scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Genetics and Breeding in 2020"


Journal ArticleDOI
TL;DR: It was established that the resistance genes Sr31, Sr40,Sr2 complexare effective against stem rust in the conditions of Western Siberia.
Abstract: Stem rust in recent years has acquired an epiphytotic character, causing significant economic damage for wheat production in some parts of Western Siberia. On the basis of a race composition study of the stem rust populations collected in 2016–2017 in Omsk region and Altai Krai, 13 pathotypes in Omsk population and 10 in Altai population were identified. The race differentiation of stem rust using a tester set of 20 North American Sr genes differentiator lines was carried out. The genes of stem rust pathotypes of the Omsk population are avirulent only to the resistance gene Sr31, Altai isolates are avirulent not only to Sr31, but also to Sr24, and Sr30. A low frequency of virulence (10–25 %) of the Omsk population pathotypes was found for Sr11, Sr24,Sr30, and for Altai population – Sr7b,Sr9b,Sr11,SrTmp, which are ineffective in Omsk region. Field evaluations of resistance to stem rust were made in 2016–2018 in Omsk region in the varieties and spring wheat lines from three different sources. The first set included 58 lines and spring bread wheat varieties with identified Sr genes – the so-called trap nursery (ISRTN – International Stem Rust Trap Nursery). The second set included spring wheat lines from the Arsenal collection, that were previously selected according to a complex of economically valuable traits, with genes for resistance to stem rust, including genes introgressed into the common wheat genome from wild cereal species. The third set included spring bread wheat varieties created in the Omsk State Agrarian University within the framework of a shuttle breeding program, with a synthetic wheat with the Ae. tauschiigenome in their pedigrees. It was established that the resistance genes Sr31, Sr40,Sr2 complexare effective against stem rust in the conditions of Western Siberia. The following sources with effective Srgenes were selected: (Benno)/6*LMPG-6 DK42, Seri 82, Cham 10, Bacanora (Sr31), RL 6087 Dyck (Sr40), Amigo (Sr24,1RS-Am), Siouxland (Sr24,Sr31), Roughrider (Sr6, Sr36), Sisson (Sr6,Sr31,Sr36), and Fleming (Sr6,Sr24,Sr36,1RS-Am), Pavon 76 (Sr2 complex) from the ISRTN nursery; No. 1 BC 1F2 (96 × 113) × 145 × 113 (Sr2,Sr36,Sr44), No. 14а F 3(96 × 113) × 145 (Sr36,Sr44), No. 19 BC 2F3(96 × 113) × 113 (Sr2, Sr36, Sr44), and No. 20 F 3 (96 × 113) × 145 (Sr2,Sr36,Sr40, Sr44) from the Arsenal collection; and the Omsk State Agrarian University varieties Element 22 (Sr31,Sr35), Lutescens 27-12, Lutescens 87-12 (Sr23,Sr36), Lutescens 70-13, and Lutescens 87-13 (Sr23,Sr31,Sr36). These sources are recommended for inclusion in the breeding process for developing stem rust resistant varieties in the region.

19 citations


Journal ArticleDOI
TL;DR: The high value of genetic diversity in modern breeding varieties of the Scientific Research Institute of Agriculture of the Northern Trans-Urals and an increase in this indicator over the past 20 years are associated with the use of genetically heterogeneous source material in the breeding process.
Abstract: Molecular and biochemical markers are used to analyze the intraspecific genetic diversity of crops. Prolamincoding loci are highly effective for assessing this indicator. On the basis of the Laboratory of Varietal Seed Identification of the State Agrarian University of the Northern Trans-Urals, 18 varieties of common oat included in the State Register of Selection Achievements in the Tyumen Region from the 1930s to 2019 were studied by electrophoresis in 2018–2019. The aim of the work was to study the dynamics of the genetic diversity of oat va rieties at avenin-coding loci. For the analysis, 100 grains of each variety were used. Electrophoresis was carried out in vertical plates of 13.2 % polyacrylamide gel at a constant vol tage of 500 V for 4.0–4.5 h. It was found that 44.4 % of the varieties are heterogeneous, each consisting of two biotypes. For three loci, 20 alleles were identified, 10 of which were detected for the first time. The allele frequency of avenin-coding loci varied with time. In the process of variety exchange, alleles that are characteristic of varieties of non-Russian origin were replaced by alleles present in domestic varieties and then in the varieties developed by local breeding institutions. The following alleles had the highest frequency in Tyumen varieties: Avn A4(50.0 %), A2(25.0 %), Avn B4(50.0 %), Bnew6(37.5 %), Avn C1(37.5 %), C2 and C5(25.0 %). These alleles are of great value as markers of agronomically and adaptively important characters for the region in question. The amount of genetic diversity of oats varied with time from 0.33 in 1929–1950 to up to 0.75 in 2019. The high value of genetic diversity in modern breeding varieties of the Scientific Research Institute of Agriculture of the Northern Trans-Urals and an increase in this indicator over the past 20 years are associated with the use of genetically heterogeneous source material in the breeding process. This allowed obtaining varieties with high adaptive potentials in the natural climatic conditions of the region.

19 citations


Journal ArticleDOI
TL;DR: It seems to be a productive idea to create ‘bitter/sweet’ varieties combining a high content of alkaloids in the vegetative organs and low in seeds, which can be achieved by regulating the synthesis/transport of alkals in the plant.
Abstract: Narrow-leaved lupine (Lupinus angustifolius L.), a valuable leguminous crop adapted to a wide range of climatic conditions, has a very short history of domestication. For many centuries it was used mainly as a green manure, since the success and prospects of the multi-purpose use of the species depend on its breeding improvement, in particular, on a particular concentration of alkaloids in seeds and green mass. The first varieties of scientific breeding were created only in the 1930s after the appearance of low-alkaloid mutants. Despite wide prospects for use in various areas of the national economy, unstable productivity and susceptibility to diseases hinder the production of this crop. Obviously, breeders deal only with a small part of the gene pool of the species and limited genetic resources, using mainly low-alkaloid (sweet) genotypes to create new varieties. The genetic potential of the species can be used more efficiently. At the same time, it is rational to create highly alkaloid (bitter) varieties for green manure, while food and feed varieties should not lose their adaptive potential, in particular, resistance to pathogens, due to the elimination of alkaloids. In this regard, it seems to be a productive idea to create ‘bitter/sweet’ varieties combining a high content of alkaloids in the vegetative organs and low in seeds, which can be achieved by regulating the synthesis/transport of alkaloids in the plant. The paper discusses the current state of use of the species as a green manure, fodder, food plant. Information is given on the quantity and qualitative composition of narrow-leaved lupine alkaloids, their applied value, in particular, fungicidal, antibacterial, insecticidal, the use of lupine alkaloids as active principles of drugs. Along with promising breeding considerations, the possibility of using technologies for processing raw high-alkaloid materials with the accompanying extraction of valuable ingredients for pharmaceuticals is discussed. Information is briefly presented about the genomic resources of the species and the prospects for their use in marker-assistant selection and genome editing.

16 citations


Journal ArticleDOI
TL;DR: The obtained results have for the first time demonstrated that the CETP and FTO frequencies in the Buryat samples are intermediate between European and East Asian populations, which is consistent with lower susceptibility of the indigenous ethnic groups to metabolic disorders.
Abstract: Lipid metabolism disorders underlie the pathogenesis of a number of diseases. Indigenous peoples of Siberia have a specific genetically determined type of metabolism supporting such lipid blood parameters that favor increased consumption (in comparison with Caucasians) of animal products. At the same time, indigenous Siberian ethnic groups are less susceptible to metabolic diseases. The objective of the presented study was to investigate the allele frequencies of lipid metabolism genes in indigenous populations of Siberia to identify the ethnic features of allele frequency distribution for polymorphic variants in genes CETP ( G1264A , rs5882), LPL ( C1791G , rs328) and FTO ( C83401A , rs8050136) in the samples taken from Buryats, Teleuts and Russians of Eastern Siberia, and to compare them with data on world populations. Samples of the Eastern ( N = 132) and Western ( N = 278) Buryats, Teleuts ( N = 120), Russians ( N = 122) and persons of mixed Buryat-Russian origin ( N = 56) were genotyped by real-time PCR using competitive TaqMan-probes. The obtained results have for the first time demonstrated that the CETP and FTO allele frequencies in the Buryat samples are intermediate between European and East Asian populations. Significantly lower incidence of the obesity-assossiated 83401A allele of the FTO gene has been shown in Buryats, compared with Russians, which is consistent with lower susceptibility of the indigenous ethnic groups to metabolic disorders. There have been no population differences in the distribution of LPL gene polymorphic variants associated with dyslipidemia, which means they probably do not contribute to the ethnic characteristics of the lipid profile. The intermediate frequencies of the CETP 1264G and FTO 83401A alleles found in the metis group demonstrate that the metabolic disorders associated with these variants can be rather expected in the descendants of mixed marriages than among Buryats. It has also been demonstrated that Teleuts differ by FTO 83401A allele frequency from some of the European groups and have the lowest detected frequency of the allele CETP 1264G associated with the favorable lipid blood parameters.

15 citations


Journal ArticleDOI
TL;DR: In this article, the polymorphism of microsatellites and the information on the state of genetic diversity and the population structure of local breeds in Russia: the Kemerovo, the Berkshire, the Liven, the Mangalitsa, and the Civilian; in the Republic of Belarus: the Large White and the Black-and-White; and in Ukraine: the White Steppe, as well as commercial breeds of imported origin of domestic reproduction.
Abstract: One of the main tasks of genetics and animal breeding is the assessment of genetic diversity and the study of genetic relationships between different breeds and populations using molecular genetic analysis methods. We analysed the polymorphism of microsatellites and the information on the state of genetic diversity and the population structure of local breeds in Russia: the Kemerovo, the Berkshire, the Liven, the Mangalitsa, and the Civilian; in the Republic of Belarus: the Large White and the Black-and-White; and in Ukraine: the White Steppe, as well as commercial breeds of imported origin of domestic reproduction: the Large White, the Landrace, and the Duroc. The materials used for this study were the tissue and DNA samples extracted from 1,194 pigs and DNA of the UNU “Genetic material bank of domestic and wild animal species and birds” of the L.K. Ernst Federal Research Center for Animal Husbandry. Polymorphisms of 10 microsatellites (S0155, S0355, S0386, SW24, SO005, SW72, SW951, S0101, SW240, and SW857) were determined according to the previously developed technique using DNA analyser ABI3130xl. To estimate the allele pool of each population, the average number of alleles (NA), the effective number of alleles (NE ) based on the locus, the rarified allelic richness (AR), the observed (HO ) and expected (HE ) heterozygosity, and the fixation index (FIS) were calculated. The degree of genetic differentiation of the breeds was assessed based on the pairwise values of FST and D. The analysis of the allelic and genetic diversity parameters of the local breeds showed that the maximum and minimum levels of polymorphism were observed in pigs of the Ukrainian White Steppe breed (NA = 6.500, NE = 3.709, and AR = 6.020) and in pigs of the Duroc breed (NA = 4.875, NE = 2.119, and AR = 3.821), respectively. The highest level of genetic diversity was found in the Large White breed of the Republic of Belarus (HO = 0.707 and NE = 0.702). The minimum level of genetic diversity was found in pigs of the imported breeds – the Landrace (HO = 0.459, HE = 0.400) and the Duroc (HO = 0.480, HE = 0.469) – indicating a high selection pressure in these breeds. Based on the results of phylogenetic analysis, the genetic origin of Large White pigs, the breeds, from which the Berkshire pigs originated, and the genetic detachment of the Landrace from the Mangalitsa breeds were revealed. The cluster analysis showed a genetic consolidation of the Black-and-White, the Berkshire, and the Mangalitsa pigs. Additionally, the imported breeds with clustering depending on the origin were characterised by a genetic structure different from that of the other breeds. The information obtained from these studies can serve as a guide for the management and breeding strategies of the pig breeds studied, to allow their better use and conservation.

13 citations


Journal ArticleDOI
TL;DR: In this paper, the leading directions of blackberry breeding, the most important in the conditions of Central Russia and to show prospects of the development of new cultivars of this valuable culture in the specified climatic conditions of this region may be promising.
Abstract: This overview substantiates the possibility and expediency of blackberry breeding in Central Russia, where it is in demand, but not widespread in horticulture. Significant achievements of world breeding, which gave modern cultivars a large set of economically important qualities and growing interest in it all over the world, including Russian gardeners, make it relevant to work with blackberries as an object of selection, and as a promising garden plant. However, insufficient frost and winter hardiness of the bulk of the cultivars of this culture cause certain difficulties when growing it in the areas with cold winters to which the Central zone of Russia belongs. The expansion of the market of berry products also imposes increasingly high requirements on the complex of economic indicators of new cultivars, primarily the quality of blackberry fruit. In this regard, improving the existing range of varieties of the culture, increasing its adaptive properties and commodity qualities of berries are urgent tasks for breeders when creating new cultivars. The relevance of blackberry breeding is also dictated by the fact that in Russia its domestic range of varieties is represented by only one modern cultivar obtained in the southern region and adapted, first of all, to it. For the Central zone of the country, the cultivars of this plant have not been developed (except for the limited experiments of I.V. Michurin conducted almost 100 years ago). Therefore, the breeding of adapted cultivars of the culture in the climatic conditions of this region may be promising. It is also possible to grow here (with shelter for the winter) the cultivars already created abroad that can give with the right agricultural technology a good industrial harvest, which is confirmed by the practice of amateur and farm gardening, as well as scientific research. The purpose of this work is to designate the leading directions of blackberry breeding, the most important in the conditions of Central Russia and to show prospects of the development of new cultivars of this valuable culture in the specified climatic zone. The analysis of world trends and experience in the blackberry breeding and variety study, as well as the results of our own research of the culture conducted in the Orel region, allow us to consider it promising and relevant to work on improving the range of varieties of this plant in Central Russia. All priority areas of blackberry breeding, indicated in foreign and domestic breeding programs (winter hardiness, high quality of fresh and processed fruit, the correct shape of berries, their large size, the necessary values of biochemical composition, high productivity of plants, thornless shoots and high resistance to diseases and pests), are relevant for this region of our country, while high winter hardiness is currently the most important of them.

12 citations


Journal ArticleDOI
TL;DR: Different methods of analyzing the genotype x environment interaction and, on their basis, assess the stability of the yield of 7 varieties of winter wheat, identified Novosibirskaya 32 as the most stable variety from a biological point of view.
Abstract: The multitude of existing methods for assessing the phenotypic stability of plants makes breeders be faced with the problem of choosing an appropriate variant. The purpose of this study was to compare different methods of analyzing the genotype x environment interaction and, on their basis, assess the stability of the yield of 7 varieties of winter wheat. The article compares 17 stability statistics by applying them to data obtained from agrotechnical experiments carried in 2009-2011 for evaluating the grain yield of 7 varieties of winter common wheat of Siberian selection (Novosibirskaya 32, Novosibirskaya 40, Novosibirskaya 51, Novosibirskaya 3, Novosibirskaya 2, Obskaya winter, Omskaya 6). Analysis of variance revealed a significant (p < 0.001) genotype x environment interaction in the experiments, which indicates a different reaction of genotypes to changes in environmental conditions. Genotypes were ranked according to the level of stability. Based on the analysis of the rank correlation matrix, the stability statistics were categorized in five groups. Recommendations were made on which group of methods to use depending on the objectives of the study. In the case when the goal of breeding research is the selection of the most biologically stable varieties with the minimum variance across a range of environments, one should use the methods of the static concept. If it is necessary to choose a genotype with a predictable reaction to changes of environmental conditions, corresponding to the calculated level or forecast, the regression approach is the most appropriate. The stability statistics generally identified Novosibirskaya 32 as the most stable variety from a biological point of view. The regression approach showed that Novosibirskaya 3 was the genotype with the smallest deviation from mean yield in all environments, while methods accessing the contribution of each genotype to the genotype x environment interaction defined Novosibirskaya 51 as the most stable variety.

12 citations


Journal ArticleDOI
TL;DR: This article presents a general overview of the prevalence, genetic diversity and detection methods of picobirnaviruses (PBVs), which are small, non-enveloped icosahedral viruses with a segmented double-stranded RNA genome consisting of two segments taxonomically related to the genus Picobir Navirus of the family PicobIRnaviridae.
Abstract: This article presents a general overview of the prevalence, genetic diversity and detection methods of picobirnaviruses (PBVs), which are small, non-enveloped icosahedral viruses with a segmented double-stranded RNA genome consisting of two segments taxonomically related to the genus Picobirnavirus of the family Picobirnaviridae. This review of scientific papers published in 1988-2019 provides data on the PBV distribution in the nature and a broad host range. PBV infection is characterized as opportunistic, the lack of understanding of the etiological role of PBVs in diarrhea is emphasized, since these viruses are detected both in symptomatic and asymptomatic cases. The concept of PBV infection as a chronic disease caused by a long-lasting persistence of the virus in the host is considered. Such factors as stress syndrome, physiological conditions, immune status and host age at the time of primary PBV infection influence the virus detection rate in humans and animals. The possible zoonotic nature of human PBV infection is noted due to the capacity for interspecies PBV transmission acquired during evolution as a result of the reassortment of the genome segments of different viruses infecting the same host. Data providing evidence that PBVs belong to eukaryotes and a challenging hypothesis stating that PBVs are bacterial viruses are presented. The need to intensify work on PBV detection because of their wide distribution, despite the complexity due to the lack of the cultivation system, is emphasized. Two strategies of RT-PCR as main PBV detection methods are considered. The genomes of individual representatives of the genus isolated from different hosts are characterized. Emphasis is placed on the feasibility of developing primers with broader specificity for expanding the range of identifiable representatives of the genus PBV due to a huge variety of their genotypes. The importance of effective monitoring of PBV prevalence for studying the zoonotic and anthroponotic potential using metagenomic analysis is highlighted, and so is the possibility of using PBV as a marker for environmental monitoring.

11 citations


Journal ArticleDOI
TL;DR: The active expansion of foreign potato cultivars on the territory of the Russian Federation has led to a change in the dominant pathogen species and to the emergence of new pathotypes of causal agents of harmful potato diseases and the distribution of fungal and oomycetic diseases on Potato cultivars in various agroclimatic zones of Russia is determined.
Abstract: The active expansion of foreign potato cultivars on the territory of the Russian Federation has led to a change in the dominant pathogen species and to the emergence of new pathotypes of causal agents of harmful potato diseases. The aim of the study was to evaluate resistance to Phytophthora infestans and Globodera rostochiensis of modern potato cultivars and determine the distribution of fungal and oomycetic diseases on potato cultivars in various agroclimatic zones of Russia. The resistance of 41 foreign cultivars was evaluated to pathotype Ro1 G. rostochiensis and to isolate VZR17 P. infestans with virulence genes 1.2.3.4.5.6.7.8.9.10.11. Resistant to G. rostochiensis were 38 cultivars. 57R marker of the H1 gene conferring resistance to the Ro1 pathotype of G. rostochiensis was detected in 96.6 % of the nematode resistant cultivars studied; susceptible varieties did not possess this marker. Absolute resistance to the causative agent of late blight was demonstrated by the cultivars Alouette and Sarpo Mira (score 9); high levels of resistance (score 6 and 7) were determined for the cultivars Evolution, Red Fantasy and Ricarda. The cultivars Baltic Rose, Damaris, Desiree, Gala, Labella, Laperla, Mia, Sanibel, Zekura, Queen Anne, Red Lady and ‘7 for 7’ were classified as susceptible, although the characteristics of originators indicated average resistance to late blight. A phytopathological test was conducted on 92 samples of 39 varieties of seed potatoes from four federal districts of the Russian Federation: Volga, NorthWest, Central and North Caucasus. Rhizoctonia solani , Fusarium spp. and Helminthosporium solani are most common on all varieties. 100 % defeat of tubers by H. solani was recorded in various regions on the cultivars Red Scarlett, Evolution, Labella, Colombo, Gala and Nevsky. Widespread Colletotrichum coccodes on tubers of the elite and 2nd reproductions of the potato cultivar Red Scarlett (50.0–71.4 %) was recorded in the Central District.

11 citations


Journal ArticleDOI
TL;DR: This study was able to realize the full production cycle of DH plants of European radish by in vitro microspore culture up to inclusion of the produced material into the selection process, and it was revealed that linear length on the flower buds with the best possible stage of microspores development is genotype-specific.
Abstract: Over the recent years the market demand for scaling up the production of European radish (Raphanus sativus L.) varieties and hybrids for open and protected production, varying in ripeness group, root shape and color, has drastically increased. Therefore, the expansion of genetic diversity and acceleration of the selection process are important. Doubled haploid technology considerably curtails the time required for creation of homozygous constant parental cell lines when in vitro microspore culture is used as the most promising method. For the first time, we were able to realize the full production cycle of DH plants of European radish by in vitro microspore culture up to inclusion of the produced material into the selection process. We have selected: preferable flower bud size, heat shock parameters, induction and regeneration media. It was revealed that linear length on the flower buds with the best possible stage of microspore development is genotype-specific: the flower bud length 2.8-3.3 mm is optimal for accessions of Rhodes and 3.7-4.2 mm is optimal for accessions of Teplichny Gribovsky. Heat shock at 32 °C for 48 hours is the most suitable for most genotypes. For the first time Murashige and Skoog based culture medium has been used for embryogenesis induction, and a major dependence of embryogenesis induction on the genotype x medium interaction was found. At regeneration and tiller stage it is advisable to add 1 mg/mL of benzylaminopurine and 0.1 mg/L of gibberellic acid to the medium, and rotting of micro-sprouts is performed with the use of hormone-free medium. Analysis of the produced regenerant plants by chromosome count and cell nucleus flow cytometry showed that 69 % of plants have a diploid chromosome set, 9 % have a haploid chromosome set, and 22 % have mixoploids and aneu-ploids chromosome sets. The seed progeny from doubled haploids and mixoploids were obtained by self-pollination, where all R1 plants had a doubled set of chromosomes. This study launches the development of an efficient method of radish doubled haploid production to be used in the selection process.

10 citations


Journal ArticleDOI
TL;DR: It was found that wild peas representing the evolutionary lineage B produce poorly open and poorly coloured flowers only in the greenhouse conditions but normally pigmented and open flowers in the wild and mesh houses at open air in Israel.
Abstract: Characteristics of wild peas and their habitats at the periphery of the range are interesting with respect to their potential importance for pre-breeding programs aimed at selection for different environmental conditions. However, wild pea diversity in peripheral regions is insufficiently represented in the existing germplasm collections. In such regions, wild pea populations are rare, small in size and suffer from climatic change and land exploitation, hence their focused search is strongly desirable. A two-week-long expedition to Iran in May 2017 revealed two small populations of the wild pea (Pisum sativum subsp. elatius) in the Zagros Mts, in Aligudarz and Khorramabad Districts of Lorestan Province, Iran, at elevations of 1841 and 1971 m a.s.l., respectively. Their habitats are briefly described. Two pea accessions derived from them, CE9 and CE10, were characterised for some visible and molecular characters. These peas appeared to belong to the evolutionary lineage B, recognised by us earlier in P. sativum as opposed to the so-called lineage AC. They contain a unique non-conservative substitution in subtype 5 of histone H1 and turned to be most related to some wild pea accessions originating from southern and south-eastern Turkey and Golan Heights. Scarce information available on wild pea occurrence in Iran suggests their existence in the south-western principal slope of Zagros Mts and southern principal slopes of Elborz and Kopet Dagh Mts. It was found that wild peas representing the evolutionary lineage B produce poorly open and poorly coloured flowers (as reported by us earlier) only in the greenhouse conditions but normally pigmented and open flowers in the wild and mesh houses at open air in Israel. Some issues of pea taxonomy are discussed.

Journal ArticleDOI
TL;DR: In this article, the authors used a mobile hyperspectral camera to study common root rot (the pathogen is the fungus Bipolaris sorokiniana Shoem) affecting the seedlings of four wheat varieties and to analyze the pulp of potato tubers of 82 lines and varieties.
Abstract: Remote sensing using hyperspectral cameras is an important technology for non-destructive monitoring of plant pigment composition, which is closely related to their physiological state or infection with pathogens. The paper presents the experience of using Specim IQ, a mobile hyperspectral camera, to study common root rot (the pathogen is the fungus Bipolaris sorokiniana Shoem.) affecting the seedlings of four wheat varieties and to analyze the pulp of potato tubers of 82 lines and varieties. Spectral characteristics were obtained for seedlings and the most informative spectral features (indices) for root rot detection were determined based on the data obtained. Seedlings of control variants in the visible part of the spectrum show an increase in reflectance with a small peak in the green area (about 550 nm), then a decrease due to light absorption by plant pigments with an extremum at a wavelength of about 680 nm. Analysis of histograms of vegetation index values demonstrated that the TVI and MCARI indices are the most informative for detecting the pathogen on wheat seedlings according to hyperspectral survey data. For potato samples, regions of the spectrum were found that correspond to local maxima and minima of reflection. It was shown that the spectra of potato varieties have the greatest differences within wavelength ranges of 900-1000 nm and 400-450 nm, which in the former case may be associated with the level of water content, and in the latter, with the formation of melanin in the tubers. It was shown that according to the characteristics of the spectrum, the samples studied are divided into three groups, each characterized by increased or reduced intensity levels for the specified parts of the spectrum. In addition, minima in the reflection spectra corresponding to chlorophyll a were found for a number of varieties. The results demonstrate the capabilities of the Specim IQ camera for conducting hyperspectral analyses of plant objects.

Journal ArticleDOI
TL;DR: The focus is on characterization of ex situ conserved germplasm and detailed evaluation of prioritized crops for enhanced utilization; assessment of impact of on-farm conservation practices on genetic diversity; genome-wide association mapping for identification of novel genes and alleles forEnhanced utilization of PGR.
Abstract: Plant genetic resources (PGR) are the foundation of agriculture as well as food and nutritional security. The ICAR-NBPGR is the nodal institution at national level for management of PGR in India under the umbrella of Indian Council of Agricultural Research (ICAR), New Delhi. India being one of the gene-rich countries faces a unique challenge of protecting its natural heritage while evolving mutually beneficial strategies for germplasm exchange with other countries. The Bureaus activities include PGR exploration, collection, exchange, characterization, evaluation, conservation and documentation. It also has the responsibility to carry out quarantine of all imported PGR including transgenics meant for research purposes. The multifarious activities are carried out from ICAR-NBPGR headquarters and its 10 regional stations located in different agro-climatic zones of India. It has linkages with international organizations of the Consultative Group on International Agricultural Research (CGIAR) and national crop-based institutes to accomplish its mandated activities. NBPGR collects and acquires germplasm from various sources, conserves it in the Genebank, characterizes and evaluates it for different traits and provides ready material for breeders to develop varieties for farmers. ICAR-NBPGR encompasses the National Genebank Network and at present, the National Genebank conserves more than 0.40 million accessions. NBPGR works in service-mode for effective utilization of PGR in crop improvement programmes which depends mainly on its systematic characterization and evaluation, and identification of potentially useful germplasm. NBPGR is responsible for identifying trait-specific pre-adapted climate resilient genotypes, promising material with disease resistance and quality traits which the breeders use for various crop improvement programmes. The system has contributed immensely towards safeguarding the indigenous and introducing useful exotic PGR for enhancing the agricultural production. Presently, our focus is on characterization of ex situ conserved germplasm and detailed evaluation of prioritized crops for enhanced utilization; assessment of impact of on-farm conservation practices on genetic diversity; genome-wide association mapping for identification of novel genes and alleles for enhanced utilization of PGR; identification and deployment of germplasm/landraces using climate analog data; validation of trait-specific introduced germplasm for enhanced utilization.

Journal ArticleDOI
TL;DR: It is demonstrated that the combination of shp-2 gene knockout and CAR expression increases the cytotoxicity of effector NK-like YT cells against human prostate cancer cell line Du-145 with ectopic expression of PSMA protein, which is specifically targeted by the CAR.
Abstract: In Russia, cancer is the second leading cause of death following cardiovascular diseases. Adoptive transfer of NK cells is a promising approach to fight cancer; however, for their successful use in cancer treatment, it is necessary to ensure their robust accumulation at tumor foci, provide resistance to the immunosuppressive tumor microenvironment, and to engineer them with higher cytotoxic activity. NK lymphocytes are known to kill cancer cells expressing a number of stress ligands; and the balance of signals from inhibitory and activating receptors on the surface of the NK cell determines whether a cytotoxic reaction is triggered. We hypothesized that stronger cytotoxicity of NK cells could be achieved via gene editing aimed at enhancing the activating signaling cascades and/or weakening the inhibitory ones, thereby shifting the balance of signals towards NK cell activation and target cell lysis. Here, we took advantage of the CRISPR/Cas9 system to introduce mutations in the coding sequence of the shp-2 (PTPN11) gene encoding the signaling molecule of inhibitory pathways in NK cells. These shp-2 knock-out NK cells were additionally transduced to express a chimeric antigen receptor (CAR) that selectively recognized the antigen of interest on the target cell surface and generated an activating signal. We demonstrate that the combination of shp-2 gene knockout and CAR expression increases the cytotoxicity of effector NK-like YT cells against human prostate cancer cell line Du-145 with ectopic expression of PSMA protein, which is specifically targeted by the CAR.

Journal ArticleDOI
TL;DR: In the hippocampus, the center of human neurogenesis, the highest transposon activity has been identified, which causes somatic mosaicism of cells during the formation of specific brain structures, which confirms the role of transposons in the regulation of brain function.
Abstract: The article is about the role of transposons in the regulation of functioning of neuronal stem cells and mature neurons of the human brain. Starting from the first division of the zygote, embryonic development is governed by regular activations of transposable elements, which are necessary for the sequential regulation of the expression of genes specific for each cell type. These processes include differentiation of neuronal stem cells, which requires the finest tuning of expression of neuron genes in various regions of the brain. Therefore, in the hippocampus, the center of human neurogenesis, the highest transposon activity has been identified, which causes somatic mosaicism of cells during the formation of specific brain structures. Similar data were obtained in studies on experimental animals. Mobile genetic elements are the most important sources of long non-coding RNAs that are coexpressed with important brain protein-coding genes. Significant activity of long non-coding RNA was detected in the hippocampus, which confirms the role of transposons in the regulation of brain function. MicroRNAs, many of which arise from transposon transcripts, also play an important role in regulating the differentiation of neuronal stem cells. Therefore, transposons, through their own processed transcripts, take an active part in the epigenetic regulation of differentiation of neurons. The global regulatory role of transposons in the human brain is due to the emergence of protein-coding genes in evolution by their exonization, duplication and domestication. These genes are involved in an epigenetic regulatory network with the participation of transposons, since they contain nucleotide sequences complementary to miRNA and long non-coding RNA formed from transposons. In the memory formation, the role of the exchange of virus-like mRNA with the help of the Arc protein of endogenous retroviruses HERV between neurons has been revealed. A possible mechanism for the implementation of this mechanism may be reverse transcription of mRNA and site-specific insertion into the genome with a regulatory effect on the genes involved in the memory.

Journal ArticleDOI
TL;DR: Wild species of the genus Fragaria L. and strawberry varieties of different ecological and geographic origins are recommended as promising sources of high contents of mesifurane and y-decalactone in fruit in breeding programs for fruit aroma and the use of molecular markers allows highly reliable detection of target gene alleles in a genome at early developmental stages.
Abstract: Fruit aroma is an important consumer attribute of strawberry varieties. The key volatile compounds of the aromatic complex of strawberry fruit are mesifurane (fruity and caramel aromas) and γ-decalactone (fruity, sweet, or peachy aroma). The mesifurane content in strawberry fruit is controlled by the FaOMT gene, which is mapped to the distal region of the long arm of chromosome VII-F.1. The γ-decalactone content in strawberry fruit is controlled by the FaFAD1 gene, mapped to the distal region of the long arm of chromosome III-2. Identification of forms carrying genes for fruit flavor volatiles is an important step in breeding varieties with fragrant fruit. The use of molecular markers allows highly reliable detection of target gene alleles in a genome at early developmental stages. This study involves molecular genotyping of Fragaria L. varieties for the FaOMT and FaFAD1 genes, analysis of polymorphism of the loci in question, and identification of genotypes valuable for breeding. The objects of our study were wild species of the genus Fragaria L. and strawberry varieties (Fragaria × ananassa Duch.) of different ecological and geographic origins. To assess the allelic states of the FaOMT gene, the codominant marker FaOMT-SI/NO was used, and for the FaFAD1 gene, the dominant marker FaFAD1. The functional allele of the FaOMT gene (FaOMT+) in the heterozygous state (FaOMT+FaOMT- genotype) was detected in 34.9 % of the accessions tested. The functional allele of the FaOMT gene in the homozygous state (FaOMT+FaOMT+ genotype) was detected in 51.2 % of the accessions. The homozygous state of the inactive allele (FaOMT-FaOMT- genotype) was detected in 13.9 % of the studied strawberry accessions. The FaFAD1 gene was identified in 25.6 % of the analyzed collection of strawberry genotypes, including the wild species F. orientalis Los., F. moschata Duch., F. ovalis Rydb. The combination of functional alleles of the FaOMT and FaFAD1 genes was detected in 16.3 % of the analyzed forms. The wild species F. orientalis Los. and F. moschata Duch. and strawberry variety Red Gauntlet combine the functional allele of the FaFAD1 gene with the homozygous state of the active allele of the FaOMT gene; therefore, we recommend them as promising sources of high contents of mesifurane and γ-decactone in fruit in breeding programs for fruit aroma.

Journal ArticleDOI
TL;DR: The molecular genetic approach for AMF identification was quite effective and allowed us to reliably identify eight of nine isolates to the species level, including five isolates of Rhizophagus irregularis and one isolate of R. irregularis.
Abstract: Arbuscular mycorrhiza fungi (AMF) form one of the most common symbiosis with the majority of land plants. AMF supply the plant with various mineral elements, primarily phosphorus, and improve the water supply. The search for the most effective AMF strains for symbiosis and the creation of microbial preparations on that basis is an important task for modern biology. Owing to the difficulties of cultivation without a host plant and their high genetic polymorphism, identifying AMF is very difficult. A high number of cryptic species often makes morphological identification unreliable. Recent years have seen a growth in the number of AMF biodiversity studies performed by modern NGS-based methods, Illumina MiSeq in particular. Currently, there are still many questions that remain for the identification of AМF. The most important are whether conservative or variable sequences should be used to select a marker for barcoding and whether universal primers or those specific to AMF should be used. In our work, we have successfully used universal primers ITS3 and ITS4 for the sequencing in Illumina MiSeq of the 5.8S rDNA - ITS2 region of the 35S rRNA genes, which contain both a conservative and variable regions. The molecular genetic approach for AMF identification was quite effective and allowed us to reliably identify eight of nine isolates to the species level: five isolates of Rhizophagus irregularis, and one isolate of R. invermaius, Paraglomus laccatum, and Claroideoglomus etunicatum, respectively. For all five R. irregularis isolates, high variability in the ITS region and the absence of ecotopic-related molecular characters in the ITS2 region were demonstrated. The NCBI data is still insufficient for accurate AMF identification of Acaulospora sp. isolates from the genus to the species level.

Journal ArticleDOI
TL;DR: This paper discusses studies on the development of vaccines against coronaviruses including SARS-CoV-2 with special attention to the mRNA technique, considering one of the promising vaccine platforms based on messenger RNA.
Abstract: After the genome sequence of SARS-CoV-2 (Severe acute respiratory syndrome-related coronavirus 2) was published and the number of infected people began to increase rapidly, many global companies began to develop a vaccine. Almost all known approaches to vaccine design were applied for this purpose, including inactivated viruses, mRNA and DNA-vaccines, vaccines based on various viral vectors, synthetically generated peptides and recombinant proteins produced in cells of insects and mammals. This review considers one of the promising vaccine platforms based on messenger RNA. Until recent years, mRNA-vaccination was out of practical implementation due to high sensitivity to nuclease degradation and consequent instability of drugs based on mRNA. Latest technological advances significantly mitigated the problems of low immunogenicity, instability, and difficulties in RNA-vaccine delivery. It is worth noting that mRNA-vaccines can efficiently activate both components of the immune system, i. e. T-cell and humoral responses. The essential advantage of mRNAvaccines includes fast, inexpensive, scalable and uniform production providing a large output of desirable products in vitro. Synthesis and purification processes significantly simplify the process technology of mRNA drugs with injectable purity. Thus, mRNA production via in vitro transcription is more advantageous as compared with DNA-vaccines since it is a chemical process without the use of cells. mRNA techniques make it possible to pass all the phases of vaccine development much faster in comparison with the production of vaccines based on inactivated viruses or recombinant proteins. This property is critically important when designing vaccines against viral pathogens as the main problem of disease control includes a time gap between an epidemic and vaccine development. This paper discusses studies on the development of vaccines against coronaviruses including SARS-CoV-2 with special attention to the mRNA technique.

Journal ArticleDOI
TL;DR: The purpose of the work was to clarify the species composition ofSeptoriablotch for West Siberian regions and spring wheat varieties, to study the epiphytotic process of Septoriadifferentially on the leaves and ears of varieties, and to evaluate the activity of seed transmission of Parastagonospora nodorum.
Abstract: The Septoria blotch of spring wheat leaves and ears is one of the most economically significant infections in the Siberian region. In the control systems of Septoria blotch the main ecologically safe element is resistant varieties, which are designed to slow down the pathogens reproduction rate and slow down or stop the development of the epiphytotic process. The purpose of the work was to clarify the species composition of Septoria blotch pathogens for West Siberian regions and spring wheat varieties, to study the epiphytotic process of Septoria differentially on the leaves and ears of varieties, and to evaluate the activity of seed transmission of Parastagonospora nodorum. Studies were carried out in 2016-2018 according to generally accepted methods. Septoria leaf and ear blotch of spring wheat is widespread in West Siberia and the Trans-Urals, causing a decrease in yield by up to 50 % or more with the deterioration in grain quality. The causative agents of the disease are P. nodorum, Septoria tritici, and P. avenae f. sp. triticae, and the species ratio varied across the regions and varieties, and within plant organs. In Novosibirsk Region, P. nodorum completely dominated; S. tritici was 13.8 times less common; and P. avenae f. sp. triticae was a singleton. In Tyumen Region, the dominance of P. nodorum was disrupted in some geographic locations by S. tritici and P. avenae f. sp. triticae. In Altai Krai, P. nodorum predominated at all points studied; S. tritici and P. avenae f. sp. triticae were found everywhere, but 5.6 and 8.6 times less often, respectively. The study of spring wheat varieties of different origins has not revealed any samples immune to Septoria blotch. A differentiated manifestation of resistance to Septoria leaf and ear disease has been established. Some varieties show complex resistance, combining reduced susceptibility to Septoria leaf and ear disease. Seed infection with P. nodorum in the regions of Siberia reached 7 thresholds and was largely (52.5 %) determined by the August weather conditions. The study of the collection of spring wheat varieties from three Siberian regions has revealed the following trend. Transmission of P. nodorum with the seeds of varieties was the most active (7.6 %) in Novosibirsk Region and somewhat weaker in Omsk Region (5.7 %). The most favorable phytosanitary situation was in Kurgan Region, where varieties transmitted P. nodorum to a low degree (2.1 %), below the threshold.

Journal ArticleDOI
TL;DR: The aim of the study was to construct a reference transcriptome assembly of pea mycorrhizal roots, which may serve as markers for early stages of inoculation in genetically diverse pea cultivars.
Abstract: Arbuscular mycorrhiza (AM) is an ancient mutualistic symbiosis formed by 80-90 % of land plant species with the obligatorily biotrophic fungi that belong to the phylum Glomeromycota This symbiosis is mutually beneficial, as AM fungi feed on plant photosynthesis products, in turn improving the efficiency of nutrient uptake from the environment The garden pea (Pisum sativum L), a widely cultivated crop and an important model for genetics, is capable of forming triple symbiotic systems consisting of the plant, AM fungi and nodule bacteria As transcriptomic and proteomic approaches are being implemented for studying the mutualistic symbioses of pea, a need for a reference transcriptome of genes expressed under these specific conditions for increasing the resolution and the accuracy of other methods arose Numerous transcriptome assemblies constructed for pea did not include mycorrhizal roots, hence the aim of the study to construct a reference transcriptome assembly of pea mycorrhizal roots The combined transcriptome of mycorrhizal roots of Pisum sativum cv Frisson inoculated with Rhizophagus irregularis BEG144 was investigated, and for both the organisms independent transcriptomes were assembled (coverage 177x for pea and 45x for fungus) Genes specific to mycorrhizal roots were found in the assembly, their expression patterns were examined with qPCR on two pea cultivars, Frisson and Finale The gene expression depended on the inoculation stage and on the pea cultivar The investigated genes may serve as markers for early stages of inoculation in genetically diverse pea cultivars

Journal ArticleDOI
TL;DR: The results of studies on the culturing of mature sugar beet zygotic embryos based on in vitro selective systems have made it possible to improve the adaptive potential of plants and to provide complex resistance to environmental stress factors.
Abstract: Here we consider aspects of the application of biotechnological methods to rapid creation, propagation, and maintenance of plants with improved or new traits in sugar beet breeding. The results of the works carried out in these fields by the Federal State Budgetary Scientific Institution "The A.L. Mazlumov All-Russia Research Institute of Sugar Beet" are reviewed. A close association between morphological and physiological changes in in vitro cultured organs and tissues, on the one hand, and breeding traits, on the other hand, which allows the development of experimental systems for non-amphimictic plant reconstruction is shown. The influence of in vitro growth conditions on haploid cells of unfertilized sugar beet ovules in the course of obtaining doubled haploid lines with high degree of homozygosity and maintenance of valuable breeding properties is considered. As compared to common inbreeding, this method shortens the time for development of homozygous material from 10-12 to 3-5 years, which is of great importance for speeding-up the breeding process. The results of studies on the culturing of mature sugar beet zygotic embryos based on in vitro selective systems have made it possible to improve the adaptive potential of plants and to provide complex resistance to environmental stress factors. Strict selection under abiotic stress conditions allowed creation of sugar beet isogenic lines with tolerance of drought, salinity, and soil acidity. It is shown that the proposed original design of mass-scale microclonal in vitro reproduction and deposition of elite plants as components of highly productive hybrids can be used to obtain seeds of uniform high-quality breeding material. The technologies developed by biotechnological methods are a topical and innovative direction of inquiry, since the application of these techniques to sugar beet breeding will promote obtaining of competitive hybrids with a set of commercially valuable traits. The combination of biotechnology methods, including tissue culture, and traditional breeding techniques is expected to provide an opportunity to obtain a new starting material to develop domestic varieties and hybrids of new generation with heterosis effect and a wide resistance spectrum persisting across generations.

Journal ArticleDOI
TL;DR: The GWAS-MAP platform and database can be used for studying the etiology of human diseases, building predictive risk models and finding potential biomarkers and therapeutic interventions, and in order to demonstrate a typical application of the platform as an approach for extracting new biological knowledge and establishing mechanistic hypotheses.
Abstract: Hundreds of genome-wide association studies (GWAS) of human traits are performed each year. The results of GWAS are often published in the form of summary statistics. Information from summary statistics can be used for multiple purposes – from fundamental research in biology and genetics to the search for potential biomarkers and therapeutic targets. While the amount of GWAS summary statistics collected by the scientific community is rapidly increasing, the use of this data is limited by the lack of generally accepted standards. In particular, the researchers who would like to use GWAS summary statistics in their studies have to become aware that the data are scattered across multiple websites, are presented in a variety of formats, and, often, were not quality controlled. Moreover, each available summary statistics analysis tools will ask for data to be presented in their own internal format. To address these issues, we developed GWAS-MAP, a high-throughput platform for aggregating, storing, analyzing, visualizing and providing access to a database of big data that result from region- and genome-wide association studies. The database currently contains information on more than 70 billion associations between genetic variants and human diseases, quantitative traits, and “omics” traits. The GWAS-MAP platform and database can be used for studying the etiology of human diseases, building predictive risk models and finding potential biomarkers and therapeutic interventions. In order to demonstrate a typical application of the platform as an approach for extracting new biological knowledge and establishing mechanistic hypotheses, we analyzed varicose veins, a disease affecting on average every third adult in Russia. The results of analysis confirmed known epidemiologic associations for this disease and led us to propose a hypothesis that increased levels of MICB and CD209 proteins in human plasma may increase susceptibility to varicose veins.

Journal ArticleDOI
TL;DR: The association between cognitive functioning and genes, which have been previously involved in developing psychiatric disorders, was revealed, thus indicating the role of the similar mechanisms of genetic and neural networks in both normal cognition and cognitive impairment.
Abstract: The present review describes longitudinal studies of cognitive traits and functions determining the causes of their variations and their possible correction to prevent cognitive impairment. The present study reviews the involvement of such environmental factors as nutrition, prenatal maternal stress, social isolation and others in cognitive functioning. The role of epigenetic factors in the implementation of environmental effects in cognitive characteristics is revealed. Considering the epigenome significance, several studies were focused on the design of substances affecting methylation and histone modification, which can be used for the treatment of cognitive disorders. The appropriate correction of epigenetic factors related to environmental differences in cognitive abilities requires to determine the mechanisms of chromatin modifications and variations in DNA methylation. Transposons representing stress-sensitive DNA elements appeared to mediate the environmental influence on epigenetic modifications. They can explain the mechanism of transgenerational transfer of information on cognitive abilities. Recently, large-scale meta-analyses based on the results of studies, which identified genetic associations with various cognitive traits, were carried out. As a result, the role of genes actively expressed in the brain, such as BDNF, COMT, CADM2, CYP2D6, APBA1, CHRNA7, PDE1C, PDE4B, and PDE4D in cognitive abilities was revealed. The association between cognitive functioning and genes, which have been previously involved in developing psychiatric disorders (MEF2C, CYP2D6, FAM109B, SEPT3, NAGA, TCF20, NDUFA6 genes), was revealed, thus indicating the role of the similar mechanisms of genetic and neural networks in both normal cognition and cognitive impairment. An important role in both processes belongs to common epigenetic factors. The genes involved in DNA methylation (DNMT1, DNMT3B, and FTO), histone modifications (CREBBP, CUL4B, EHMT1, EP300, EZH2, HLCS, HUWE1, KAT6B, KMT2A, KMT2D, KMT2C, NSD1, WHSC1, and UBE2A) and chromatin remodeling (ACTB, ARID1A, ARID1B, ATRX, CHD2, CHD7, CHD8, SMARCA2, SMARCA4, SMARCB1, SMARCE1, SRCAP, and SS18L1) are associated with increased risk of psychiatric diseases with cognitive deficiency together with normal cognitive functioning. The data on the correlation between transgenerational epigenetic inheritance of cognitive abilities and the insert of transposable elements in intergenic regions is discussed. Transposons regulate genes functioning in the brain due to the processing of their transcripts into non-coding RNAs. The content, quantity and arrangement of transposable elements in human genome, which do not affect changes in nucleotide sequences of protein encoding genes, but affect their expression, can be transmitted to the next generation.

Journal ArticleDOI
TL;DR: It has been shown that races 1 and 8 of P. tritici-repentis are dominant, which is of interest in wheat breeding programs for tan spot resistance.
Abstract: Pyrenophora tritici-repentis is a causative agent of tan spot in wheat. In recent years, there has been an increasing spread and harmfulness of wheat tan spot. The aim of the research was to study the racial composition of the P. tritici-repentis population in the Republic of Kazakhstan. A collection of 30 common wheat accessions, including promising lines and cultivars from Kazakhstan and CIMMYT–ICARDA, was assessed for resistance to P. triticirepentis in a greenhouse and characterized using the Xfcp623 molecular marker, diagnostic for the Tsn1 gene. Monosporic isolates of P. tritici-repentis isolated from the southeastern region were assigned to certain races based on the manifestation of symptoms of necrosis/chlorosis on standard differentials (Glenlea, 6B662, 6B365). Five races of P. tritici-repentis have been identified, including races 1, 2, 3, 7 and 8. It has been shown that races 1 and 8 of P. tritici-repentis are dominant. As a result of the analysis of the frequency of occurrence of the P. tritici-repentis races, it was found that race 1 (50 %) producing Ptr ToxA and Ptr ToxB and race 8 (35 %) producing Ptr ToxA, Ptr ToxB and Ptr ToxC turned out to be dominant. From a practical point of view, of greatest interest are 16 wheat samples, which demonstrated resistance to race 1 and confirmed insensitivity to Ptr ToxA in a molecular screening. These include eight Kazakhstani (4_PSI, 10204_2_KSI, 10204_3_KSI, 10205_2_KSI, 10205_3_KSI, 605_SP2, 632_SP2, Dana) and seven foreign lines (KR11-20, KR11-03, KR11-9014, 11KR-13, KR12-9025, KR12-07, GN-68/2003). The results of this study are of interest in wheat breeding programs for tan spot resistance.

Journal ArticleDOI
TL;DR: A negative correlation between seed dormancy and viability probably means that seeds are able to adapt to changing environmental conditions, and there is still no definite answer as to which genes would serve as markers of seed viability in a certain plant species.
Abstract: Conservation of plant genetic diversity, including economically important crops, is the foundation for food safety. About 90 % of the world’s crop genetic diversity is stored as seeds in genebanks. During storage seeds suffer physiological stress consequences, one of which is the accumulation of free radicals, primarily reactive oxygen species (ROS). An increase in ROS leads to oxidative stress, which negatively affects the quality of seeds and can lead to a complete loss of their viability. The review summarizes data on biochemical processes that affect seed longevity. The data on the destructive effect of free radicals towards plant cell macromolecules are analyzed, and the ways to eliminate excessive ROS in plants, the most important of which is the glutathioneascorbate pathway, are discussed. The relationship between seed dormancy and seed longevity is examined. Studying seeds of different plant species revealed a negative correlation between seed dormancy and longevity, while various authors who researched Arabidopsis seeds reported both positive and negative correlations between dormancy and seed longevity. A negative correlation between seed dormancy and viability probably means that seeds are able to adapt to changing environmental conditions. This review provides a summary of Arabidopsis genes associated with seed viability. By now, a significant number of loci and genes affecting seed longevity have been identified. This review contains a synopsis of modern studies on the viability of barley seeds. QTLs associated with barley seed longevity were identified on chromosomes 2H, 5H and 7H. In the QTL regions studied, the Zeo1, Ale, nud, nadp-me, and HvGR genes were identified. However, there is still no definite answer as to which genes would serve as markers of seed viability in a certain plant species.

Journal ArticleDOI
TL;DR: The article presents the results of a cluster analysis on chickpea accessions from the National Center for Plant Genetic Resources of Ukraine (NCPGRU) for a set of agronomic characteristics and concluded that the accessions of cluster 1 were preferable in breeding programs to develop chickpeA varieties for the foreststeppe zone.
Abstract: Assessment of the genetic resources of chickpea (Cicer arietinum L.) in a zone that is atypical for its cultivation (eastern forest-steppe of Ukraine) gives an opportunity to identify valuable starting material for priority breeding areas. The article presents the results of a cluster analysis on chickpea accessions from the National Center for Plant Genetic Resources of Ukraine (NCPGRU) for a set of agronomic characteristics. In 2005-2017, 653 chickpea accessions from the NCPGRU's core collection were studied: 369 kabuli accessions and 284 desi accessions. One hundred and fifty two sources of valuable traits were identified for 11 parameters: drought tolerance, resistance to Ascochyta leaf and pod spot, early ripening (vegetation period length), yield, performance, number of productive pods and seed number per plant, response to nitrogenization, protein content, seed size, and cooking quality. These accessions (77 kabuli accessions are light-colored and 75 desi ones are dark-colored) were grouped by a set of valuable economic characteristics using cluster analysis with the Euclidean distance as a measure. The study showed that this sample consisted of 4 clusters. Cluster 1 contained mainly kabuli accessions with optimal combinations of valuable traits: drought tolerance, resistance to Ascochyta leaf and pod spot, large seeds, high yield capacity and performance, pod and seed numbers as well as protein content in seeds. This cluster includes standards and most of reference varieties, which are well-adapted to the conditions of the eastern forest-steppe of Ukraine. The accessions of cluster 2 are characterized by high resistance to Ascochyta leaf and pod spot, late ripening, small seeds, low protein content, moderate response to nitrogenization, high performance attributed to a large number of productive pods and seeds per plant. Most of the accessions of this cluster are small-seeded late-ripening kabuli accessions. Cluster 3 consists of 3 accessions, which have large seeds and high protein content in them, give moderate yields, are highly responsive to nitrogenization and poorly resistant to Ascochyta leaf and pod spot. Cluster 4 comprises mainly desi accessions (63 %), which are mid-ripening, with small seeds, low performance, moderate yield capacity, medium protein content, poor cooking quality, moderate resistance to Ascochyta leaf and pod spot, and low drought tolerance. Representatives of this cluster are predominantly sources of one trait and may have restricted application in specialized breeding programs. Based on the data obtained, we concluded that the accessions of cluster 1 were preferable in breeding programs to develop chickpea varieties for the forest-steppe zone.

Journal ArticleDOI
TL;DR: A comparative study of Hordeum organelle genomes’ variability and disposition of polymorphic loci was conducted, outlining new perspectives for the future study of nuclear-cytoplasmic interactions in alloplasmic lines.
Abstract: Alloplasmic lines are a suitable model for studying molecular coevolution and interrelations between genetic systems of plant cells. Whole chloroplast (cp) and mitochondrial (mt) genome sequences were obtained by the MiSeq System (Illumina). Organelle DNA samples were prepared from a set of 12 alloplasmic barley lines with different cytoplasms of Hordeum vulgare ssp. spontaneum and H. vulgare ssp. vulgare, as well as from their paternal varieties. A bioinformatic approach for analysis of NGS data obtained on an organellar DNA mix has been developed and verified. A comparative study of Hordeum organelle genomes' variability and disposition of polymorphic loci was conducted. Eight types of chloroplast DNA and 5 types of mitochondrial DNA were distinguished for the barley sample set examined. These results were compared with the previous data of a restriction fragment length polymorphism (RFLP) study of organelle DNAs for the same material. Formerly established data about a field evaluation of alloplasmic barley lines were revised in the light of information about organelle genomes gained after NGS. Totally 17 polymorphic loci were found at exons of chloroplast genomes. Seven of the SNPs were located in the genes of the Ndh complex. The nonsynonymous changes of nucleotides were detected in the matK, rpoC1, ndhK, ndhG and infA genes. Some of the SNPs detected are very similar in codon position and in the type of amino acid substitution to the places where RNA editing can occur. Thus, these results outline new perspectives for the future study of nuclear-cytoplasmic interactions in alloplasmic lines.

Journal ArticleDOI
TL;DR: The data obtained indicate that different types of sterile cytoplasm of sorghum make a different contribution to CA under conditions of drought stress.
Abstract: Investigation of the effect of the cytoplasm on the combining ability (CA) of lines with cytoplasmic male sterility (CMS) is of considerable interest in terms of understanding the genetic functions of the cytoplasm and for practical purposes to create hybrids with improved economically valuable traits. In order to investigate the effect of different types of sterile cytoplasm (A3, A4, 9E) on CA in sorghum, we studied the manifestation of a number of biological and agronomic traits in 54 F1 hybrid combinations obtained using iso-nuclear CMS lines with the nuclear genome of the line Zheltozernoye 10, differing only in the types of sterile cytoplasm (A3, A4 and 9E). Eighteen varieties and lines of grain sorghum developed at the Russian Research and Project-technological Institute of Sorghum and Maize were used as paternal parents. The CA was determined by the topcross method. F1 hybrids and their parents were grown in 2015-2017 in conditions of insufficient (2015-2016: HTC (hydro-thermal coefficient) = 0.32-0.66), or good water availability conditions (2017: HTC = 1.00). On average, for three years of testing, a positive effect of the 9E cytoplasm on the general combining ability (GCA) (0.63) and negative effects of the A3 and A4 cytoplasms (-0.32 and -0.31) for the inflorescence length were noted. In dry seasons, significant positive effects of the 9E cytoplasm on GCA for the length of the largest leaf, and positive effects of the A3 cytoplasm on GCA for the plant height, and negative effects of the A4 cytoplasm on GCA for these traits were observed. No differences were observed during the wet season. The type of CMS did not affect the GCA for the width of the largest leaf and grain yield. The dispersion of specific combining ability (SCA) in the dry seasons was significant for the following traits: leaf length, plant height, panicle length and width, and grain yield, the 9E cytoplasm had the highest SCA dispersion, whereas the A4 cytoplasm had the smallest one. The data obtained indicate that different types of sterile cytoplasm of sorghum make a different contribution to CA under conditions of drought stress.

Journal ArticleDOI
TL;DR: The objectives of this study were to survey the prevalence of genetic markers for Rickettsia, Ehrlichia spp.
Abstract: The objectives of our study were to survey the prevalence of genetic markers for Rickettsia spp., Ehrlichia spp., Anaplasma spp., Babesia spp., and Theileria spp. in Hyalomma anatolicum ticks collected in southwestern Tajikistan and to perform sequencing and phylogenetic analysis of fragments of the 16S rRNA gene and groESL operon from Ehrlichia spp. and fragments of the 18S rRNA gene of Theileria spp. detected in H. anatolicum ticks. Hyalomma anatolicum ticks collected in the Tursunzade and Rudaki districts of Tajikistan were tested for DNA of Rickettsia spp., Ehrlichia spp., Anaplasma spp., Babesia spp., and Theileria spp. by PCR with specific primers. The amplified fragments were sequenced and analyzed. DNA of Ehrlichia spp. (3.3 %) and Theileria spp. (3.3 %) was detected only in H. anatolicum ticks collected from the Rudaki district, and DNA of Ehrlichia spp. (0.7 %) was found in H. anatolicum ticks from the Tursunzade district. Sequence analysis of fragments of the 16S rRNA gene and groESL operon from Ehrlichia spp. revealed high similarity to Ehrlichia spp. The Tajik isolates of Theileria spp. were genotyped as Theileria annulata based on the analysis of 18S rRNA gene sequences. The phylogenetic analysis demonstrates that Ehrlichia spp. isolates are highly similar to Ehrlichia spp. circulating in China and Brazil. The isolate Tajikistan-5 is closely related to the putative novel species Ehrlichia mineirensis. The Tajik isolates of Theileria spp. were clustered with T. annulata isolates from Turkey, Iran, Pakistan, and China by phylogenetic analyses.

Journal ArticleDOI
TL;DR: This review systematized and summarized information on the results of studies in the field of clinical and genetic aspects of osteogenesis imperfecta and reflected the current state of the classification criteria for diagnosing the disease.
Abstract: Osteogenesis imperfecta (imperfect osteogenesis in the Russian literature) is the most common hereditary form of bone fragility, it is a genetically and clinically heterogeneous disease with a wide range of clinical severity, often leading to disability from early childhood. It is based on genetic disorders leading to a violation of the structure of bone tissue, which leads to frequent fractures, impaired growth and posture, with the development of characteristic disabling bone deformities and associated problems, including respiratory, neurological, cardiac, renal impairment, hearing loss. Osteogenesis imperfecta occurs in both men and women, the disease is inherited in both autosomal dominant and autosomal recessive types, there are sporadic cases of the disease due to de novo mutations, as well as X-linked forms. The term "osteogenesis imperfecta" was coined by W. Vrolick in the 1840s. The first classification of the disease was made in 1979 and has been repeatedly reviewed due to the identification of the molecular cause of the disease and the discovery of new mechanisms for the development of osteogenesis imperfecta. In the early 1980s, mutations in two genes of collagen type I (COL1A1 and COL1A2) were first associated with an autosomal dominant inheritance type of osteogenesis imperfecta. Since then, 18 more genes have been identified whose products are involved in the formation and mineralization of bone tissue. The degree of genetic heterogeneity of the disease has not yet been determined, researchers continue to identify new genes involved in its pathogenesis, the number of which has reached 20. In the last decade, it has become known that autosomal recessive, autosomal dominant and X-linked mutations in a wide range of genes, encoding proteins that are involved in the synthesis of type I collagen, its processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells, cause imperfect osteogenesis. A large number of causative genes complicated the classical classification of the disease and, due to new advances in the molecular basis of the disease, the classification of the disease is constantly being improved. In this review, we systematized and summarized information on the results of studies in the field of clinical and genetic aspects of osteogenesis imperfecta and reflected the current state of the classification criteria for diagnosing the disease.