scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Fluids Engineering-transactions of The Asme in 2008"



Journal ArticleDOI
TL;DR: In this article, an eddy-viscosity turbulence model employing three additional transport equations is presented and applied to a number of transitional flow test cases, which is based on the k- framework and represents a substantial refinement to a transition-sensitive model that has been previously documented in the open literature.
Abstract: An eddy-viscosity turbulence model employing three additional transport equations is presented and applied to a number of transitional flow test cases. The model is based on the k- framework and represents a substantial refinement to a transition-sensitive model that has been previously documented in the open literature. The third transport equation is included to predict the magnitude of low-frequency velocity fluctuations in the pretransitional boundary layer that have been identified as the precursors to transition. The closure of model terms is based on a phenomenological (i.e., physics-based) rather than a purely empirical approach and the rationale for the forms of these terms is discussed. The model has been implemented into a commercial computational fluid dynamics code and applied to a number of relevant test cases, including flat plate boundary layers with and without applied pressure gradients, as well as a variety of airfoil test cases with different geometries, Reynolds numbers, freestream turbulence conditions, and angles of attack. The test cases demonstrate the ability of the model to successfully reproduce transitional flow behavior with a reasonable degree of accuracy, particularly in comparison with commonly used models that exhibit no capability of predicting laminar-toturbulent boundary layer development. While it is impossible to resolve all of the complex features of transitional and turbulent flows with a relatively simple Reynolds-averaged modeling approach, the results shown here demonstrate that the new model can provide a useful and practical tool for engineers addressing the simulation and prediction of transitional flow behavior in fluid systems. DOI: 10.1115/1.2979230

508 citations


Journal ArticleDOI
TL;DR: In this article, a particle image velocimetry (PIV) system was used to investigate the flow velocity field in the case of a developing cavitation vortex, the so-called vortex rope, at the outlet of a Francis turbine runner.
Abstract: Partial flow rate operation of hydroturbines with constant pitch blades causes complex unstable cavitating flow in the diffuser cone. A particle image velocimetry (PIV) system allows investigating the flow velocity field in the case of a developing cavitation vortex, the so-called vortex rope, at the outlet of a Francis turbine runner. The synchronization of the PIV flow survey with the rope precession allows applying the ensemble averaging by phase technique to extract both the periodic velocity components and the rope shape. The influence of the turbine setting evel on the volume of the cavity rope and its centerline is investigated, providing a physical knowledge about the hydrodynamic complex phenomena involved in the development of the cavitation rope in Francis turbine operating regimes.

123 citations


Journal ArticleDOI
TL;DR: In this paper, an experimental study was conducted to characterize the transient behavior of laminar flow separation on a NASA low-speed GA (W)-1 airfoil at the chord Reynolds number of 70,000.
Abstract: An experimental study was conducted to characterize the transient behavior of laminar flow separation on a NASA low-speed GA (W)-1 airfoil at the chord Reynolds number of 70,000. In addition to measuring the surface pressure distribution around the airfoil, a high-resolution particle image velocimetry (PIV) system was used to make detailed flow field measurements to quantify the evolution of unsteady flow structures around the airfoil at various angles of attack (AOAs). The surface pressure and PIV measurements clearly revealed that the laminar boundary layer would separate from the airfoil surface, as the adverse pressure gradient over the airfoil upper surface became severe at AOA ≥8.0 deg. The separated laminar boundary layer was found to rapidly transit to turbulence by generating unsteady Kelvin-Helmholtz vortex structures. After turbulence transition, the separated boundary layer was found to reattach to the airfoil surface as a turbulent boundary layer when the adverse pressure gradient was adequate at AOA 12.0 deg.

114 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed a new windmill concept, the "flapping wing power generator", which would solve the laminar separation problem in conventional windmills, and they optimized the system to maximize the efficiency and obtained the set of design parameters which achieved best efficiency.
Abstract: In conventional windmills, the high tip speed creates aerodynamic noise, and when they are used at very low Reynolds numbers, their performance deteriorates due to laminar separation. These are important issues in modern windmills. Present study deals with a new windmill concept, the "flapping wing power generator," which would solve such problems. The concept is to extract energy via the flutter phenomena and the concept has been developed by some researchers. In 2003, Isogai et al. 2003, "Design Study of Elastically Supported Flapping Wing Power Generator," International Forum on Aeroelasticity and Structural Dynamics, Amsterdam) proposed a new system. The system utilizes dynamic stall vortices efficiently and generates high power. The dynamic stall vortex is something that should be avoided in conventional windmills. They optimized the system to maximize the efficiency and obtained the set of design parameters, which achieved best efficiency. The system works at low frequencies and it enables high efficiency. To realize the system, it is necessary to consider the power and the efficiency. Thus, the present study optimized the system to maximize both the power and the efficiency. To obtain nondominated solutions, which are widely distributed in the design space, adaptive neighboring search, which is one of evolutionary algorithms, has been extended to handle multiple objectives and was used in the present study. Self-organizing map was used for the data mining. The trade-off between the power and the efficiency has been visualized. The trade-off curve was shaped by the constraints on the reduced frequency and the phase delay angle, which were imposed so that the dynamic stall phenomenon gives favorable effects on the power generation. The heaving amplitude was a parameter correlated to the objective functions. The reduced frequency and the phase delay angle change to control the heaving amplitude. Consequently, when the power is emphasized, the system undergoes a large heaving motion with a low frequency. On the other hand, when the efficiency is emphasized, the system undergoes a small heaving motion with a high frequency. Multiobjective optimization and data mining revealed the trade-off of the objective functions and the parameters correlated to the objective functions. The power obtained was comparable to that of present windmills at low tip-speed ratio region.

103 citations


Journal ArticleDOI
TL;DR: In this paper, a three-dimensional twisted hydrofoil with an attached cavitaty closely related to propellers was observed with a high-speed camera at the University of Delft Cavitation Tunnel.
Abstract: A three-dimensional twisted hydrofoil with an attached cavitaty closely related to propellers was observed with a high-speed camera at the University of Delft Cavitation Tunnel. Reentrant flow coming from the sides of the cavity aimed at the center plane—termed side-entrant flow—collided in the closure region of the cavity, pinching off a part of the sheet resulting in a periodic shedding. The collapse of the remainder of the sheet appears to be a mixing layer at the location of the colliding reentrant flows. Collision of side-entrant jets in the closure region of a cavity is identified as a second shedding mechanism, in addition to reentrant flow impinging the sheet interface at the leading edge.

103 citations


Journal ArticleDOI
TL;DR: In this paper, cross-wind flows around two simplified high-speed trains with different nose shapes are studied using large-eddy simulation (LES) with the standard Smagorinsky model, and three-dimensional effects of the nose on the flow structures in the wake and on aerodynamic quantities such as lift and side force coefficients, flow patterns, local pressure coefficient and wake frequencies are investigated.
Abstract: Cross-wind flows around two simplified high-speed trains with different nose shapes are studied using large-eddy simulation (LES) with the standard Smagorinsky model. The Reynolds number is 300000 based on the height of the train and the free-stream velocity. The cross section and the length of the two train models are identical whilst one model has a nose length twice that of the other. The three-dimensional effects of the nose on the flow structures in the wake and on the aerodynamic quantities such as lift and side force coefficients, flow patterns, local pressure coefficient and wake frequencies are investigated. The short-nose train simulation shows highly unsteady and three-dimensional flow around the nose yielding more vortex structures in the wake. These structures result in a surface flow that differs from that in the long-nose train flow. They also influence the dominating frequencies that arise due to the shear-layer instabilities. Prediction of vortex shedding, flow patterns in the train surface and time-averaged pressure distribution obtained from the long-nose train simulation are in good agreement with the available experimental data.

78 citations


Journal ArticleDOI
TL;DR: In this paper, a modified RNG K-e turbulence model was evaluated by comparing the calculated spatial-temporal pressure distributions on the suction wall with experimental data, and the results showed that the predicted cavity growth and shedding cycle and its frequency agree well with the experimental data.
Abstract: Cavitating flow around a hydrofoil was simulated using a transport equation-based model with consideration of the influence of noncondensable gases. The cavity length and the pressure distributions on the suction side can be well predicted for stable cavities using the standard renormalization-group (RNG) K-e turbulence model with proper non-condensable gas mass fraction. The unstable cavity shedding at lower cavitation numbers was not well predicted by the standard RNG κ-e turbulence model. A modified RNG K-e turbulence model was evaluated by comparing the calculated spatial-temporal pressure distributions on the suction wall with experimental data. The results showed that the predicted cavity growth and shedding cycle and its frequency agree well with the experimental data. However, the pressure increase caused by interaction of the reentrant flow and the cavity interface is overestimated, which caused the time-averaged pressure on the front part of the hydrofoil to be overestimated. The time-averaged pressure on the rear of the hydrofoil was low because the small cavity shedding on the rear part of the cavity was not predicted.

77 citations


Journal ArticleDOI
TL;DR: In this paper, the numerical simulation of cavitating flows in turbomachinery is studied at the Turbomachinery and Cavitation team of LEGI (Grenoble - France) in collaboration with the French space agency (CNES) and the rocket engine division of SNECMA Moteurs.
Abstract: The numerical simulation of cavitating flows in turbomachinery is studied at the Turbomachinery and Cavitation team of LEGI (Grenoble - France) in collaboration with the French space agency (CNES) and the rocket engine division of SNECMA Moteurs. A barotropic state law is proposed to model the cavitation phenomenon and this model has been integrated in the commercial CFD code Fine/TurboTM, developed and commercialized by Numeca International. The numerical aspects of the work are mainly focused on numerical stability and reliability of the algorithm, when introducing large density variations through the strongly non linear barotropic state law. This research conducted first to changes in the way preconditioning parameters are calculated. Internal flows in turbomachinery have been deeply investigated. A methodology allowing the numerical simulation of the head drop induced by the development of cavitation has been proposed on the basis of computations in inducers and centrifugal pumps. These simulations have allowed the characterization of the mechanisms leading to the head drop and the visualization of the effects of the development of cavitation on internal flows.

77 citations


Journal ArticleDOI
TL;DR: In this paper, a study on the fluid-dynamic pulsations and the corresponding dynamic forces generated in a centrifugal pump with single suction and vaneless volute due to blade-volute interaction is presented.
Abstract: A study is presented on the fluid-dynamic pulsations and the corresponding dynamic forces generated in a centrifugal pump with single suction and vaneless volute due to blade-volute interaction. Four impellers with different outlet diameters, obtained from progressive cutbacks (trimmings) of the greatest one, were successively considered in the test pump, so that the radial gap between the impeller and the volute ranged from 8.8% to 23.2% of the impeller radius. The study was based on the numerical computation of the unsteady flow through the machine for a number of flow rates by means of the FLUENT code, solving the 3D unsteady Reynolds-averaged Navier-Stokes equations. Additionally, an experimental series of tests was conducted for the pump with one of the impellers, in order to obtain pressure fluctuation data along the volute front wall that allowed contrasting the numerical predictions. The data collected from the numerical computations were used to estimate the dynamic radial forces and torque at the blade-passing frequency, as a function of flow rate and blade-tongue radial gap. As expected, for a given impeller diameter, the dynamic load increases for off-design conditions, especially for the low range of flow rates, whereas the progressive reduction of the impeller-tongue gap brings about corresponding increments in dynamic load. In particular, varying the blade-tongue gap within the limits of this study resulted in multiplying the maximum magnitude of the blade-passing frequency radial force by a factor of about 4 for low flow rates (i.e., below the nominal flow rate) and 3 for high flow rates.

76 citations


Journal ArticleDOI
TL;DR: Overall results prove that for medium and high Froude numbers the computational towing tank is an efficient and accurate tool to predict curves of resistance and propulsion for ship flows using a single run.
Abstract: A procedure is proposed to perform ship hydrodynamics computations for a wide range of velocities in a single run, herein called the computational towing tank. The method is based on solving the fluid flow equations using an inertial earth-fixed reference frame, and ramping up the ship speed slowly such that the time derivatives become negligible and the local solution corresponds to a quasi steady-state. The procedure is used for the computation of resistance and propulsion curves, in both cases allowing for dynamic calculation of the sinkage and trim. Computational tests are performed for the Athena R/V model DTMB 5365, in both bare hull with skeg and fully appended configurations, including two speed ramps and extensive comparison with experimental data. Comparison is also performed against steady-state points, demonstrating that the quasisteady solutions obtained match well the single-velocity computations. A verification study using seven systematically refined grids was performed for one Froude number, and grid convergence for resistance coefficient, sinkage, and trim were analyzed. The verification study concluded that finer grids are needed to reach the asymptotic range, though validation was achieved for resistance coefficient and sinkage but not for trim. Overall results prove that for medium and high Froude numbers the computational towing tank is an efficient and accurate tool to predict curves of resistance and propulsion for ship flows using a single run. The procedure is not possible or highly difficult using a physical towing tank suggesting a potential of using the computational towing tank to aid the design process.

Journal ArticleDOI
TL;DR: A multiphysics model and the numerical procedure to predict the ECM process are developed and verified that the present model and numerical procedure could satisfactorily predict the final shape of the blade.
Abstract: Electrochemical machining (ECM) is an advanced machining technology. It has been applied in highly specialized fields such as aerospace, aeronautics, and medical industries. However, it still has some problems to be overcome. The efficient tool design, electrolyte processing, and disposal of metal hydroxide sludge are the typical issues. To solve such problems, computational fluid dynamics is expected to be a powerful tool in the near future. However, a numerical method that can satisfactorily predict the electrolyte flow has not been established because of the complex nature of flows. In the present study, we developed a multiphysics model and the numerical procedure to predict the ECM process. Our model and numerical procedure satisfactorily simulated a typical ECM process for a two-dimensional flat plate. Next, the ECM process for a three-dimensional compressor blade was simulated. Through visualization of the computational results, including the multiphase flow, and thermal and electric fields between the tool and the blade, it is verified that the present model and numerical procedure could satisfactorily predict the final shape of the blade.

Journal ArticleDOI
TL;DR: In this article, the effect of free surface on the vortex structure in the near wake is investigated in detail together with the loadings on the cylinder at various Reynolds and Froude numbers.
Abstract: Flows past a free surface piercing cylinder are studied numerically by large eddy simulation at Froude numbers up to FrD=3.0 and Reynolds numbers up to ReD=1×105. A two-phase volume of fluid technique is employed to simulate the air-water flow and a flux corrected transport algorithm for transport of the interface. The effect of the free surface on the vortex structure in the near wake is investigated in detail together with the loadings on the cylinder at various Reynolds and Froude numbers. The computational results show that the free surface inhibits the vortex generation in the near wake, and as a result, reduces the vorticity and vortex shedding. At higher Froude numbers, this effect is stronger and vortex structures exhibit a 3D feature. However, the free surface effect is attenuated as Reynolds number increases. The time-averaged drag force on the unit height of a cylinder is shown to vary along the cylinder and the variation depends largely on Froude number. For flows at ReD=2.7×104, a negative pressure zone is developed in both the air and water regions near the free surface leading to a significant increase of drag force on the cylinder in the vicinity of the free surface at about FrD=2.0. The mean value of the overall drag force on the cylinder increases with Reynolds number and decreases with Froude number but the reduction is very small for FrD=1.6–2.0. The dominant Strouhal number of the lift oscillation decreases with Reynolds number but increases with Froude number.

Journal ArticleDOI
TL;DR: In this paper, splitter plates of various lengths attached on the cylinder base are experimentally investigated in shallow water flow for passive control of vortex shedding behind a circular cylinder by splitter plate.
Abstract: In the present work, passive control of vortex shedding behind a circular cylinder by splitter plates of various lengths attached on the cylinder base is experimentally investigated in shallow water flow Detailed measurements of instantaneous and time-averaged flow data of wake flow region at a Reynolds number of Re=6300 were obtained by particle image velocimetry technique The length of the splitter plate was varied from L∕D=02 to L∕D=24 in order to see the effect of the splitter plate length on the flow characteristics Instantaneous and time-averaged flow data clearly indicate that the length of the splitter plate has a substantial effect on the flow characteristics The flow characteristics in the wake region of the circular cylinder sharply change up to the splitter plate length of L∕D=10 Above this plate length, small changes occur in the flow characteristics

Journal ArticleDOI
TL;DR: In this paper, a particle image velocimetry is used to study the mean and turbulent fields of separated and redeveloping flow over square, rectangular, and semicircular blocks fixed to the bottom wall of an open channel.
Abstract: A particle image velocimetry is used to study the mean and turbulent fields of separated and redeveloping flow over square, rectangular, and semicircular blocks fixed to the bottom wall of an open channel. The open channel flow is characterized by high background turbulence level, and the ratio of the upstream boundary layer thickness to block height is considerably higher than in prior experiments. The variation of the Reynolds stresses along the dividing streamlines is discussed within the context of vortex stretching, longitudinal strain rate, and wall damping. It appears that wall damping is a more dominant mechanism in the vicinity of reattachment. In the recirculation and reattachment regions, profiles of the mean velocity, turbulent quantities, and transport terms are used to document the salient features of block geometry on the flow. The flow characteristics in these regions strongly depend on block geometry. Downstream of reattachment, a new shear layer is formed, and the redevelopment of the shear layer toward the upstream open channel boundary layer is studied using the boundary layer parameters and Reynolds stresses. The results show that the mean flow rapidly redeveloped so that the Clauser parameter recovered to its upstream value at 90 step heights downstream of reattachment. However, the rate of development close to reattachment strongly depends on block geometry.

Journal ArticleDOI
TL;DR: In this paper, the spectral properties of cavitation induced flow instabilities are investigated in a cavitating NACA0015 foil in three different tunnels that revealed remarkably different cavity shedding appearances and behaviors.
Abstract: Cavitation induced flow instabilities are of interest in numerous applications. Experimental and numerical investigations of this phenomenon are taking place at several institutions around the world. Although there is qualitative agreement among the numerous recent papers on the subject, there is a lack of agreement with regard to important details, such as the spectral content of unsteady lift oscillations. This paper summarizes observations of a cavitating NACA0015 foil in three different tunnels that revealed remarkably different cavity shedding appearances and behaviors. Some of the differences were attributed to system instabilities. However, in addition to a different cavitation behavior attributed to system instabilities, it was found that differences in gas content could significantly alter the lift spectrum of a cavitating foil. For a certain range of the composite parameter σ∕2α near 4, the dominant frequency appears to double when the gas content is reduced by a half. It is also argued that surface effects can have a significant influence on fully wetted time during cavity shedding. Normally, surface effects are assumed to play an important role in the initial inception of a fully wetted hydrofoil with gas content being the primary factor governing developed cavitation behavior. However, the repetitive nature of the process implies that each shedding cycle is an individual inception process. Hence, the unexpected role of surface effects in partially cavitating hydrofoils. The conclusions reached have important ramifications concerning numerical code verification that is a topic of major concern.

Journal ArticleDOI
TL;DR: In this article, a highly submerged cavitating water jet was visualized by high speed camera photography in order to study and understand the jet structure and the behavior of cloud cavitation within time and space.
Abstract: Visualization of a highly submerged cavitating water jet was done by high-speed camera photography in order to study and understand the jet structure and the behavior of cloud cavitation within time and space. The influencing parameters, such as injection pressure, nozzle diameter and geometry, and nozzle direction (convergent and divergent), were experimentally proven to be very significant. Periodical shedding and discharging of cavitation clouds have been also analyzed and the corresponding frequency was determined by cloud shape analysis. Additionally, the dependence of this frequency on injection pressure and nozzle geometry has been analyzed and a simple formula of correspondence has been proposed. The formula has been tested on self-measured and literature data. The recordings of sonoluminescence phenomenon proved the bubble collapse everywhere along the jet.

Journal ArticleDOI
TL;DR: In this article, a generalized version of the two-equation turbulence model was proposed for flows in porous media, which can be applied to most complex turbulent flows such as cross flows in banks of cylinders and packed beds, and longitudinal flows in channels, pipes, and rod bundles.
Abstract: This study focuses on Nakayama and Kuwahara's two-equation turbulence model and its modifications, previously proposed for flows in porous media, on the basis of the volume averaging theory. Nakayama and Kuwahara's model is generalized so that it can be applied to most complex turbulent flows such as cross flows in banks of cylinders and packed beds, and longitudinal flows in channels, pipes, and rod bundles. For generalization, we shall reexamine the extra production terms due to the presence of the porous media, appearing in the transport equations of turbulence kinetic energy and its dissipation rate. In particular, we shall consider the mean flow kinetic energy balance within a pore, so as to seek general expressions for these additional production terms, which are valid for most kinds of porous media morphology. Thus, we establish the macroscopic turbulence model, which does not require any prior microscopic numerical experiments for the structure. Hence, for the given permeability and Forchheimer coefficient, the model can be used for analyzing most complex turbulent flow situations in homogeneous porous media without a detailed morphological information. Preliminary examination of the model made for the cases of packed bed flows and longitudinal flows through pipes and channels reveals its high versatility and performance.

Journal ArticleDOI
TL;DR: In this paper, the authors presented the results of an experimental program with the aim of controlling the flow in a highly unstable 90 deg curved diffuser, which is an integral part of an open jet wind tunnel at the University of Southampton, has the unique configuration of extreme shortness and high area ratio.
Abstract: This paper represents the results of an experimental program with the aim of controlling the flow in a highly unstable 90 deg curved diffuser. The diffuser, which is an integral part of an open jet wind tunnel at the University of Southampton, has the unique configuration of extreme shortness and high area ratio. In this study, several passive flow control devices such as vortex generators, woven wire mesh screens, honeycomb, and guide vanes were employed to control the three-dimensional diffusing flow in a scaled-down model. Although less successful for vortex generators, the other devices were found to improve significantly the uniformity of the flow distribution inside the curved diffuser and hence the exit flow. This study suggests that a cumulative pressure drop coefficient of at least 4.5 at the diffuser exit with at least three guide vanes is required to achieve adequate flow uniformity at the diffuser exit. These flow conditioning treatments were applied to the full-scale diffuser with exit dimensions of 1.3×1.3 m2. Flow with comparable uniformity to the scale-model diffuser is obtained. This study provides valuable guidelines on the design of curved/straight diffusers with nonseparated flow and minimal pressure distortion at the exit.

Journal ArticleDOI
TL;DR: In this article, the effect of viscoelasticity on the thermodynamic performance of a thermally decomposable lubricant subjected to shear and Arrhenius kinetics is investigated with direct numerical simulations.
Abstract: The effect of viscoelasticity on the thermodynamic performance of a thermally decomposable lubricant subjected to shear and Arrhenius kinetics is investigated with direct numerical simulations. A numerical algorithm based on the finite difference method is implemented in time and space with the Oldroyd-B constitutive equation as the model for the viscoelastic liquids. We report enhanced efficiency in the case of a polymeric lubricant as compared with the purely viscous lubricant. In particular, it is demonstrated that the use of polymeric liquids helps to delay the onset of thermal runaway as compared with progressively Newtonian liquids.

Journal ArticleDOI
TL;DR: In this paper, a number of plasma-based active flow control strategies were investigated, such as chordwise location of actuation, spanwise periodic arrays of actuators, multiple actuation in the streamwise direction, and spanwise-direct actuation.
Abstract: Recent numerical simulations have indicated the potential of plasma-based active flow control for improving the efficiency of highly loaded low-pressure turbines. The configuration considered in the current and earlier simulations correspond to previous experiments and computations for the flow at a Reynolds number of 25,000 based on axial chord and inlet conditions. In this situation, massive separation occurs on the suction surface of each blade due to uncovered turning, causing blockage in the flow passage. It was numerically demonstrated that asymmetric dielectric-barrier-discharge actuators were able to mitigate separation, thereby decreasing turbine wake losses. The present investigation extends this work by investigating a number of plasma-based flow control strategies. These include the chordwise location of actuation, spanwise periodic arrays of actuators, multiple actuation in the streamwise direction, and spanwise-direct actuation. The effect of alternate plasma-force models is also considered. Solutions were obtained to the Navier-Stokes equations, which were augmented by source terms used to represent plasma-induced body forces imparted by an actuator on the fluid. The numerical method utilized a high-fidelity time-implicit scheme, employing domain decomposition to carry out calculations on a parallel computing platform. A high-order overset grid approach preserved spatial accuracy in locally refined embedded regions. Features ofthe flowfields are described, and resultant solutions are compared to each other, with a previously obtained control case, and with the base line situation where no control was enforced.

Journal ArticleDOI
TL;DR: In this paper, the response of a low-drag partially-cavitating hydrofoil to periodical perturbations of incoming sea wave was investigated. But the results were limited to the case when the cavitation number was controlled by ventilation.
Abstract: This paper describes a study of the response of a recently developed low-drag partiallycavitating hydrofoil (denoted as OK-2003) to periodical perturbations of incoming flow.A two-flap assembly specially designed to simulate sea wave impact on the cavitatinghydrofoil generates the perturbations. The design range of cavitation number was main-tained by ventilation. Unsteady flow can be simulated over a range of ratios of gust flowwavelength to cavity length. The measurement of time-average lift and drag coefficientsand their fluctuating values over a range of inflow characteristics allows a determinationof hydrofoil performance over a range of conditions that could be expected for a proto-type hydrofoil. Both regular interaction with practically linear perturbations and reso-nancelike singular interaction with substantial nonlinear effects were noted. The obser-vations are accompanied by a numerical analysis that identifies resonance phenomena asa function of excitation frequency.

Journal ArticleDOI
TL;DR: In this paper, a criterion is proposed to predict the onset of shear-driven thin liquid film separation from the surface at an expanding corner, which is validated with experimental measurements of the percent of film mass separated as well as comparisons to other observations from the literature.
Abstract: The behavior of a shear-driven thin liquid film at a sharp expanding corner is of interest in many engineering applications. However, details of the interaction between inertial, surface tension, and gravitational forces at the corner that result in partial or complete separation of the film from the surface are not clear. A criterion is proposed to predict the onset of shear-driven film separation from the surface at an expanding corner. The criterion is validated with experimental measurements of the percent of film mass separated as well as comparisons to other observations from the literature. The results show that the proposed force ratio correlates well to the onset of film separation over a wide range of experimental test conditions. The correlation suggests that the gas phase impacts the separation process only through its effect on the liquid film momentum.

Journal ArticleDOI
TL;DR: In this paper, the control of two-dimensional flows around the square back Ahmed body is achieved by using porous devices added on some parts of the body, where a good choice of the location of the porous interfaces yields a significant improvement of the aerodynamic quantities.
Abstract: The control of two-dimensional flows around the square back Ahmed body is achieved by using porous devices added on some parts of the body. The square back Ahmed body is considered either in an open domain or on top of a road. The modeling of the flow in different media is performed by means of the penalization method. A good choice of the location of the porous interfaces yields a significant improvement of the aerodynamic quantities, especially for the square back body.

Journal ArticleDOI
TL;DR: In this paper, a flexible asymmetric shock tube (FAST) setup for the experimental verification of the existence of nonclassical rarefaction shock waves in molecularly complex dense vapors is presented.
Abstract: This paper presents the conceptual design of the flexible asymmetric shock tube (FAST) setup for the experimental verification of the existence of nonclassical rarefaction shock waves in molecularly complex dense vapors. The FAST setup is a Ludwieg tube facility composed of a charge tube that is separated from the discharge vessel by a fast-opening valve. A nozzle is interposed between the valve and the charge tube to prevent disturbances from the discharge vessel to propagate into the tube. The speed of the rarefaction wave generated in the tube as the valve opens is measured by means of high-resolution pressure transducers. The provisional working fluid is siloxane D6 (dodecamethylcyclohexasiloxane, C12H36O6Si6). Numerical simulations of the FAST experiment are presented using nonideal thermodynamic models to support the preliminary design. The uncertainties related to the thermodynamic model of the fluid are assessed using a state-of-the-art thermodynamic model of fluid D6. The preliminary design is confirmed to be feasible and construction requirements are found to be well within technological limits.

Journal ArticleDOI
TL;DR: In this article, the authors describe the flow structures on the suction surface of a highly cambered low-pressure turbine (LPT) blade subjected to periodic convective wakes.
Abstract: The paper describes the flow structures on the suction surface of a highly cambered low-pressure turbine (LPT) blade (T106 profile) subjected to periodic convective wakes. A separation bubble on the rear half of the suction side of the blade was found to form under the operating condition due to the highly diffusive boundary layer. Interactions of migrating wakes with this separated boundary layer trigger rollup of the shear layer leading to transition and the appearance of coherent vortices. To characterize the dynamics of these large-scale structures, a proper orthogonal decomposition is pursued on both the fluctuating velocity and the vorticity fields generated by large-eddy simulations (LESs) of wake passing over the LPT blade for a Reynolds number Re = 1.6 X 105. The first two modes clearly depict the rollup of the unstable shear layer and formation of large-scale vortex loops that contain a major fraction of the fluctuation energy. The present LES, at least in a qualitative sense, illustrates the large-scale motions in the outer layer and dynamics of vortical structures in a separated boundary layer excited by external perturbations.

Journal ArticleDOI
TL;DR: In this paper, a pressure-based Eulerian multifluid model for phase transition with droplet dynamics in transonic high-speed flows is described, implemented using an element-based finite-volume method, which is implicit in time and solves mass and momentum conservation across all phases via a coupled algebraic multigrid approach.
Abstract: A pressure based Eulerian multifluid model for application to phase transition with droplet dynamics in transonic high-speed flows is described. It is implemented using an element-based finite-volume method, which is implicit in time and solves mass and momentum conservation across all phases via a coupled algebraic multigrid approach. The model emphasizes treatment of the condensed phases, with their respective velocity and thermal fields, in inertial nonequilibrium and metastable gas flow conditions. The droplet energy state is treated either in algebraic form or through transport equations depending on appropriate physical assumptions. Due to the complexity of the two-phase phenomena, the model is presented and validated by exploring phase transition and droplet dynamics in a turbine cascade geometry. The influence of droplet inertia on localized homogeneous nucleation is examined.

Journal ArticleDOI
TL;DR: Passive flow control, designed to minimize vortical structures at the piston exit and reduce potential cavitation, noise, and vibrations, was achieved by geometric smoothing and the importance of accounting for full 3D geometry effects in modeling and optimizing control valve performance was demonstrated via CFD.
Abstract: The ability to understand and manage the performance of hydraulic control valves is important in many automatic and manual industrial processes. The use of computational fluid dynamics (CFD) aids in the design of such valves by inexpensively providing insight into flow patterns, potential noise sources, and cavitation. Applications of CFD to study the performance of complex three-dimensional (3D) valves, such as poppet, spool, and butterfly valves, are becoming more common. Still, validation and accuracy remain an issue. The Reynolds-averaged Navier-Stokes equations were solved numerically using the commercial CFD package FLUENT V6.2 to assess the effect of geometry on the performance of a 3D control valve. The influence of the turbulence model and of a cavitation model was also investigated. Comparisons were made to experimental data when available. The 3D model of the valve was constructed by decomposing the valve into several subdomains. Agreement between the numerical predictions and measurements of flow pressure was less than 6% for all cases studied. Passive flow control, designed to minimize vortical structures at the piston exit and reduce potential cavitation, noise, and vibrations, was achieved by geometric smoothing. In addition, these changes helped to increase C υ and reduce the area affected by cavitation as it is related to the jet shape originated at the valve throat. The importance of accounting for full 3D geometry effects in modeling and optimizing control valve performance was demonstrated via CFD. This is particularly important in the vicinity of the piston. It is worth noting that the original geometry resulted in a lower C υ with higher velocity magnitude within the valve, whereas after smoothing C υ increased and served to delay cavitation inception.

Journal ArticleDOI
TL;DR: In this paper, the authors presented some common features of oscillatory airfoils and the method for indicating dynamic stall onset for the unsteady process, and an extension of the stall-onset criterion was made for oscillator test data.
Abstract: This research presents some common features of oscillatory airfoils, and the method for indicating dynamic stall onset for the unsteady process. Under deep stall conditions, the stall-onset angle in oscillation is independent of the mean angle of the oscillatory motion, and by combining the reduced frequency and the amplitude of the oscillatory motion, the equivalent reduced pitch rate is an analog of this motion to the constant reduced pitch rate of the ramp-up motion. By correlating with the measured data, and with the ramp-up results, the equivalent reduced pitch rate can be defined as a representation for the oscillatory motion. Accordingly, the triple-parameter problem of an oscillation (mean angle, reduced frequency, and amplitude) degrades into the single-parameter problem (equivalent reduced pitch rate). Based on these foundations, an extension of the stall-onset criterion is then made for oscillatory airfoils: a method of extracting the stall-onset parameters directly from oscillatory test data, and an indication of stall onset for the oscillatory airfoils. The results from the new proposed method have shown the consistency with the data of Glasgow University and the public data.

Journal ArticleDOI
TL;DR: In this paper, the authors focused on the effect of thermodynamics on cavitation performances and cavitation instabilities in an inducer and found that the degree of thermodynamic effect was increased with an increase of the tip cavitation length, particularly when the cavity length extended over the throat of the blade passage.
Abstract: Based on the length of the tip cavitation as an indication of cavitation, we focused on the effect of thermodynamics on cavitation performances and cavitation instabilities in an inducer. Comparison of the tip cavity length in liquid nitrogen (76 K and 80 K) as working fluid with that in cold water (296 K) allowed us to estimate the strength of the thermodynamic effect on the cavitations. The degree of thermodynamic effect was found to increase with an increase of the cavity length, particularly when the cavity length extended over the throat of the blade passage. In addition, cavitation instabilities occurred both in liquid nitrogen and in cold water when the cavity length increased. Subsynchronous rotating cavitation appeared both in liquid nitrogen and in cold water. In the experiment using liquid nitrogen, the temperature difference between 76 K and 80 K affected the range in which the subsynchronous rotating cavitation occurred. In contrast, deep cavitation surge appeared only in cold water at lower cavitation numbers. From these experimental results, it was concluded that when the cavity length extends over the throat, the thermodynamic effect also affects the cavitation instabilities as a "thermal damping" through the unsteady cavitation characteristics.