Journal•ISSN: 0949-7714
Journal of Geodesy
Springer Science+Business Media
About: Journal of Geodesy is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Geodetic datum & Geoid. It has an ISSN identifier of 0949-7714. Over the lifetime, 3255 publications have been published receiving 97384 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this article, an ambiguity decorrelation approach is introduced to flatten the typical discontinuity in the GPS-spectrum of ambiguity conditional variances and return new ambiguities that show a dramatic improvement in correlation and precision.
Abstract: The GPS double difference carrier phase measurements are ambiguous by an unknown integer number of cycles. High precision relative GPS positioning based on short observational timespan data, is possible, when reliable estimates of the integer double difference ambiguities can be determined in an efficient manner. In this contribution a new method is introduced that enables very fast integer least-squares estimation of the ambiguities. The method makes use of an ambiguity transformation that allows one to reformulate the original ambiguity estimation problem as a new problem that is much easier to solve. The transformation aims at decorrelating the least-squares ambiguities and is based on an integer approximation of the conditional least-squares transformation. This least-squares ambiguity decorrelation approach, flattens the typical discontinuity in the GPS-spectrum of ambiguity conditional variances and returns new ambiguities that show a dramatic improvement in correlation and precision. As a result, the search for the transformed integer least-squares ambiguities can be performed in a highly efficient manner.
1,562 citations
TL;DR: The IGS Strategic Plan and future directions of the globally-coordinated ~400 station IGS network, tracking data and information products, and outlines the scope of a few of its numerous working groups and pilot projects as the world anticipates a truly multi-system GNSS in the coming decade are discussed.
Abstract: The International GNSS Service (IGS) is an international activity involving more than 200 participating organisations in over 80 countries with a track record of one and a half decades of successful operations. The IGS is a service of the International Association of Geodesy (IAG). It primarily supports scientific research based on highly precise and accurate Earth observations using the technologies of Global Navigation Satellite Systems (GNSS), primarily the US Global Positioning System (GPS). The mission of the IGS is “to provide the highest-quality GNSS data and products in support of the terrestrial reference frame, Earth rotation, Earth observation and research, positioning, navigation and timing and other applications that benefit society”. The IGS will continue to support the IAG’s initiative to coordinate cross-technique global geodesy for the next decade, via the development of the Global Geodetic Observing System (GGOS), which focuses on the needs of global geodesy at the mm-level. IGS activities are fundamental to scientific disciplines related to climate, weather, sea level change, and space weather. The IGS also supports many other applications, including precise navigation, machine automation, and surveying and mapping. This article discusses the IGS Strategic Plan and future directions of the globally-coordinated ~400 station IGS network, tracking data and information products, and outlines the scope of a few of its numerous working groups and pilot projects as the world anticipates a truly multi-system GNSS in the coming decade.
1,442 citations
TL;DR: ITRF2008 as mentioned in this paper is a refined version of the International Terrestrial Reference Frame based on reprocessed solutions of the four space geodetic techniques: VLBI, SLR, GPS and DORIS, spanning 29, 26, 12.5 and 16 years of observations, respectively.
Abstract: ITRF2008 is a refined version of the International Terrestrial Reference Frame based on reprocessed solutions of the four space geodetic techniques: VLBI, SLR, GPS and DORIS, spanning 29, 26, 12.5 and 16 years of observations, respectively. The input data used in its elaboration are time series (weekly from satellite techniques and 24-h session-wise from VLBI) of station positions and daily Earth Orientation Parameters (EOPs). The ITRF2008 origin is defined in such a way that it has zero translations and translation rates with respect to the mean Earth center of mass, averaged by the SLR time series. Its scale is defined by nullifying the scale factor and its rate with respect to the mean of VLBI and SLR long-term solutions as obtained by stacking their respective time series. The scale agreement between these two technique solutions is estimated to be 1.05 ± 0.13 ppb at epoch 2005.0 and 0.049 ± 0.010 ppb/yr. The ITRF2008 orientation (at epoch 2005.0) and its rate are aligned to the ITRF2005 using 179 stations of high geodetic quality. An estimate of the origin components from ITRF2008 to ITRF2005 (both origins are defined by SLR) indicates differences at epoch 2005.0, namely: −0.5, −0.9 and −4.7 mm along X, Y and Z-axis, respectively. The translation rate differences between the two frames are zero for Y and Z, while we observe an X-translation rate of 0.3 mm/yr. The estimated formal errors of these parameters are 0.2 mm and 0.2 mm/yr, respectively. The high level of origin agreement between ITRF2008 and ITRF2005 is an indication of an imprecise ITRF2000 origin that exhibits a Z-translation drift of 1.8 mm/yr with respect to ITRF2005. An evaluation of the ITRF2008 origin accuracy based on the level of its agreement with ITRF2005 is believed to be at the level of 1 cm over the time-span of the SLR observations. Considering the level of scale consistency between VLBI and SLR, the ITRF2008 scale accuracy is evaluated to be at the level of 1.2 ppb (8 mm at the equator) over the common time-span of the observations of both techniques. Although the performance of the ITRF2008 is demonstrated to be higher than ITRF2005, future ITRF improvement resides in improving the consistency between local ties in co-location sites and space geodesy estimates.
1,183 citations
TL;DR: The detailed development of an innovation-based adaptive Kalman filter for an integrated inertial navigation system/global positioning system (INS/GPS) is given, based on the maximum likelihood criterion for the proper choice of the filter weight and hence the filter gain factors.
Abstract: After reviewing the two main approaches of adaptive Kalman filtering, namely, innovation-based adaptive estimation (IAE) and multiple-model-based adaptive estimation (MMAE), the detailed development of an innovation-based adaptive Kalman filter for an integrated inertial navigation system/global positioning system (INS/GPS) is given. The developed adaptive Kalman filter is based on the maximum likelihood criterion for the proper choice of the filter weight and hence the filter gain factors. Results from two kinematic field tests in which the INS/GPS was compared to highly precise reference data are presented. Results show that the adaptive Kalman filter outperforms the conventional Kalman filter by tuning either the system noise variance–covariance (V–C) matrix `Q' or the update measurement noise V–C matrix `R' or both of them.
949 citations
TL;DR: In this paper, it was shown that the height integral of the atmospheric refractivity for light, taken from ground level up to the top of the atmosphere, is directly proportional to ground pressure.
Abstract: Since the barometer measures the weight of the overlying atmosphere, it follows by the law of Gladstone and Dale that the height integral∫(n#x2212;1) of the atmospheric refractivity for light, taken from ground level up to the top of the atmosphere, is directly proportional to ground pressure. The refractivity integral, therefore, can be determined without detailed knowledge of the height distribution of the refractive index, which not only simplifies the derivation of refraction formulas in which atmospheric models have been used hitherto, but also improves their accuracy. For zenith distances not exceeding about 75 degrees, the correction for astronomical refraction will be given by the standard formula
$$\begin{gathered} \Delta z''_0 = 16''.271 tan z\left[ {1 + 0.0000394 tan^2 z\left( {\frac{{p - 0.156e}}{T}} \right)} \right]\left( {\frac{{p - 0.156e}}{T}} \right) - \hfill \\ - 0''.0749 (tan^3 z + tan z)\left( {\frac{p}{{1000}}} \right) \hfill \\ \end{gathered} $$
wherez is the apparent zenith distance,p is the total pressure ande is the partial pressure of water vapour, both in millibars, andT is the absolute temperature in degrees Kelvin Part II of the paper contains further applications of the theory to refraction problems in satellite geodesy, including the photogrammetric refraction and the atmospheric corrections in the ranging of artificial satellites.
839 citations