scispace - formally typeset
Search or ask a question

Showing papers in "Journal of General Virology in 2017"


Journal ArticleDOI
TL;DR: The Flaviviridae is a family of small enveloped viruses with RNA genomes of 9000–13 000 bases that infect mammals and birds and many are important human and veterinary pathogens.
Abstract: The Flaviviridae is a family of small enveloped viruses with RNA genomes of 9000–13 000 bases. Most infect mammals and birds. Many flaviviruses are host-specific and pathogenic, such as hepatitis C virus in the genus Hepacivirus. The majority of known members in the genus Flavivirus are arthropod borne, and many are important human and veterinary pathogens (e.g. yellow fever virus, dengue virus). This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) report on the taxonomy of the Flaviviridae, which is available at www.ictv.global/report/flaviviridae.

493 citations


Journal ArticleDOI
TL;DR: The geminiviruses are a family of small, non-enveloped viruses with single-stranded, circular DNA genomes of 2500–5200 bases causing economically important diseases in most tropical and subtropical regions of the world.
Abstract: The geminiviruses are a family of small, non-enveloped viruses with single-stranded, circular DNA genomes of 2500–5200 bases. Geminiviruses are transmitted by various types of insect (whiteflies, leafhoppers, treehoppers and aphids). Members of the genus Begomovirus are transmitted by whiteflies, those in the genera Becurtovirus, Curtovirus, Grablovirus, Mastrevirus and Turncurtovirus are transmitted by specific leafhoppers, the single member of the genus Topocuvirus is transmitted by a treehopper and one member of the genus Capulavirus is transmitted by an aphid. Geminiviruses are plant pathogens causing economically important diseases in most tropical and subtropical regions of the world. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Geminiviridae which is available at www.ictv.global/report/geminiviridae.

492 citations


Journal ArticleDOI
TL;DR: The family Picornaviridae comprises small non-enveloped viruses with RNA genomes of 6.7 to 10.1kb, and contains >30 genera and >75 species.
Abstract: The family Picornaviridae comprises small non-enveloped viruses with RNA genomes of 6.7 to 10.1 kb, and contains >30 genera and >75 species. Most of the known picornaviruses infect mammals and birds, but some have also been detected in reptiles, amphibians and fish. Many picornaviruses are important human and veterinary pathogens and may cause diseases of the central nervous system, heart, liver, skin, gastrointestinal tract or upper respiratory tract. Most picornaviruses are transmitted by the faecal-oral or respiratory routes. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Picornaviridae, which is available at www.ictv.global/report/picornaviridae.

313 citations


Journal ArticleDOI
TL;DR: Seven new species in the genus Pestivirus (family Flaviviridae) are proposed in addition to the four existing species, and naming species in a host-independent manner using the format Pestvirus X.
Abstract: We propose the creation of seven new species in the genus Pestivirus (family Flaviviridae) in addition to the four existing species, and naming species in a host-independent manner using the format Pestivirus X. Only the virus species names would change; virus isolates would still be referred to by their original names. The original species would be re-designated as Pestivirus A (original designation B ovine viral diarrhea virus 1), Pestivirus B (Bovine viral diarrhea virus 2), Pestivirus C (Classical swine fever virus) and Pestivirus D (Border disease virus). The seven new species (and example isolates) would be Pestivirus E (pronghorn pestivirus), Pestivirus F (Bungowannah virus), Pestivirus G (giraffe pestivirus), Pestivirus H (Hobi-like pestivirus), Pestivirus I (Aydin-like pestivirus), Pestivirus J (rat pestivirus) and Pestivirus K (atypical porcine pestivirus). A bat-derived virus and pestiviruses identified from sheep and goat (Tunisian sheep pestiviruses), which lack complete coding region sequences, may represent two additional species.

239 citations


Journal ArticleDOI
TL;DR: The Potyviridae is the largest family of RNA plant viruses, members of which have single-stranded, positive-sense RNA genomes and flexuous filamentous particles 680–900 nm long and 11–20 nm wide.
Abstract: The Potyviridae is the largest family of RNA plant viruses, members of which have single-stranded, positive-sense RNA genomes and flexuous filamentous particles 680–900 nm long and 11–20 nm wide. There are eight genera, distinguished by the host range, genomic features and phylogeny of the member viruses. Genomes range from 8.2 to 11.3 kb, with an average size of 9.7 kb. Most genomes are monopartite but those of members of the genus Bymovirus are bipartite. Some members cause serious disease epidemics in cultivated plants. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Potyviridae, which is available at www.ictv.global/report/potyviridae.

227 citations


Journal ArticleDOI
TL;DR: The family Hepeviridae includes enterically transmitted small non-enveloped positive-sense RNA viruses, which include hepatitis E virus, which is responsible for self-limiting acute hepatitis in humans and several mammalian species; the infection may become chronic in immunocompromised individuals.
Abstract: The family Hepeviridae includes enterically transmitted small non-enveloped positive-sense RNA viruses. It includes the genera Piscihepevirus, whose members infect fish, and Orthohepevirus, whose members infect mammals and birds. Members of the genus Orthohepevirus include hepatitis E virus, which is responsible for self-limiting acute hepatitis in humans and several mammalian species; the infection may become chronic in immunocompromised individuals. Extrahepatic manifestations of Guillain–Barre syndrome, neuralgic amyotrophy, glomerulonephritis and pancreatitis have been described in humans. Avian hepatitis E virus causes hepatitis–splenomegaly syndrome in chickens. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Hepeviridae, which is available at www.ictv.global/report/hepeviridae.

204 citations


Journal ArticleDOI
TL;DR: The family Pneumoviridae comprises large enveloped negative-sense RNA viruses that infect a range of mammalian species, while some members of the Metapneumovirus genus may also infect birds.
Abstract: The family Pneumoviridae comprises large enveloped negative-sense RNA viruses. This taxon was formerly a subfamily within the Paramyxoviridae, but was reclassified in 2016 as a family with two genera, Orthopneumovirus and Metapneumovirus. Pneumoviruses infect a range of mammalian species, while some members of the Metapneumovirus genus may also infect birds. Some viruses are specific and pathogenic for humans, such as human respiratory syncytial virus and human metapneumovirus. There are no known vectors for pneumoviruses and transmission is thought to be primarily by aerosol droplets and contact. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Pneumoviridae, which is available at www.ictv.global/report/pneumoviridae.

194 citations


Journal ArticleDOI
TL;DR: The Iridoviridae is a family of large, icosahedral viruses with double-stranded DNA genomes ranging in size from 103 to 220 kbp, and in vertebrates they can lead to high levels of mortality among commercially and ecologically important fish and amphibians.
Abstract: The Iridoviridae is a family of large, icosahedral viruses with double-stranded DNA genomes ranging in size from 103 to 220 kbp. Members of the subfamily Alphairidovirinae infect ectothermic vertebrates (bony fish, amphibians and reptiles), whereas members of the subfamily Betairidovirinae mainly infect insects and crustaceans. Infections can be either covert or patent, and in vertebrates they can lead to high levels of mortality among commercially and ecologically important fish and amphibians. This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Iridoviridae, which is available at www.ictv.global/report/iridoviridae.

144 citations


Journal ArticleDOI
TL;DR: It is proposed that an international working group could coordinate the nomenclature of lagoviruses and any proposals for revision and be divided into two genogroups that correspond to RHDV- and EBHSV-related viruses, respectively.
Abstract: Lagoviruses belong to the Caliciviridae family. They were first recognized as highly pathogenic viruses of the European rabbit (Oryctolagus cuniculus) and of the European brown hare (Lepus europaeus) that emerged in the 1970-1980s, namely, rabbit hemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV), according to the host species from which they had been first detected. However, the diversity of lagoviruses has recently expanded to include new related viruses with varying pathogenicity, geographic distribution and host ranges. Together with the frequent recombination observed amongst circulating viruses, there is a clear need to establish precise guidelines for classifying and naming lagovirus strains. Therefore, here we propose a new nomenclature based on phylogenetic relationships. In this new nomenclature a single species of lagovirus would be recognized and called Lagovirus europaeus. The species would be divided into two genogroups that correspond to RHDV- and EBHSV-related viruses, respectively. Genogroups could be subdivided into genotypes, which could themselves be subdivided into phylogenetically well-supported variants. Based on available sequences, pairwise distance cutoffs have been defined, but with the accumulation of new sequences these cutoffs may need to be revised. We propose that an international working group could coordinate the nomenclature of lagoviruses and any proposals for revision.

134 citations


Journal ArticleDOI
TL;DR: The family Circoviridae comprises viruses with small, circular, single-stranded DNA (ssDNA) genomes, including the smallest known animal viruses, which are distinguished by the position of the origin of replication relative to the coding regions and the length of the intergenic regions.
Abstract: The family Circoviridae comprises viruses with small, circular, single-stranded DNA (ssDNA) genomes, including the smallest known animal viruses. Members of this family are classified into two genera, Circovirus and Cyclovirus, which are distinguished by the position of the origin of replication relative to the coding regions and the length of the intergenic regions. Within each genus, the species demarcation threshold is 80 % genome-wide nucleotide sequence identity. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Circoviridae, which is available at www.ictv.global/report/circoviridae.

131 citations


Journal ArticleDOI
TL;DR: Members of the family Secoviridae are non-enveloped viruses with mono- or bipartite (RNA-1 and RNA-2) linear positive-sense ssRNA genomes with the size of the RNAs combined ranging from 9 to 13.7 kb.
Abstract: Members of the family Secoviridae are non-enveloped viruses with mono- or bipartite (RNA-1 and RNA-2) linear positive-sense ssRNA genomes with the size of the RNAs combined ranging from 9 to 137 kb They are related to picornaviruses and are classified in the order Picornavirales The majority of known members infect dicotyledonous plants and many are important plant pathogens (eg grapevine fanleaf virus and rice tungro spherical virus) This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) report on the taxonomy of the family Secoviridae available at wwwictvglobal/report/secoviridae

Journal ArticleDOI
TL;DR: The Polyomaviridae is a family of small, non-enveloped viruses with circular dsDNA genomes of approximately 5 kbp whose members have restricted host range, infecting mammals and birds.
Abstract: The Polyomaviridae is a family of small, non-enveloped viruses with circular dsDNA genomes of approximately 5 kbp. The family includes four genera whose members have restricted host range, infecting mammals and birds. Polyomavirus genomes have also been detected recently in fish. Merkel cell polyomavirus and raccoon polyomavirus are associated with cancer in their host; other members are human and veterinary pathogens. Clinical manifestations are obvious in immunocompromised patients but not in healthy individuals. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Polyomaviridae, which is available at www.ictv.global/report/polyomaviridae.

Journal ArticleDOI
TL;DR: The most common route of infection for iflaviruses is the ingestion of virus-contaminated food sources, and the host range has not been examined for most members.
Abstract: Iflaviridae is a family of small non-enveloped viruses with monopartite, positive-stranded RNA genomes of approximately 9–11 kilobases. Viruses of all classified species infect arthropod hosts, with the majority infecting insects. Both beneficial and pest insects serve as hosts, and infections can be symptomless (Nilaparvatalugens honeydew virus 1) or cause developmental abnormalities (deformed wing virus), behavioural changes (sacbrood virus) and premature mortality (infectious flacherie virus). The host range has not been examined for most members. The most common route of infection for iflaviruses is the ingestion of virus-contaminated food sources. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Iflaviridae, which is available at www.ictv.global/report/iflaviridae.

Journal ArticleDOI
TL;DR: Efficient reverse genetic systems, genetically stable marker viruses and packaged replicons offer significant improvements for biological studies of ZIKV infection and disease, as well as for the development of antiviral approaches.
Abstract: Zika virus (ZIKV, genus Flavivirus) has emerged as a major mosquito-transmitted human pathogen, with recent outbreaks associated with an increased incidence of neurological complications, particularly microcephaly and the Guillain–Barre syndrome. Because the virus has only very recently emerged as an important pathogen, research is being hampered by a lack of reliable molecular tools. Here we report an infectious cDNA (icDNA) clone for ZIKV isolate BeH819015 from Brazil, which was selected as representative of South American ZIKV isolated at early stages of the outbreak. icDNA clones were assembled from synthetic DNA fragments corresponding to the consensus sequence of the BeH819015 isolate. Virus rescued from the icDNA clone had properties identical to a natural ZIKV isolate from South America. Variants of the clone-derived virus, expressing nanoluciferase, enhanced green fluorescent or mCherry marker proteins in both mammalian and insect cells and being genetically stable for multiple in vitro passages, were obtained. A ZIKV subgenomic replicon, lacking a prM- and E glycoprotein encoding region and expressing a Gaussia luciferase marker, was constructed and shown to replicate both in mammalian and insect cells. In the presence of the Semliki Forest virus replicon, expressing ZIKV structural proteins, the ZIKV replicon was packaged into virus-replicon particles. Efficient reverse genetic systems, genetically stable marker viruses and packaged replicons offer significant improvements for biological studies of ZIKV infection and disease, as well as for the development of antiviral approaches.

Journal ArticleDOI
TL;DR: A clear understanding of the interactions between influenza viruses and macrophages may lead to new antiviral therapies to relieve the burden of severe disease associated with influenza viruses.
Abstract: Macrophages are essential for protection against influenza A virus infection, but are also implicated in the morbidity and mortality associated with severe influenza disease, particularly during infection with highly pathogenic avian influenza (HPAI) H5N1 virus. While influenza virus infection of macrophages was once thought to be abortive, it is now clear that certain virus strains can replicate productively in macrophages. This may have important consequences for the antiviral functions of macrophages, the course of disease and the outcome of infection for the host. In this article, we review findings related to influenza virus replication in macrophages and the impact of productive replication on macrophage antiviral functions. A clear understanding of the interactions between influenza viruses and macrophages may lead to new antiviral therapies to relieve the burden of severe disease associated with influenza viruses.

Journal ArticleDOI
TL;DR: This review will summarize recent breakthroughs concerning m6A RNA modification and their implications for cellular and viral RNAs.
Abstract: The role of m6A methylation of RNA has remained elusive for decades, but recent technological advances are now allowing the mapping of the m6A methylation landscape at nucleotide level. This has spurred an explosion in our understanding of the role played by RNA epigenetics in RNA biology. m6A modifications have been tied to almost every aspect of the mRNA life cycle and it is now clear that RNA virus genomes are subject to m6A methylation. These modifications play various roles in the viral replication cycle. This review will summarize recent breakthroughs concerning m6A RNA modification and their implications for cellular and viral RNAs.

Journal ArticleDOI
TL;DR: Recent research conducted on CDV infections in wildlife is reviewed, including the latest findings on the causes of host specificity and cellular receptors involved in distemper pathogenesis.
Abstract: Canine distemper virus (CDV) has emerged as a significant disease of wildlife, which is highly contagious and readily transmitted between susceptible hosts. Initially described as an infectious disease of domestic dogs, it is now recognized as a global multi-host pathogen, infecting and causing mass mortalities in a wide range of carnivore species. The last decade has seen the effect of numerous CDV outbreaks in various wildlife populations. Prevention of CDV requires a clear understanding of the potential hosts in danger of infection as well as the dynamic pathways CDV uses to gain entry to its host cells and its ability to initiate viral shedding and disease transmission. We review recent research conducted on CDV infections in wildlife, including the latest findings on the causes of host specificity and cellular receptors involved in distemper pathogenesis.

Journal ArticleDOI
TL;DR: The family Virgaviridae is a family of plant viruses with rod-shaped virions, a ssRNA genome with a 3′-terminal tRNA-like structure and a replication protein typical of alpha-like viruses.
Abstract: The family Virgaviridae is a family of plant viruses with rod-shaped virions, a ssRNA genome with a 3′-terminal tRNA-like structure and a replication protein typical of alpha-like viruses. Differences in the number of genome components, genome organization and the mode of transmission provide the basis for genus demarcation. Tobacco mosaic virus (genus Tobamovirus) was the first virus to be discovered (in 1886); it is present in high concentrations in infected plants, is extremely stable and has been extensively studied. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Virgaviridae, which is available at www.ictv.global/report/virgaviridae.

Journal ArticleDOI
TL;DR: The current understanding of the genome characteristics, host range, transmission, epidemiology, phylogenetic and immune evasion of avian-origin TMUV and the innate immune response of the host are described.
Abstract: Tembusu virus (TMUV, genus Flavivirus, family Flaviviridae) was first isolated in 1955 from Culex tritaeniorhynchus mosquitoes in Kuala Lumpur, Malaysia. In April 2010, duck TMUV was first identified as the causative agent of egg-drop syndrome, characterized by a substantial decrease in egg laying and depression, growth retardation and neurological signs or death in infected egg-laying and breeder ducks, in the People’s Republic of China. Since 2010, duck TMUV has spread to most of the duck-producing regions in China, including many of the coastal provinces, neighbouring regions and certain Southeast Asia areas (i.e. Thailand and Malaysia). This review describes the current understanding of the genome characteristics, host range, transmission, epidemiology, phylogenetic and immune evasion of avian-origin TMUV and the innate immune response of the host.

Journal ArticleDOI
TL;DR: The host specificity and other desirable traits exhibited by several members of this group make them potential natural enemies for intentional use against arthropod pests, such as triatoma virus against triatomine bugs that vector Chagas disease.
Abstract: Dicistroviridae is a family of small non-enveloped viruses with monopartite, linear, positive-sense RNA genomes of approximately 8–10 kb Viruses of all classified species infect arthropod hosts, with some having devastating economic consequences, such as acute bee paralysis virus in domesticated honeybees and taura syndrome virus in shrimp farming Conversely, the host specificity and other desirable traits exhibited by several members of this group make them potential natural enemies for intentional use against arthropod pests, such as triatoma virus against triatomine bugs that vector Chagas disease This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Dicistroviridae which is available at wwwictvglobal/report/dicistroviridae

Journal ArticleDOI
TL;DR: It is demonstrated that a crucial link exists between the ER stress pathways and autophagy in virus-infected cells, and that these processes are highly regulated during virus infection.
Abstract: Endoplasmic reticulum (ER) stress and autophagy are key cellular responses to RNA virus infection Recent studies have shown that Japanese encephalitis virus (JEV)-induced autophagy negatively influences virus replication in mouse neuronal cells and embryonic fibroblasts, and delays virus-induced cell death Here, we evaluated the role of ER stress pathways in inducing autophagy during JEV infection We observed that JEV infection of neuronal cells led to activation of all three sensors of ER stress mediated by eIF2α/PERK, IRE1/XBP1 and ATF6 The kinetics of autophagy induction as monitored by levels of SQSTM1 and LC3-II paralleled activation of ER stress Inhibition of the eIF2α/PERK pathway by siRNA-mediated depletion of proteins and by the PERK inhibitor had no effect on autophagy and JEV replication However, depletion of XBP1 and ATF6, alone or in combination, prevented autophagy induction and significantly enhanced JEV-induced cell death JEV-infected cells depleted of XBP1 or ATF6 showed reduced transcription of ER chaperones, ERAD components and autophagy genes, resulting in reduced protein levels of the crucial autophagy effectors ATG3 and BECLIN-1 Conversely, pharmacological induction of ER stress in JEV-infected cells further enhanced autophagy and reduced virus titres Our study thus demonstrates that a crucial link exists between the ER stress pathways and autophagy in virus-infected cells, and that these processes are highly regulated during virus infection

Journal ArticleDOI
TL;DR: Recent studies focused on improving VSV safety, oncoselectivity and oncotoxicity; breaking resistance of some cancers toVSV; preventing premature clearance of VSV; and stimulating tumour-specific immunity are reviewed.
Abstract: Oncolytic virus (OV) therapy is an anti-cancer approach that uses viruses that preferentially infect, replicate in and kill cancer cells. Vesicular stomatitis virus (VSV, a rhabdovirus) is an OV that is currently being tested in the USA in several phase I clinical trials against different malignancies. Several factors make VSV a promising OV: lack of pre-existing human immunity against VSV, a small and easy to manipulate genome, cytoplasmic replication without risk of host cell transformation, independence of cell cycle and rapid growth to high titres in a broad range of cell lines facilitating large-scale virus production. While significant advances have been made in VSV-based OV therapy, room for improvement remains. Here we review recent studies (published in the last 5 years) that address ‘old’ and ‘new’ challenges of VSV-based OV therapy. These studies focused on improving VSV safety, oncoselectivity and oncotoxicity; breaking resistance of some cancers to VSV; preventing premature clearance of VSV; and stimulating tumour-specific immunity. Many of these approaches were based on combining VSV with other therapeutics. This review also discusses another rhabdovirus closely related to VSV, Maraba virus, which is currently being tested in Canada in phase I/II clinical trials.

Journal ArticleDOI
TL;DR: It is concluded that vertical transmission of RVFV is likely but that current data are insufficient to irrefutably prove this hypothesis, and observations of VT for other arboviruses in the genera Alphavirus, Flavivirus and Orthobunyavirus are discussed.
Abstract: Rift Valley fever virus (RVFV) is a mosquito-borne arbovirus causing severe disease in humans and ruminants. Spread of RVFV out of Africa has raised concerns that it could emerge in Europe or the USA. Virus persistence is dependent on successful infection of, replication in, and transmission to susceptible vertebrate and invertebrate hosts, modulated by virus–host and vector–virus interactions. The principal accepted theory for the long-term maintenance of RVFV involves vertical transmission (VT) of virus to mosquito progeny, with the virus surviving long inter-epizootic periods within the egg. This VT hypothesis, however, is yet to be comprehensively proven. Here, evidence for and against the VT of RVFV is reviewed along with the identification of factors limiting its detection in natural and experimental data. The observations of VT for other arboviruses in the genera Alphavirus, Flavivirus and Orthobunyavirus are discussed within the context of RVFV. The review concludes that VT of RVFV is likely but that current data are insufficient to irrefutably prove this hypothesis.

Journal ArticleDOI
TL;DR: Results showed that both Axl+/− and Axl−/− suckling mice supported the replication of ZIKV and presented clinical manifestations, and indicated that Axl is not an indispensable factor for ZikV infection in mice.
Abstract: Recently, Zika virus (ZIKV) outbreak has been associated with a sharp increase in cases of Guillain–Barre syndrome and severe fetal abnormalities. However, the mechanism underlying the interaction of ZIKV with host cells is not yet clear. Axl, a receptor tyrosine kinase, is postulated as a receptor for ZIKV entry; however, its in vivo role during ZIKV infection and its impact on the outcome of the disease have not been fully characterized and evaluated. Moreover, there are contradictory results on its involvement in ZIKV infection. Here we utilized Axl-deficient mice (Axl−/−) and their littermates (Axl+/−) to study the in vivo role of Axl in ZIKV infection. Our results showed that both Axl+/− and Axl−/− suckling mice supported the replication of ZIKV and presented clinical manifestations. No significant difference has been found between Axl-deficient mice and their littermates in terms of the survival rate, clinical manifestations, viral load, ZIKV distribution and histopathological changes in major organs. These results therefore indicate that Axl is not an indispensable factor for ZIKV infection in mice.

Journal ArticleDOI
TL;DR: Bird sera raised against commercial inactivated avian influenza-H5 vaccines showed no or very low reactivity with the currently characterized H5N8 viruses in agreement with the genetic dissimilarity.
Abstract: A newly emerged H5N8 influenza virus was isolated from green-winged teal in Egypt during December 2016. In this study, we provide a detailed characterization of full genomes of Egyptian H5N8 viruses and some virological features. Genetic analysis demonstrated that the Egyptian H5N8 viruses are highly pathogenic avian influenza viruses. Phylogenetic analysis revealed that the genome of the Egyptian H5N8 viruses was related to recently characterized reassortant H5N8 viruses of clade 2.3.4.4 isolated from different Eurasian countries. Multiple peculiar mutations were characterized in the Egyptian H5N8 viruses, which probably permits transmission and virulence of these viruses in mammals. The Egyptian H5N8 viruses preferentially bound to avian-like receptors rather than human-like receptors. Also, the Egyptian H5N8 viruses were fully sensitive to amantadine and neuraminidase inhibitors. Chicken sera raised against commercial inactivated avian influenza-H5 vaccines showed no or very low reactivity with the currently characterized H5N8 viruses in agreement with the genetic dissimilarity. Surveillance of avian influenza in waterfowl provides early warning of specific threats to poultry and human health and hence should be continued.

Journal ArticleDOI
TL;DR: This study examined the role of three RSV-induced tRFs derived from the 5-end of mature tRNAs decoding GlyCCC, LysCTT and CysGCA in controlling RSV replication and found that tRF5-GlyCCC and t RF5-LysCTT, but not tRF 5-CysG CA, promote RSV replicate, demonstrating the functional specificity of t RFs.
Abstract: Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection (LRTI) in children from infancy up to early childhood. Recently, we demonstrated that RSV infection alters cellular small non-coding RNA (sncRNA) expression, most notably the tRNA-derived RNA fragments (tRFs). However, the functions of the tRFs in virus-host interaction are largely unknown. Herein, we examined the role of three RSV-induced tRFs derived from the 5-end of mature tRNAs decoding GlyCCC, LysCTT and CysGCA (named tRF5-GlyCCC, tRF5-LysCTT and tRF5-CysGCA, respectively) in controlling RSV replication. We found that tRF5-GlyCCC and tRF5-LysCTT, but not tRF5-CysGCA, promote RSV replication, demonstrating the functional specificity of tRFs. The associated molecular mechanisms underlying the functions of tRF5-GlyCCC and tRF5-LysCTT were also investigated. Regulating the expression and/or activity of these tRFs may provide new insights into preventive and therapeutic strategies for RSV infection. The study also accumulated data for future development of a tRF targeting algorithm.

Journal ArticleDOI
TL;DR: Current examples of virus-ion channel interactions are discussed and the potential of targeting ion channel function as a new, pharmacologically safe and broad-ranging anti-viral therapeutic strategy is discussed.
Abstract: The broad range of cellular functions governed by ion channels represents an attractive target for viral manipulation. Indeed, modulation of host cell ion channel activity by viral proteins is being increasingly identified as an important virus–host interaction. Recent examples have demonstrated that virion entry, virus egress and the maintenance of a cellular environment conducive to virus persistence are, in part, dependent on virus manipulation of ion channel activity. Most excitingly, evidence has emerged that targeting ion channels pharmacologically can impede virus life cycles. Here, we discuss current examples of virus–ion channel interactions and the potential of targeting ion channel function as a new, pharmacologically safe and broad-ranging anti-viral therapeutic strategy.

Journal ArticleDOI
TL;DR: The sequences of six novel chapparvoviruses identified through both metagenomic sampling of bat tissues and in silico screening of published vertebrate genome assemblies group together as a robustly supported monophyletic clade in phylogenetic trees.
Abstract: Chapparvoviruses are a highly divergent group of parvoviruses (family Parvoviridae) that have recently been identified via metagenomic sampling of animal faeces. Here, we report the sequences of six novel chapparvoviruses identified through both metagenomic sampling of bat tissues and in silico screening of published vertebrate genome assemblies. The novel chapparvoviruses share several distinctive genomic features and group together as a robustly supported monophyletic clade in phylogenetic trees. Our data indicate that chapparvoviruses have a broad host range in vertebrates and a global distribution.

Journal ArticleDOI
TL;DR: There are many critical areas where basic and applied virological research concerning PPRV is lacking and these areas include studies on disease transmission and epidemiology, the existence of wildlife reservoirs and the development of next-generation vaccines and diagnostics.
Abstract: Peste des petits ruminants virus (PPRV) is a significant pathogen of small ruminants and is prevalent in much of Africa, the Near and Middle East and Asia. Despite the availability of an efficacious and cheap live-attenuated vaccine, the virus has continued to spread, with its range stretching from Morocco in the west to China and Mongolia in the east. Some of the world’s poorest communities rely on small ruminant farming for subsistence and the continued endemicity of PPRV is a constant threat to their livelihoods. Moreover, PPRV’s effects on the world’s population are felt broadly across many economic, agricultural and social situations. This far-reaching impact has prompted the Food and Agriculture Organization of the United Nations (FAO) and the World Organisation for Animal Health (OIE) to develop a global strategy for the eradication of this virus and its disease. PPRV is a morbillivirus and, given the experience of these organizations in eradicating the related rinderpest virus, the eradication of PPRV should be feasible. However, there are many critical areas where basic and applied virological research concerning PPRV is lacking. The purpose of this review is to highlight areas where new research could be performed in order to guide and facilitate the eradication programme. These areas include studies on disease transmission and epidemiology, the existence of wildlife reservoirs and the development of next-generation vaccines and diagnostics. With the support of the international virology community, the successful eradication of PPRV can be achieved.

Journal ArticleDOI
TL;DR: The characterization of the faecal virome of healthy chickens described here not only provides a description of the viruses encountered in such niche but should also represent a baseline for future studies comparing viral populations in healthy and diseased chicken flocks.
Abstract: This study is focused on the identification of the faecal virome of healthy chickens raised in high-density, export-driven poultry farms in Brazil. Following high-throughput sequencing, a total of 7743 de novo-assembled contigs were constructed and compared with known nucleotide/amino acid sequences from the GenBank database. Analyses with blastx revealed that 279 contigs (4 %) were related to sequences of eukaryotic viruses. Viral genome sequences (total or partial) indicative of members of recognized viral families, including Adenoviridae, Caliciviridae, Circoviridae, Parvoviridae, Picobirnaviridae, Picornaviridae and Reoviridae, were identified, some of those representing novel genotypes. In addition, a range of circular replication-associated protein encoding DNA viruses were also identified. The characterization of the faecal virome of healthy chickens described here not only provides a description of the viruses encountered in such niche but should also represent a baseline for future studies comparing viral populations in healthy and diseased chicken flocks. Moreover, it may also be relevant for human health, since chickens represent a significant proportion of the animal protein consumed worldwide.