective form) with source terms that are exactly the same as those that would result from externally imposed shear stress and energy flux perturbations These results are used to develop a mathematical basis for some existing and potential new jet noise models by appropriately choosing the base flow about which the linearization is carried out

Journal ArticleDOI
TL;DR: In this article, high-Rayleigh-number convective turbulence was studied in a cylindrical cell with gaseous helium filling, and the velocity, vorticity and temperature fields were analyzed.
Abstract: Numerical experiments are conducted to study high-Rayleigh-number convective turbulence (Ra ranging from 2 × 10 6 up to 2 × 10 11 ) in a Γ = 1/2 aspect-ratio cylindrical cell heated from below and cooled from above and filled with gaseous helium (Pr = 0.7). The numerical approach allows three-dimensional velocity, vorticity and temperature fields to be analysed. Furthermore, several numerical probes are placed within the fluid volume, permitting point-wise velocity and temperature time series to be extracted. Taking advantage of the data accessibility provided by the direct numerical simulation the flow dynamics has been explored and separated into its mean large-scale and fluctuating components, both in the bulk and in the boundary layer regions

Journal ArticleDOI
TL;DR: In this article, the authors evaluated tsunami run-up and draw-down motions on a uniformly sloping beach based on fully nonlinear shallow-water wave theory and found that the maximum flow velocity occurs at the moving shoreline and the maximum momentum flux occurs in the vicinity of the extreme drawdown location.
Abstract: Tsunami run-up and draw-down motions on a uniformly sloping beach are evaluated based on fully nonlinear shallow-water wave theory. The nonlinear equations of mass conservation and linear momentum are first transformed to a single linear hyperbolic equation. To solve the problem with arbitrary initial conditions, we apply the Fourier–Bessel transform, and inversion of the transform leads to the Green function representation. The solutions in the physical time and space domains are then obtained by numerical integration. With this semi-analytic solution technique, several examples of tsunami run-up and draw-down motions are presented. In particular, detailed shoreline motion, velocity field, and inundation depth on the shore are closely examined. It was found that the maximum flow velocity occurs at the moving shoreline and the maximum momentum flux occurs in the vicinity of the extreme draw-down location. The direction of both the maximum flow velocity and the maximum momentum flux depend on the initial waveform: it is in the inshore direction when the initial waveform is predominantly depression and in the offshore direction when the initial waves have a dominant elevation characteristic.

Journal ArticleDOI
TL;DR: In this article, a simple hydraulic theory is generalized to model quasi-two-dimensional flows around obstacles and compared with laboratory experiments, which indicate that the theory is adequate to quantitatively describe the formation of normal shocks, oblique shocks, dead zones and granular vacua.
Abstract: Shock waves, dead zones and particle-free regions form when a thin surface avalanche of granular material flows around an obstacle or over a change in the bed topography. Understanding and modelling these flows is of considerable practical interest for industrial processes, as well as for the design of defences to protect buildings, structures and people from snow avalanches, debris flows and rockfalls. These flow phenomena also yield useful constitutive information that can be used to improve existing avalanche models. In this paper a simple hydraulic theory, first suggested in the Russian literature, is generalized to model quasi-two-dimensional flows around obstacles. Exact and numerical solutions are then compared with laboratory experiments. These indicate that the theory is adequate to quantitatively describe the formation of normal shocks, oblique shocks, dead zones and granular vacua. Such features are generated by the flow around a pyramidal obstacle, which is typical of some of the defensive structures in use today.

Journal ArticleDOI
P. C. Duineveld1
TL;DR: In this article, the authors studied the stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate and found that the line becomes unstable when the contact angle of the liquid with the substrate is larger than the advancing contact angle.
Abstract: We have studied the stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. Such lines can become unstable by forming a series of liquid bulges, at various wavelengths, connected by a ridge of liquid. The instability was studied with a simple dynamic model. It was shown that the line becomes unstable when the contact angle of the liquid with the substrate is larger than the advancing contact angle. This condition, however, is not a sufficient condition. When the transported flow rate is sufficiently small compared to the applied flow rate a printed line can be shown to be stable, i.e. the width of the printed line is constant. This was found to depend on the advancing contact angle of the liquid over the substrate.

Journal ArticleDOI
TL;DR: In this article, the effect of microjets on the flow field of a Mach 0.9 round jet was studied and it was shown that the microjet activation significantly reduced the peak normalized vorticity in the shear layer, thus inducing an overall stabilizing effect.
Abstract: We have experimentally studied the effect of microjets on the flow field of a Mach 0.9 round jet. Planar and three-dimensional velocity field measurements using particle image velocimetry show a significant reduction in the near-field turbulent intensities with the activation of microjets. The axial and normal turbulence intensities are reduced by about 15% and 20%, respectively, and an even larger effect is found on the peak values of the turbulent shear stress with a reduction of up to 40%. The required mass flow rate of the microjets was about 1% of the primary jet mass flux. It appears that the microjets influence the mean velocity profiles such that the peak normalized vorticity in the shear layer is significantly reduced, thus inducing an overall stabilizing effect. Therefore, we seem to have exploited the fact that an alteration in the instability characteristics of the initial shear-layer can influence the whole jet exhaust including its noise field. We have found a reduction of about 2 dB in the near-field overall sound pressure level in the lateral direction with the use of microjets. This observation is qualitatively consistent with the measured reduced turbulence intensities.

Journal ArticleDOI
TL;DR: In this paper, the authors revisited the collapse and rebound of a cavitation bubble near a wall with high-speed camera data and used a shadowgraph technique and high framing rates.
Abstract: Collapse and rebound of a cavitation bubble near a wall are revisited with modern experimental means. The bubble is generated by the optical breakdown of the liquid when a strong laser pulse is focused into water. Observations are made with high-speed cinematography; framing rates range between several thousand and 100 million frames per second, and the spatial resolution is in the order of a few micrometres. After formation the bubble grows to a maximum size with a radius of 1.5 mm at the pulse energy used, and in the subsequent collapse a liquid jet evolves on the side opposite the wall and penetrates through the bubble. Using a shadowgraph technique and high framing rates, the emission of shock waves, which is observed at minimum bubble size, is resolved in detail. For a range of stand-off distances between the bubble centre and the wall, a counterjet forms during rebound. The counterjet is clearly resolved to consist of cavitation micro-bubbles, and a quantitative measure of its height evolution is given. Its emergence might be caused by a shock wave, and a possible connection of the observed shock wave scenario with the counterjet formation is discussed. No counterjets are observed when the stand-off distance is less than the maximum bubble radius, and the bubble shape becomes toroidal after the jet hits the wall. The jet impact on the wall produces a pronounced splash, which moves radially outwards in the space between the bubble and the wall. The volume compression at minimum bubble size is found to depend strongly on the stand-off distance. Some of the results are compared to numerical simulations by Tong et al. (1999), and the material presented may also be useful for comparison with future numerical work.

Journal ArticleDOI
TL;DR: In this article, a simulation of a turbulent channel flow is presented, where the polymers are modelled as elastic dumbbells using the FENE-P model and the simulation results show that at approximately maximum drag reduction the slope of the mean velocity profile is increased compared to the standard logarithmic profile in turbulent wall flows.
Abstract: It is well known that the drag in a turbulent flow of a polymer solution is significantly reduced compared to Newtonian flow. Here we consider this phenomenon by means of a direct numerical simulation of a turbulent channel flow. The polymers are modelled as elastic dumbbells using the FENE-P model. In the computations the polymer model is solved simultaneously with the flow equations, i.e. the polymers are deformed by the flow and in their turn influence the flow structures by exerting a polymer stress. We have studied the results of varying the polymer parameters, such as the maximum extension, the elasticity and the concentration. For the case of highly extensible polymers the results of our simulations are very close to the maximum drag reduction or Virk (1975) asymptote. Our simulation results show that at approximately maximum drag reduction the slope of the mean velocity profile is increased compared to the standard logarithmic profile in turbulent wall flows. For the r.m.s. of the streamwise velocity fluctuations we find initially an increase in magnitude which near maximum drag reduction changes to a decrease. For the velocity fluctuations in the spanwise and wall-normal directions we find a continuous decrease as a function of drag reduction. The Reynolds shear stress is strongly reduced, especially near the wall, and this is compensated by a polymer stress, which at maximum drag reduction amounts to about 40% of the total stress. These results have been compared with LDV experiments of Ptasinski et al. (2001) and the agreement, both qualitatively and quantitatively, is in most cases very good. In addition we have performed an analysis of the turbulent kinetic energy budgets. The main result is a reduction of energy transfer from the streamwise direction, where the production of turbulent kinetic energy takes place, to the other directions. A substantial part of the energy production by the mean flow is transferred directly into elastic energy of the polymers. The turbulent velocity fluctuations also contribute energy to the polymers. The elastic energy of the polymers is subsequently dissipated by polymer relaxation. We have also computed the various contributions to the pressure fluctuations and identified how these change as a function of drag reduction. Finally, we discuss some cross-correlations and various length scales. These simulation results are explained here by two mechanisms. First, as suggested by Lumley (1969) the polymers damp the cross-stream or wall-normal velocity fluctuations and suppress the bursting in the buffer layer. Secondly, the ‘shear sheltering’ mechanism acts to amplify the streamwise fluctuations in the thickened buffer layer, while reducing and decoupling the motions within and above this layer. The expression for the substantial reduction in the wall drag derived by considering the long time scales of the nonlinear fluctuations of this damped shear layer, is shown to be consistent with the experimental data of Virk et al. (1967) and Virk (1975).

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of polymer additives on turbulent drag reduction in a channel using direct numerical simulation, where the dilute polymer solution is expressed with an Oldroyd-B model that shows a linear elastic behaviour.
Abstract: Turbulent drag reduction by polymer additives in a channel is investigated using direct numerical simulation. The dilute polymer solution is expressed with an Oldroyd-B model that shows a linear elastic behaviour. Simulations are carried out by changing the Weissenberg number at the Reynolds numbers of 4000 and 20 000 based on the bulk velocity and channel height. The onset criterion for drag reduction predicted in the present study shows a good agreement with previous theoretical and experimental studies. In addition, the flow statistics such as the r.m.s. velocity fluctuations are also in good agreement with previous experimental observations. The onset mechanism of drag reduction is interpreted based on elastic theory, which is one of the most plausible hypotheses suggested in the past. The transport equations for the kinetic and elastic energy are derived for the first time. It is observed that the polymer stores the elastic energy from the flow very near the wall and then releases it there when the relaxation time is short, showing no drag reduction. However, when the relaxation time is long enough, the elastic energy stored in the very near-wall region is transported to and released in the buffer and log layers, showing a significant amount of drag reduction.

Journal ArticleDOI
TL;DR: In this article, the role of three-dimensionalality and unsteadiness with respect to the existence, mode selection, and internal structure of vortex breakdown, in terms of the two governing parameters and the Reynolds number, is addressed.
Abstract: Vortex breakdown of nominally axisymmetric, swirling incompressible flows with jet- and wake-like axial velocity distributions issuing into a semi-infinite domain is studied by means of direct numerical simulations. By selecting a two-parametric velocity profile for which the steady axisymmetric breakdown is well-studied (Grabowski & Berger 1976), issues are addressed regarding the role of three-dimensionality and unsteadiness with respect to the existence, mode selection, and internal structure of vortex breakdown, in terms of the two governing parameters and the Reynolds number. Low Reynolds numbers are found to yield flow fields lacking breakdown bubbles or helical breakdown modes even for high swirl. In contrast, highly swirling flows at large Reynolds numbers exhibit bubble, helical or double-helical breakdown modes, where the axisymmetric mode is promoted by a jet-like axial velocity profile, while a wake-like profile renders the flow helically unstable and ultimately yields non-axisymmetric breakdown modes. It is shown that a transition from super- to subcritical flow, as defined by Benjamin (1962), accurately predicts the parameter combination yielding breakdown, if applied locally to flows with supercritical inflow profiles. Thus the basic form of breakdown is axisymmetric, and a transition to helical breakdown modes is shown to be caused by a sufficiently large pocket of absolute instability in the wake of the bubble, giving rise to a self-excited global mode. Two distinct eigenfunctions corresponding to azimuthal wavenumbers have been found to yield a helical or double-helical breakdown mode, respectively. Here the minus sign represents the fact that the winding sense of the spiral is opposite to that of the flow.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the behavior of a small diameter liquid jet exposed to a large diameter high-speed gas jet (gas-to-liquid nozzle area ratio of order 100 to 1000) and showed that the bulk of the liquid atomization is completed within a few gas-jet diameters of the nozzle exit, inside of the potential cone of the gas flow.
Abstract: The situation of a small-diameter liquid jet exposed to a large-diameter high-speed gas jet (gas-to-liquid nozzle area ratio of order 100 to 1000) is investigated experimentally. Flow visualization and particle-sizing techniques are employed to examine the initial jet breakup process and primary liquid atomization. Observations of the initial breakup of the liquid jet in the near-nozzle region, combined with droplet-size mea-surements, are used in an effort to elucidate the dominant mechanism of primary breakup of the liquid. It is shown that for large aerodynamic Weber numbers, the bulk of the liquid atomization is completed within a few gas-jet diameters of the nozzle exit, inside of the potential cone of the gas flow. Breakup is therefore completed within the zone of constant ambient gas velocity. It is argued that the mechanism of initial jet breakup is similar to that of a liquid drop suddenly exposed to a high-speed gas stream. A phenomenological breakup model is proposed for the initial droplet size, based upon the accelerative, secondary destabilization (via Rayleigh–Taylor instability) of the liquid wave crests resulting from the primary Kelvin–Helmholtz instability of the liquid jet surface. Primary mean droplet sizes are shown to scale well on the most unstable Rayleigh–Taylor wavelength, and the dependence of the droplet diameter on both the atomizing gas velocity and the liquid surface tension are successfully captured by the proposed breakup model.

Journal ArticleDOI
TL;DR: In this article, the authors measured the structure of the antisymmetric vorticity field that causes the co-rotating vortices to be pushed towards each other during merger.
Abstract: In this paper, we study the interaction of two co-rotating trailing vortices. It is well-known that vortices of like-sign ultimately merge to form a single vortex, and there has been much work on measuring and predicting the initial conditions for the onset of merger, especially concerning the critical vortex core radius. However, the physical mechanism causing this merger has received little attention. In this work, we directly measure the structure of the antisymmetric vorticity field that causes the co-rotating vortices to be pushed towards each other during merger. We discover that the form of the antisymmetric vorticity comprises two counter-rotating vortex pairs, whose induced velocity field readily pushes the two centroids together. The merging velocity computed from the antisymmetric vorticity field agrees closely with the merging velocity measured directly from the total (original) flow field.The co-rotating vortex pair evolves through four distinct phases. The initial stage comprises a diffusive growth, which can be either viscous or turbulent. In either case, the number of turns that they rotate around one another until the vortices start to merge increases with Reynolds number (Re). If one observes the streamlines in a rotating reference frame (moving with the vortices), then one finds an inner and outer recirculating region of the flow bounded by a separatrix streamline. When the vortices grow large enough in the first stage, diffusion across the separatrix places vorticity into the outer recirculating region of the flow, and this leads to the generation of the antisymmetric vorticity, causing convective merger. This second (convective) stage corresponds to the motion of the vortex centroids towards each other, and is a process which is almost independent of viscosity. During the late part of this stage, the antisymmetric vorticity is diminished by a symmetrization process, and the final merging into one vorticity structure is achieved by a second diffusive stage. The fourth and ultimate phase is one where the merged vortex core grows by diffusion.

Journal ArticleDOI
TL;DR: It is found that for explicit filtering, increasing the reconstruction levels for the RSFS stress improves the mean velocity as well as the turbulence intensities, when compared to LES without explicit filtering.
Abstract: Turbulent channel flow simulations are performed using second- and fourth-order finite difference codes. A systematic comparison of the large-eddy simulation (LES) results for different grid resolutions, finite difference schemes, and several turbulence closure models is performed. The use of explicit filtering to reduce numerical errors is compared to results from the traditional LES approach. Filter functions that are smooth in spectral space are used, as the findings of this investigation are intended for application of LES to complex domains. Explicit filtering introduces resolved subfilter-scale (RSFS) as well as subgrid-scale (SGS) turbulence terms. The former can be theoretically reconstructed; the latter must be modelled. The dynamic Smagorinsky model, the dynamic mixed model, and the new dynamic reconstruction model are all studied. It is found that for explicit filtering, increasing the reconstruction levels for the RSFS stress improves the mean velocity as well as the turbulence intensities. When compared to LES without explicit filtering, the difference in the mean velocity profiles is not large; however the turbulence intensities are improved for the explicit filtering case.

Journal ArticleDOI
TL;DR: In this paper, a cylindrical perforated liners with mean bias flow in its absorption of planar acoustic waves in a duct is investigated, and it is shown that such a system can absorb a large fraction of incoming energy, and can prevent all of the energy produced by an upstream source in certain frequency ranges from reflecting back.
Abstract: The effectiveness of a cylindrical perforated liner with mean bias flow in its absorption of planar acoustic waves in a duct is investigated. The liner converts acoustic energy into flow energy through the excitation of vorticity fluctuations at the rims of the liner apertures. A one-dimensional model that embodies this absorption mechanism is developed. It utilizes a homogeneous liner compliance adapted from the Rayleigh conductivity of a single aperture with mean flow. The model is evaluated by comparing with experimental results, with excellent agreement. We show that such a system can absorb a large fraction of incoming energy, and can prevent all of the energy produced by an upstream source in certain frequency ranges from reflecting back. Moreover, the bandwidth of this strong absorption can be increased by appropriate placement of the liner system in the duct. An analysis of the acoustic energy flux is performed, revealing that local differences in fluctuating stagnation enthalpy, distributed over a finite length of duct, are responsible for absorption, and that both liners in a double-liner system are absorbant. A reduction of the model equations in the limit of long wavelength compared to liner length reveals an important parameter grouping, enabling the optimal design of liner systems.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the mechanisms of the receptivity to disturbances of a Mach 4.5 flow over a flat plate by using both direct numerical simulations (DNS) and linear stability theory (LST).
Abstract: This paper is the first part of a two-part study on the mechanisms of the receptivity to disturbances of a Mach 4.5 flow over a flat plate by using both direct numerical simulations (DNS) and linear stability theory (LST). The main objective of the current paper is to study the linear stability characteristics of the boundary-layer wave modes and their mutual resonant interactions. The numerical solutions of both steady base flow and unsteady flow induced by forcing disturbances are obtained by using a fifth-order shock-fitting method. Meanwhile, the LST results are used to study the supersonic boundary-layer stability characteristics relevant to the receptivity study. It is found that, in addition to the conventional first and second modes, there exist a family of stable wave modes in the supersonic boundary layer. These modes play a very important role in the receptivity process of excitation of the unstable Mack modes, especially the second mode. These stable modes are termed mode I, mode II, etc., in this paper. Though mode I and mode II waves are linearly stable, they can have resonant (synchronization) interactions with both acoustic waves and the Mack-mode waves. Therefore, the stable wave modes such as mode I and mode II are critical in transferring wave energy between the acoustic waves and the unstable second mode. The effects of frequencies and wall boundary conditions for the temperature perturbations on the boundary-layer stability and receptivity are also studied.

Journal ArticleDOI
TL;DR: In this article, the coalescence of two drops of an ideal fluid driven by surface tension is studied and the velocity of approach is taken to be zero and the dynamical effect of the outer fluid (usually air) is neglected.
Abstract: We study the coalescence of two drops of an ideal fluid driven by surface tension. The velocity of approach is taken to be zero and the dynamical effect of the outer fluid (usually air) is neglected. Our approximation is expected to be valid on scales larger than .

Journal ArticleDOI
TL;DR: Experimental and theoretical studies of the effect of an ultrasonically absorptive coating (UAC) on hypersonic boundary-layer stability are described in this paper, where a thin coating of fibrous absorbent material (felt metal) was selected as a prototype of a practical UAC.
Abstract: Experimental and theoretical studies of the effect of an ultrasonically absorptive coating (UAC) on hypersonic boundary-layer stability are described. A thin coating of fibrous absorbent material (felt metal) was selected as a prototype of a practical UAC. Experiments were performed in the Mach 6 wind tunnel on a half-angle sharp cone whose longitudinal half-surface was solid and other half-surface was covered by a porous coating. Hot-wire measurements of ‘natural’ disturbances and artificially excited wave packets were conducted on both solid and porous surfaces. Stability analysis of the UAC effect on two- and three-dimensional disturbances showed that the porous coating strongly stabilizes the second mode and marginally destabilizes the first mode. These results are in qualitative agreement with the experimental data for natural disturbances. The theoretical predictions are in good quantitative agreement with the stability measurements for artificially excited wave packets associated with the second mode. Stability calculations for the cooled wall case showed the feasibility of achieving a dramatic increase of the laminar run using a thin porous coating of random microstructure.

Journal ArticleDOI
TL;DR: In this paper, modern linear control theory has been established as a viable tool for developing effective, spatially localized convolution kernels for the feedback control and estimation of linearized N...
Abstract: Modern linear control theory has recently been established as a viable tool for developing effective, spatially localized convolution kernels for the feedback control and estimation of linearized N ...

Journal ArticleDOI
TL;DR: In this article, the axisymmetric free surface problem is solved numerically with a front-tracking marker-chain method on a square grid, and the impact of a water drop on such a surface shows unusual features, such as total rebound at low impact speed.
Abstract: Superhydrophobic surfaces generate very high contact angles as a result of their microstructure. The impact of a water drop on such a surface shows unusual features, such as total rebound at low impact speed. We report experimental and numerical investigations of the impact of approximately spherical water drops. The axisymmetric free surface problem, governed by the Navier–Stokes equations, is solved numerically with a front-tracking marker-chain method on a square grid. Experimental observations at moderate velocities and capillary wavelength much less than the initial drop radius show that the drop evolves to a staircase pyramid and eventually to a torus. Our numerical simulations reproduce this effect. The maximal radius obtained in numerical simulations precisely matches the experimental value. However, the large velocity limit has not been reached experimentally or numerically. We discuss several complications that arise at large velocity: swirling motions observed in the cross-section of the toroidal drop and the appearance of a thin film in the centre of the toroidal drop. The numerical results predict the dry-out of this film for sufficiently high Reynolds and Weber numbers. When the drop rebounds, it has a top-heavy shape. In this final stage, the kinetic energy is a small fraction of its initial value.