scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Geophysical Research in 2000"


Journal ArticleDOI
TL;DR: The developed algorithm is adapted for the retrieval of aerosol properties from measurements made by ground-based Sun-sky scanning radiometers used in the Aerosol Robotic Network (AERONET) and allows a choice of normal or lognormal noise assumptions.
Abstract: The problem of deriving a complete set of aerosol optical properties from Sun and sky radiance measurements is discussed. Algorithm development is focused on improving aerosol retrievals by means of including a detailed statistical optimization of the influence of noise in the inversion procedure. The methodological aspects of such an optimization are discussed in detail and revised according to both modern findings in inversion theory and practical experience in remote sensing. Accordingly, the proposed inversion algorithm is built on the principles of statistical estimation: the spectral radiances and various a priori constraints on aerosol characteristics are considered as multisource data that are known with predetermined accuracy. The inversion is designed as a search for the best fit of all input data by a theoretical model that takes into account the different levels of accuracy of the fitted data. The algorithm allows a choice of normal or lognormal noise assumptions. The multivariable fitting is implemented by a stable numerical procedure combining matrix inversion and univariant relaxation. The theoretical inversion scheme has been realized in the advanced algorithm retrieving aerosol size distribution together with complex refractive index from the spectral measurements of direct and diffuse radiation. The aerosol particles are modeled as homogeneous spheres. The atmospheric radiative transfer modeling is implemented with well-established publicly available radiative transfer codes. The retrieved refractive indices can be wavelength dependent; however, the extended smoothness constraints are applied to its spectral dependence (and indirectly through smoothness constraints on retrieved size distributions). The positive effects of statistical optimization on the retrieval results as well as the importance of applying a priori constraints are discussed in detail for the retrieval of both aerosol size distribution and complex refractive index. The developed algorithm is adapted for the retrieval of aerosol properties from measurements made by ground-based Sun-sky scanning radiometers used in the Aerosol Robotic Network (AERONET). The results of numerical tests together with examples of experimental data inversions are presented.

2,122 citations


Journal ArticleDOI
TL;DR: In this article, it was shown that the cosmic ray flux increases at higher altitude as air pressure and the shielding effect of the atmosphere decrease, and that altitude-dependent scaling factors are required to compensate for this effect in calculating cosmic ray exposure ages.
Abstract: The cosmic ray flux increases at higher altitude as air pressure and the shielding effect of the atmosphere decrease. Altitude-dependent scaling factors are required to compensate for this effect in calculating cosmic ray exposure ages. Scaling factors in current use assume a uniform relationship between altitude and atmospheric pressure over the Earth's surface. This masks regional differences in mean annual pressure and spatial variation in cosmogenic isotope production rates. Outside Antarctica, air pressures over land depart from the standard atmosphere by ±4.4 hPa (1σ) near sea level, corresponding to offsets of ±3–4% in isotope production rates. Greater offsets occur in regions of persistent high and low pressure such as Siberia and Iceland, where conventional scaling factors predict production rates in error by ±10%. The largest deviations occur over Antarctica where ground level pressures are 20–40 hPa lower than the standard atmosphere at all altitudes. Isotope production rates in Antarctica are therefore 25–30% higher than values calculated by scaling Northern Hemisphere production rates with conventional scaling factors. Exposure ages of old Antarctic surfaces, especially those based on cosmogenic radionuclides at levels close to saturation, may be millions of years younger than published estimates.

2,034 citations


Journal ArticleDOI
TL;DR: In this article, the authors present and interpret GPS measurements of crustal motions for the period 1988-1997 at 189 sites extending east-west from the Caucasus mountains to the Adriatic Sea and north-south from the southern edge of the Eurasian plate to the northern edge of Africa.
Abstract: We present and interpret Global Positioning System (GPS) measurements of crustal motions for the period 1988–1997 at 189 sites extending east-west from the Caucasus mountains to the Adriatic Sea and north-south from the southern edge of the Eurasian plate to the northern edge of the African plate. Sites on the northern Arabian platform move 18±2 mm/yr at N25°±5°W relative to Eurasia, less than the NUVEL-1A circuit closure rate (25±1 mm/yr at N21°±7°W). Preliminary motion estimates (1994–1997) for stations located in Egypt on the northeastern part of Africa show northward motion at 5–6±2 mm/yr, also slower than NUVEL-IA estimates (10±1 mm/yr at N2°±4°E). Eastern Turkey is characterized by distributed deformation, while central Turkey is characterized by coherent plate motion (internal deformation of <2 mm/yr) involving westward displacement and counterclockwise rotation of the Anatolian plate. The Anatolian plate is de-coupled from Eurasia along the right-lateral, strike-slip North Anatolian fault (NAF). We derive a best fitting Euler vector for Anatolia-Eurasia motion of 30.7°± 0.8°N, 32.6°± 0.4°E, 1.2°±0.1°/Myr. The Euler vector gives an upper bound for NAF slip rate of 24±1 mm/yr. We determine a preliminary GPS Arabia-Anatolia Euler vector of 32.9°±1.2°N, 40.3°±1.1°E, 0.8°±0.2°/Myr and an upper bound on left-lateral slip on the East Anatolian fault (EAF) of 9±1 mm/yr. The central and southern Aegean is characterized by coherent motion (internal deformation of <2 mm/yr) toward the SW at 30±1 mm/yr relative to Eurasia. Stations in the SE Aegean deviate significantly from the overall motion of the southern Aegean, showing increasing velocities toward the trench and reaching 10±1 mm/yr relative to the southern Aegean as a whole.

1,871 citations


Journal ArticleDOI
TL;DR: In this paper, an improved estimation of mesoscale surface ocean circulation was obtained by merging TOPEX/Poseidon (T/P) and ERS-1 and -2 altimeter measurements between October 1992 and May 1998.
Abstract: This study focuses on the improved estimation of mesoscale surface ocean circulation obtained by merging TOPEX/Poseidon (T/P) and ERS-1 and -2 altimeter measurements between October 1992 and May 1998. Once carefully intercalibrated and homogenized, these data are merged through an advanced global objective analysis method that allows us to correct for residual long wavelength errors and uses realistic correlation scales of ocean dynamics. The high-resolution (0.25°×0.25°) merged T/P+ERS-1 and -2 sea level anomaly maps provide more homogeneous and reduced mapping errors than either individual data set and more realistic sea level and geostrophic velocity statistics than T/P data alone. Furthermore, the merged T/P+ERS-1 and -2 maps yield eddy kinetic energy (EKE) levels 30% higher than maps of T/P alone. They also permit realistic global estimates of east and north components of EKE and their seasonal variations, to study EKE sources better. A comparison of velocity statistics with World Ocean Circulation Experiment surface drifters in the North Atlantic shows very good agreement. Comparison with contemporary current meter data in various oceanic regimes also produces comparable levels of energy and similar ratios of northward and eastward energy, showing that the maps are suitable to studying anisotropy. The T/P + ERS zonal and meridional components of the mapped currents usually present comparable rms variability, even though the variability in the Atlantic is more isotropic than that in the Pacific, which exhibits strong zonal changes. The EKE map presents a very detailed description, presumably never before achieved at a global scale. Pronounced seasonal changes of the EKE are found in many regions, notably the northeastern Pacific, the northeastern and northwestern Atlantic, the tropical oceans, and the zonally extended bands centered near 20°S in the Indian and western Pacific Oceans and at 20°N in the northwestern Pacific.

1,575 citations


Journal ArticleDOI
TL;DR: In this article, a new inversion concept for simultaneously retrieving aerosol size distribution, complex refractive index, and single scattering albedo from spectral measurements of direct and diffuse radiation was proposed.
Abstract: Sensitivity studies are conducted regarding aerosol optical property retrieval from radiances measured by ground-based Sun-sky scanning radiometers of the Aerosol Robotic Network (AERONET). These studies focus on testing a new inversion concept for simultaneously retrieving aerosol size distribution, complex refractive index, and single- scattering albedo from spectral measurements of direct and diffuse radiation. The perturbations of the inversion resulting from random errors, instrumental offsets, and known uncertainties in the atmospheric radiation model are analyzed. Sun or sky channel miscalibration, inaccurate azimuth angle pointing during sky radiance measurements, and inaccuracy in accounting for surface reflectance are considered as error sources. The effects of these errors on the characterization of three typical and optically distinct aerosols with bimodal size distributions (weakly absorbing water-soluble aerosol, absorbing biomass-burning aerosol, and desert dust) are considered. The aerosol particles are assumed in the retrieval to be polydispersed homogeneous spheres with the same complex refractive index. Therefore we also examined how inversions with such an assumption bias the retrievals in the case of nonspherical dust aerosols and in the case of externally or internally mixed spherical particles with different refractive indices. The analysis shows successful retrieval of all aerosol characteristics (size distribution, complex refractive index, and single-scattering albedo), provided the inversion includes the data combination of spectral optical depth together with sky radiances in the full solar almucantar (with angular coverage of scattering angles up to 100" or more). The retrieval accuracy is acceptable for most remote sensing applications even in the presence of rather strong systematic or random uncertainties in the measurements. The major limitations relate to the characterization of low optical depth situations for all aerosol types, where high relative errors may occur in the direct radiation measurements of aerosol optical depth. Also, the results of tests indicate that a decrease of angular coverage of scattering (scattering angles of 75" or less) in the sky radiance results in the loss of practical information about refractive index. Accurate azimuth angle pointing is critical for the characterization of dust. Scattering by nonspherical dust particles requires special analysis, whereby approximation of the aerosol by spheres allows us to derive single-scattering albedo by inverting spectral optical depth together with sky radiances in the full solar almucantar. Inverting sky radiances measured in the first 40" scattering angle only, where nonspherical effects are minor, results in accurate retrievals of aerosol size distributions of nonspherical particles.

1,562 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the teleseismic receiver function technique to determine the crustal thicknesses and V_p/V_s ratios for these stations and map out the lateral variation of Moho depth under southern California.
Abstract: The number of broadband three-component seismic stations in southern California has more than tripled recently. In this study we use the teleseismic receiver function technique to determine the crustal thicknesses and V_p/V_s ratios for these stations and map out the lateral variation of Moho depth under southern California. It is shown that a receiver function can provide a very good “point” measurement of crustal thickness under a broadband station and is not sensitive to crustal P velocity. However, the crustal thickness estimated only from the delay time of the Moho P-to-S converted phase trades off strongly with the crustal V_p/V_s ratio. The ambiguity can be reduced significantly by incorporating the later multiple converted phases, namely, the PpPs and PpSs+PsPs. We propose a stacking algorithm which sums the amplitudes of receiver function at the predicted arrival times of these phases by different crustal thicknesses H and Vp/Vs ratios. This transforms the time domain receiver functions directly into the H-V_p/V_s domain without need to identify these phases and to pick their arrival times. The best estimations of crustal thickness and V_p/V_s ratio are found when the three phases are stacked coherently. By stacking receiver functions from different distances and directions, effects of lateral structural variation are suppressed, and an average crustal model is obtained. Applying this technique to 84 digital broadband stations in southern California reveals that the Moho depth is 29 km on average and varies from 21 to 37 km. Deeper Mohos are found under the eastern Transverse Range, the Peninsular Range, and the Sierra Nevada Range. The central Transverse Range, however, does not have a crustal root. Thin crusts exist in the Inner California Borderland (21–22 km) and the Salton Trough (22 km). The Moho is relatively flat at the average depth in the western and central Mojave Desert and becomes shallower to the east under the Eastern California Shear Zone (ECSZ). Southern California crust has an average V_p/V_s ratio of 1.78, with higher ratios of 1.8 to 1.85 in the mountain ranges with Mesozoic basement and lower ratios in the Mojave Block except for the ECSZ, where the ratio increases.

1,278 citations


Journal ArticleDOI
TL;DR: In this paper, high-precision stepped-heating experiments were performed to better characterize helium diffusion from apatite using Durango fluorapatite as a model system.
Abstract: High-precision stepped-heating experiments were performed to better characterize helium diffusion from apatite using Durango fluorapatite as a model system. At temperatures below 265°C, helium diffusion from this apatite is a simple, thermally activated process that is independent of the cumulative fraction of helium released and also of the heating schedule used. Across a factor of ∼4 in grain size, helium diffusivity scales with the inverse square of grain radius, implying that the physical grain is the diffusion domain. Measurements on crystallographically oriented thick sections indicate that helium diffusivity in Durango apatite is nearly isotropic. The best estimate of the activation energy for He diffusion from this apatite is E_a = 33±0.5 kcal/mol, with log(D_0) = 1.5±0.6 cm^2/s. The implied He closure temperature for a grain of 100 μm radius is 68°C assuming a 10°C/Myr cooling rate; this figure varies by ±5°C for grains ranging from 50 to 150 μm radius. When this apatite is heated to temperatures from 265 to 400°C, a progressive and irreversible change in He diffusion behavior occurs: Both the activation energy and frequency factor are reduced. This transition in behavior coincides closely with progressive annealing of radiation damage in Durango apatite, suggesting that defects and defect annealing play a role in the diffusivity of helium through apatite.

954 citations


Journal ArticleDOI
TL;DR: For example, first-order reversal curves (FORC) diagrams as mentioned in this paper can be used to identify and discriminate between the different components in a mixed magnetic mineral assemblage, such as superparamagnetic, single-domain, and multidomain grains.
Abstract: Paleomagnetic and environmental magnetic studies are commonly conducted on samples containing mixtures of magnetic minerals and/or grain sizes. Major hysteresis loops are routinely used to provide information about variations in magnetic mineralogy and grain size. Standard hysteresis parameters, however, provide a measure of the bulk magnetic properties, rather than enabling discrimination between the magnetic components that contribute to the magnetization of a sample. By contrast, first-order reversal curve (FORC) diagrams, which we describe here, can be used to identify and discriminate between the different components in a mixed magnetic mineral assemblage. We use magnetization data from a class of partial hysteresis curves known as first-order reversal curves (FORCs) and transform the data into contour plots (FORC diagrams) of a two-dimensional distribution function. The FORC distribution provides information about particle switching fields and local interaction fields for the assemblage of magnetic particles within a sample. Superparamagnetic, single-domain, and multidomain grains, as well as magnetostatic interactions, all produce characteristic and distinct manifestations on a FORC diagram. Our results indicate that FORC diagrams can be used to characterize a wide range of natural samples and that they provide more detailed information about the magnetic particles in a sample than standard interpretational schemes which employ hysteresis data. It will be necessary to further develop the technique to enable a more quantitative interpretation of magnetic assemblages; however, even qualitative interpretation of FORC diagrams removes many of the ambiguities that are inherent to hysteresis data.

891 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed geomorphic evidence of recent crustal deformation in the sub-Himalaya of central Nepal, south of the Kathmandu Basin, using structural geology and fluvial terraces along the Bagmati and Bakeya Rivers.
Abstract: We analyze geomorphic evidence of recent crustal deformation in the sub-Himalaya of central Nepal, south of the Kathmandu Basin. The Main Frontal Thrust fault (MFT), which marks the southern edge of the sub-Himalayan fold belt, is the only active structure in that area. Active fault bend folding at the MFT is quantified from structural geology and fluvial terraces along the Bagmati and Bakeya Rivers. Two major and two minor strath terraces are recognized and dated to be 9.2, 2.2, and 6.2, 3.7 calibrated (cal) kyr old, respectively. Rock uplift of up to 1.5 cm/yr is derived from river incision, accounting for sedimentation in the Gangetic plain and channel geometry changes. Rock uplift profiles are found to correlate with bedding dip angles, as expected in fault bend folding. It implies that thrusting along the MFT has absorbed 21 ± 1.5 mm/yr of N-S shortening on average over the Holocene period. The ±1.5 mm/yr defines the 68% confidence interval and accounts for uncertainties in age, elevation measurements, initial geometry of the deformed terraces, and seismic cycle. At the longitude of Kathmandu, localized thrusting along the Main Frontal Thrust fault must absorb most of the shortening across the Himalaya. By contrast, microseismicity and geodetic monitoring over the last decade suggest that interseismic strain is accumulating beneath the High Himalaya, 50–100 km north of the active fold zone, where the Main Himalayan Thrust (MHT) fault roots into a ductile decollement beneath southern Tibet. In the interseismic period the MHT is locked, and elastic deformation accumulates until being released by large (M_w > 8) earthquakes. These earthquakes break the MHT up to the near surface at the front of the Himalayan foothills and result in incremental activation of the MFT.

884 citations


Journal ArticleDOI
TL;DR: A global climatological distribution of tropospheric OH is computed using observed distributions of O3, H2O, NOt (NO2 +NO + 2N2O5 + NO3 + HNO2+HNO4), CO, hydrocarbons, temperature, and cloud optical depth as discussed by the authors.
Abstract: A global climatological distribution of tropospheric OH is computed using observed distributions of O3, H2O, NOt (NO2 +NO + 2N2O5 + NO3 + HNO2 +HNO4), CO, hydrocarbons, temperature, and cloud optical depth. Global annual mean OH is 1.16×106 molecules cm−3 (integrated with respect to mass of air up to 100 hPa within ±32° latitude and up to 200 hPa outside that region). Mean hemispheric concentrations of OH are nearly equal. While global mean OH increased by 33% compared to that from Spivakovsky et al. [1990], mean loss frequencies of CH3CCl3 and CH4 increased by only 23% because a lower fraction of total OH resides in the lower troposphere in the present distribution. The value for temperature used for determining lifetimes of hydrochlorofluorocarbons (HCFCs) by scaling rate constants [Prather and Spivakovsky, 1990] is revised from 277 K to 272 K. The present distribution of OH is consistent within a few percent with the current budgets of CH3CCl3 and HCFC-22. For CH3CCl3, it results in a lifetime of 4.6 years, including stratospheric and ocean sinks with atmospheric lifetimes of 43 and 80 years, respectively. For HCFC-22, the lifetime is 11.4 years, allowing for the stratospheric sink with an atmospheric lifetime of 229 years. Corrections suggested by observed levels of CH2Cl2 (annual means) depend strongly on the rate of interhemispheric mixing in the model. An increase in OH in the Northern Hemisphere by 20% combined with a decrease in the southern tropics by 25% is suggested if this rate is at its upper limit consistent with observations of CFCs and 85Kr. For the lower limit, observations of CH2Cl2 imply an increase in OH in the Northern Hemisphere by 35% combined with a decrease in OH in the southern tropics by 60%. However, such large corrections are inconsistent with observations for 14CO in the tropics and for the interhemispheric gradient of CH3CCl3. Industrial sources of CH2Cl2 are sufficient for balancing its budget. The available tests do not establish significant errors in OH except for a possible underestimate in winter in the northern and southern tropics by 15–20% and 10–15%, respectively, and an overestimate in southern extratropics by ∼25%. Observations of seasonal variations of CH3CCl3, CH2Cl2, 14CO, and C2H6 offer no evidence for higher levels of OH in the southern than in the northern extratropics. It is expected that in the next few years the latitudinal distribution and annual cycle of CH3CCl3 will be determined primarily by its loss frequency, allowing for additional constraints for OH on scales smaller than global.

770 citations


Journal ArticleDOI
TL;DR: In this paper, the transition between submerged and emergent regimes is described based on three aspects of canopy flow: mean momentum, turbulence, and exchange dynamics, and the observations suggest that flow within an aquatic canopy may be divided into two regions.
Abstract: Aquatic vegetation controls the mean and turbulent flow structure in channels and coastal regions and thus impacts the fate and transport of sediment and contaminants. Experiments in an open-channel flume with model vegetation were used to better understand how vegetation impacts flow. In particular, this study describes the transition between submerged and emergent regimes based on three aspects of canopy flow: mean momentum, turbulence, and exchange dynamics. The observations suggest that flow within an aquatic canopy may be divided into two regions. In the upper canopy, called the “vertical exchange zone”, vertical turbulent exchange with the overlying water is dynamically significant to the momentum balance and turbulence; and turbulence produced by mean shear at the top of the canopy is important. The lower canopy is called the “longitudinal exchange zone” because it communicates with surrounding water predominantly through longitudinal advection. In this region turbulence is generated locally by the canopy elements, and the momentum budget is a simple balance of vegetative drag and pressure gradient. In emergent canopies, only a longitudinal exchange zone is present. When the canopy becomes submerged, a vertical exchange zone appears at the top of the canopy and deepens into the canopy as the depth of submergence increases.

Journal ArticleDOI
TL;DR: In this paper, a new strategy for modeling the land surface component of the climate system is described, which is motivated by an arguable deficiency in most state-of-the-art land surface models, namely, the disproportionately higher emphasis given to the formulation of one dimensional, vertical physics relative to the treatment of horizontal heterogeneity in surface properties, particularly subgrid soil moisture variability and its effects on runoff generation.
Abstract: A new strategy for modeling the land surface component of the climate system is described. The strategy is motivated by an arguable deficiency in most state-of-the-art land surface models, namely, the disproportionately higher emphasis given to the formulation of one-dimensional, vertical physics relative to the treatment of horizontal heterogeneity in surface properties, particularly subgrid soil moisture variability and its effects on runoff generation. The new strategy calls for the partitioning of the continental surface into a mosaic of hydrologic catchments, delineated through analysis of high-resolution surface elevation data. The effective “grid” used for the land surface is therefore not specified by the overlying atmospheric grid. Within each catchment, the variability of soil moisture is related to characteristics of the topography and to three bulk soil moisture variables through a well-established model of catchment processes. This modeled variability allows the partitioning of the catchment into several areas representing distinct hydrological regimes, wherein distinct (regime specific) evaporation and runoff parameterizations are applied. Care is taken to ensure that the deficiencies of the catchment model in regions of little to moderate topography are minimized.

Journal ArticleDOI
TL;DR: A short review of some of the basic concepts related to the origin of coronal mass ejections (CMEs) can be found in this paper, where various ideas which have been put forward to explain the initiation of CMEs are categorized in terms of whether they are force-free or non-force-free and ideal or nonideal.
Abstract: This paper provides a short review of some of the basic concepts related to the origin of coronal mass ejections (CMEs). The various ideas which have been put forward to explain the initiation of CMEs are categorized in terms of whether they are force-free or non-force-free and ideal or nonideal. A few representative models of each category are examined to illustrate the principles involved. At the present time there is no model which is sufficiently developed to aid forecasters in their efforts to predict CMEs, but given the current pace of research, this situation could improve dramatically in the near future.

Journal ArticleDOI
TL;DR: The Wang-Sheeley model is an empirical model that can predict the background solar wind speed and interplanetary magnetic field (IMF) polarity as mentioned in this paper, which has direct applications to space weather research and forecasting.
Abstract: The Wang-Sheeley model is an empirical model that can predict the background solar wind speed and interplanetary magnetic field (IMF) polarity. We make a number of modifications to the basic technique that greatly improve the performance and reliability of the model. First, we establish a continuous empirical function that relates magnetic expansion factor to solar wind velocity at the source surface. Second, we propagate the wind from the source surface to the Earth using the assumption of radial streams and a simple scheme to account for their interactions. Third, we develop and apply a method for identifying and removing problematic magnetograms from the Wilcox Solar Observatory (WSO). Fourth, we correct WSO line-of-sight magnetograms for polar field strength modulation effects that result from the annual variation in the solar b angle. Fifth, we explore a number of techniques to optimize construction of daily updated synoptic maps from the WSO magnetograms. We report on a comprehensive statistical analysis comparing Wang-Sheeley model predictions with the WIND satellite data set during a 3-year period centered about the May 1996 solar minimum. The predicted and observed solar wind speeds have a statistically significant correlation (∼0.4) and an average fractional deviation of 0.15. When a single (6-month) period with large data gaps is excluded from the comparison, the solar wind speed is correctly predicted to within 10–15%. The IMF polarity is correctly predicted ∼75% of the time. The solar wind prediction technique presented here has direct applications to space weather research and forecasting.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated how magnetic reconnection affects the acceleration of coronal mass ejections (CMEs) and how the acceleration in turn affects the reconnection pro-cess.
Abstract: This work investigates how magnetic reconnection affects the acceleration of coronal mass ejections (CMEs) and how the acceleration in turn affects the reconnection pro-cess. To model the CME process, we use a two-dimensional flux rope model, which drives the ejection by means of a catastrophic loss of mechanical equilibrium. Our model provides a method for relating the motion of the ejected material to the reconnection rate in the current sheet created by the erupting field. In the complete absence of reconnection the tension force associated with the current sheet is always strong enough to prevent the flux rope from escaping from the Sun. However, our results imply that even a fairly small reconnection rate is sufficient to allow the flux rope to escape. Specifically, for a coronal density model that decreases exponentially with height we find that average Alfven Mach number M-A for the inflow into the reconnection site can be as small as M-A = 0.005 and still be fast enough to give a plausible eruption. The best fit to observations is obtained by assuming an inflow rate on the order of M-A approximate to 0.1. With this value the energy output matches the temporal behavior inferred for the long duration events often associated with CMEs. The model also suggests an explanation for the peculiar motion of giant X-ray arches reported by Svestka et al. [1995, 1997]. X-ray arches are the large loops associated with CMEs which are similar in form to "post"-flare loops, but they have an upward motion that is often different. Instead of continually slowing with time, the arches move upward at a rate that remains nearly constant or may even increase with time. Here we show how the difference can be explained by reversal of the gradient of the coronal Alfven speed with height.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of water fugacity on the creep behavior of olivine aggregates in the dislocation creep regime and concluded that water influences creep rate primarily through its effect on the concentrations of intrinsic point defects and hence on ionic diffusion and dislocation climb.
Abstract: Triaxial compressive creep experiments have been conducted over a range of hydrous conditions to investigate the effect of water fugacity on the creep behavior of olivine aggregates in the dislocation creep regime. Samples synthesized from powders of San Carlos olivine were deformed at confining pressures of 100 to 450 MPa and temperatures between 1473 and 1573 K. Water was supplied by the dehydration of talc. Water fugacities of ∼80 to ∼520 MPa were obtained by varying the confining pressure under water-saturated conditions with the oxygen fugacity buffered at Ni/NiO. Sancles were deformed at differential stresses of ∼20 to 230 MPa. The transition from diffusion creep to dislocation creep occurs near 100 MPa for both the hydrous case and the anhydrous case. Under hydrous conditions creep experiments yield a stress exponent of n ≈ 3 and an activation energy of Q ≈ 470 kJ/mol. The creep rate of olivine is enhanced significantly with the presence of water. At a water fugacity of ∼300 MPa, samples crept ∼5–6 times faster than those deformed under anhydrous conditions at similar differential stresses and temperatures. Within the range of water fugacity investigated, the strain rate is proportional to water fugacity to the 0.69 to 1.25 power, assuming values for the activation volume of 0 to 38×10−6 m3/mol, respectively. We argue that water influences creep rate primarily through its effect on the concentrations of intrinsic point defects and hence on ionic diffusion and dislocation climb. With increasing water fugacity the charge neutrality condition changes from [FeMe•] = 2[VMe″] to [FeMe•] = [HMe′]. For the latter charge neutrality condition the concentration of silicon interstitials is proportional to fH2O1, suggesting that under hydrous conditions dislocation climb is rate limited by diffusion of Si occurring by an interstitial mechanism. Our experimentally determined constitutive equation permits extrapolation from laboratory to mantle conditions in order to assess the rheological behavior of regions of the upper mantle with different water contents, such as beneath a mid-ocean ridge and in the mantle wedge above a subducting slab.

Journal ArticleDOI
TL;DR: In this article, the authors describe the instrumentation and calibrations used in the Atmospheric Lifetime Experiment (ALE), the Global Atmospheric Gases Experiment (GAGE), and the Advanced Global Atmospheric Gas Experiment (AGAGE) and present a history of the majority of the anthropogenic ozone-depleting and climate-forcing gases in air based on these experiments.
Abstract: We describe in detail the instrumentation and calibrations used in the Atmospheric Lifetime Experiment (ALE), the Global Atmospheric Gases Experiment (GAGE), and the Advanced Global Atmospheric Gases Experiment (AGAGE) and present a history of the majority of the anthropogenic ozone-depleting and climate-forcing gases in air based on these experiments. Beginning in 1978, these three successive automated high-frequency in situ experiments have documented the long-term behavior of the measured concentrations of these gases over the past 20 years, and show both the evolution of latitudinal gradients and the high-frequency variability due to sources and circulation. We provide estimates of the long-term trends in total chlorine contained in long-lived halocarbons involved in ozone depletion. We summarize interpretations of these measurements using inverse methods to determine trace gas lifetimes and emissions. Finally, we provide a combined observational and modeled reconstruction of the evolution of chlorocarbons by latitude in the atmosphere over the past 60 years which can be used as boundary conditions for interpreting trapped air in glaciers and oceanic measurements of chlorocarbon tracers of the deep oceanic circulation. Some specific conclusions are as follows: (1) International compliance with the Montreal Protocol is so far resulting in chlorofluorocarbon and chlorocarbon mole fractions comparable to target levels; (2) mole fractions of total chlorine contained in long-lived halocarbons (CCl 2 F 2 , CCl 3 F, CH 3 CCl 3 , CCl 4 , CHClF 2 , CCl 2 FCClF 2 , CH 3 Cl, CH 2 Cl 2 , CHCl 3 , CCl 2 =CCl 2 ) in the lower troposphere reached maximum values of about 3.6 ppb in 1993 and are beginning to slowly decrease in the global lower atmosphere; (3) the chlorofluorocarbons have atmospheric lifetimes consistent with destruction in the stratosphere being their principal removal mechanism; (4) multiannual variations in chlorofluorocarbon and chlorocarbon emissions deduced from ALE/GAGE/AGAGE data are consistent approximately with variations estimated independently from industrial production and sales data where available (CCl 2 F 2 (CFC-12) and CCl 2 FCClF 2 (CFC-113) show the greatest discrepancies); (5) the mole fractions of the hydrochlorofluorocarbons and hydrofluorocarbons, which are replacing the regulated halocarbons, are rising very rapidly in the atmosphere, but with the exception of the much longer manufactured CHClF 2 (HCFC-22), they are not yet at levels sufficient to contribute significantly to atmospheric chlorine loading. These replacement species could in the future provide independent estimates of the global weighted-average OH concentration provided their industrial emissions are accurately documented; (6) in the future, analysis of pollution events measured using high-frequency in situ measurements of chlorofluorocarbons and their replacements may enable emission estimates at the regional level, which, together with industrial end-use data, are of sufficient accuracy to be capable of identifying regional noncompliance with the Montreal Protocol.

Journal ArticleDOI
TL;DR: In this article, the activation of a lognormal size distribution of aerosols to form cloud droplets is extended to the case of multiple externally mixed LNO modes, each composed of a uniform internal mixture of soluble and insoluble material.
Abstract: A parameterization of the activation of a lognormal size distribution of aerosols to form cloud droplets is extended to the case of multiple externally mixed lognormal modes, each composed of a uniform internal mixture of soluble and insoluble material. The Kohler theory is used to relate the aerosol size distribution and composition to the number activated as a function of maximum supersaturation. The supersaturation balance is used to determine the maximum supersaturation, accounting for particle growth both before and after the particles are activated. Comparison of the parameterized activation of two competing aerosol modes with detailed numerical simulations of the activation process yields agreement to within 10% under a wide variety of conditions, including diverse size distributions, number concentrations, compositions, and updraft velocities. The parametization error exceeds 10% only when the mode radius of the two size distributions differs by an order of magnitude. Errors for the mass fraction activated are always much less than errors for the number fraction activated.

Journal ArticleDOI
TL;DR: In this paper, a new large-scale cloud and precipitation scheme, which accounts for the sub-grid-scale variability of clouds, is coupled to NCAR's Regional Climate Model (RegCM), which partitions each grid cell into a cloudy and noncloudy fraction related to the average grid cell relative humidity.
Abstract: A new large-scale cloud and precipitation scheme, which accounts for the sub- grid-scale variability of clouds, is coupled to NCAR's Regional Climate Model (RegCM). This scheme partitions each grid cell into a cloudy and noncloudy fraction related to the average grid cell relative humidity. Precipitation occurs, according to a specified autoconversion rate, when a cloud water threshold is exceeded. The specification of this threshold is based on empirical in-cloud observations of cloud liquid water amounts. Included in the scheme are simple formulations for raindrop accretion and evaporation. The results from RegCM using the new scheme, tested over North America, show significant improvements when compared to the old version. The outgoing longwave radiation, albedo, cloud water path, incident surface shortwave radiation, net surface radiation, and surface temperature fields display reasonable agreement with the observations from satellite and surface station data. Furthermore, the new model is able to better represent extreme precipitation events such as the Midwest flooding observed in the summer of 1993. Overall, RegCM with the new scheme provides for a more accurate representation of atmospheric and surface energy and water balances, including both the mean conditions and the variability at daily to interannual scales. The latter suggests that the new scheme improves the model's sensitivity, which is critical for both climate change and process studies.

Journal ArticleDOI
TL;DR: In this paper, global geochemical information derived from Clementine multispectral data and Lunar Prospector gamma-ray data reveals at least three distinct provinces whose geochemistry and petrologic history make them geologically unique: (1) the Procellarum KREEP Terrane (PKT), (2) the Feldspathic High-lands terrane (FHT), and (3) the South Pole-Aitken Terane (SPAT).
Abstract: In light of global remotely sensed data, the igneous crust of the Moon can no longer be viewed as a simple, globally stratified cumulus structure, composed of a flotation upper crust of anorthosite underlain by progressively more mafic rocks and a residual-melt (KREEP) sandwich horizon near the base of the lower crust. Instead, global geochemical information derived from Clementine multispectral data and Lunar Prospector gamma-ray data reveals at least three distinct provinces whose geochemistry and petrologic history make them geologically unique: (1) the Procellarum KREEP Terrane (PKT), (2) the Feldspathic High-lands Terrane (FHT), and (3) the South Pole-Aitken Terrane (SPAT). The PKT is a mafic province, coincident with the largely resurfaced area in the Procellarum-Imbrium region whose petrogenesis relates to the early differentiation of the Moon. Here, some 40% of the Th in the Moon's crust is concentrated into a region that constitutes only about 10% of the crustal volume. This concentration of Th (average ∼5 ppm), and by implication the other heat producing elements, U and K, led to a fundamentally different thermal and igneous evolution within this region compared to other parts of the lunar crust. Lower-crustal materials within the PKT likely interacted with underlying mantle materials to produce hybrid magmatism, leading to the magnesian suite of lunar rocks and possibly KREEP basalt. Although rare in the Apollo sample collection, widespread mare volcanic rocks having substantial Th enrichment are indicated by the remote data and may reflect further interaction between enriched crustal residues and mantle sources. The FHT is characterized by a central anorthositic region that constitutes the remnant of an anorthositic craton resulting from early lunar differentiation. Basin impacts into this region do not excavate significantly more mafic material, suggesting a thickness of tens of kilometers of anorthositic crust. The feldspathic lunar meteorites may represent samples from the anorthositic central region of the FHT. Ejecta from deep-penetrating basin impacts outside of the central anorthositic region, however, indicate an increasingly mafic composition with depth. The SPAT, a mafic anomaly of great magnitude, may include material of the upper mantle as well as lower crust; thus it is designated a separate terrane. Whether the SPA basin impact simply uncovered lower crust such as we infer for the FHT remains to be determined.

Journal ArticleDOI
TL;DR: In this paper, a new method is introduced for determining ocean isothermal layer depth from temperature profiles and ocean mixed layer depth (MLD) from density profiles that can be applied in all regions of the world's oceans.
Abstract: A new method is introduced for determining ocean isothermal layer depth (ILD) from temperature profiles and ocean mixed layer depth (MLD) from density profiles that can be applied in all regions of the world's oceans. This method can accommodate not only in situ data but also climatological data sets that typically have much lower vertical resolution. The sensitivity of the ILD and MLD to the temperature difference criteria used in the surface layer depth definition is discussed by using temperature and density data, respectively: (1) from 11 ocean weather stations in the northeast Pacific and (2) from the World Ocean Atlas 1994. Using these two data sets, a detailed statistical error analysis is presented for the ILD and MLD estimation by season. MLD variations with location due to temperature and salinity are properly accounted for in the defining density (Δσt) criterion. Overall, the optimal estimate of turbulent mixing penetration is obtained using a MLD definition of ΔT =0.8°0, although in the northeast Pacific region the optimal MLD criterion is found to vary seasonally. The method is shown to produce layer depths that are accurate to within 20 m or better in 85% or more of the cases. The MLD definition presented in this investigation accurately represents the depth to which turbulent mixing has penetrated and would be a useful aid for validation of one-dimensional bulk mixed layer models and ocean general circulation models with an embedded mixed layer.

Journal ArticleDOI
TL;DR: In this article, a global three-dimensional ort model was applied to quantify the photochemistry of tropospheric O 3 and compare the main source categories, including industrial and fossil fuel-related emissions.
Abstract: We have applied a global three-dimensional ort model to quantify the photochemistry of tropospheric O 3 and compare the main source categories. We simulated a 15 year period (1979-1993) on the basis of the European Centre for Medium-Range Weather Forecasts meteorological reanalyses and a time-varying emission data set. We calculate that stratosphere-troposphere exchange (STE) strongly contributes to 0 3 in regions where the photochemistry is quiescent. Since such regions play a minor role in radiative and chemical processes, we argue that STE-derived 0 3 is much less important than is suggested by its column abundance. By distinguishing between photochemical pathways in the model we calculate that tropospheric 0 3 in the extratropical Northern Hemisphere is strongly affected by industrial and fossil fuel-related emissions. In the tropics and Southern Hemisphere, natural emissions still play a major role. Our model results indicate a less important role for man-made biomass burning emissions than previous analyses. Further, the results show that tropospheric 03 trends are strongly influenced by transports of pollution and by meteorological variability. Scenario calculations for the year 2025 suggest that man-made emissions at low northern latitudes, in particular in southern and eastern Asia, will become a very strong tropospheric 0 3 source in the next decades. This will influence 0 3 levels on a hemispheric scale so that despite pollution regulations in Europe and North America, surface 0 3 will continue to grow. About 90% of atmospheric ozone is present in the strato- sphere, and only 10% is present in the troposphere. Despite this relatively small fraction, tropospheric ozone governs oxi- dation processes in the Earth's atmosphere through the for- mation of hydroxyl (OH) radicals. OH, which controls the atmospheric lifetime of many gases, is formed by photodisso- ciation of 03 in the presence of water vapor (Levy, 1971):

Journal ArticleDOI
TL;DR: The largest tract of ultrahigh pressure rocks, the Dabie-Hong'an area of China, was exhumed from 125 km depth by a combination of normal-sense shear from beneath the hanging wall Sino-Korean craton, southeastward thrusting onto the footwall Yangtze craton and orogen-parallel eastward extrusion as discussed by the authors.
Abstract: The largest tract of ultrahigh-pressure rocks, the Dabie-Hong'an area of China, was exhumed from 125 km depth by a combination of normal-sense shear from beneath the hanging wall Sino-Korean craton, southeastward thrusting onto the footwall Yangtze craton, and orogen-parallel eastward extrusion. Prior to exhumation the UHP slab extended into the mantle a downdip distance of 125–200 km at its eastern end, whereas it was subducted perhaps only 20–30 km at its far western end ∼200 km away. Structural reconstructions imply that the slab was >10 km thick. U/Pb zircon and 40Ar/39Ar geochronology indicate that exhumation up to crustal depths occurred diachronously between 240 and ∼225–210 Ma, reflecting a vertical exhumation rate of >2 mm/yr. The upper boundary of the slab is the Huwan shear zone, a normal-sense detachment that reactivated the plate suture. The lower boundary is represented by the Lower Yangtze fold-thrust belt. NW-trending stretching lineations, NE-vergent, WNW-ESE trending folds, dominant top-NW shear, and conjugate, but overall asymmetric, shear band fabrics, document that exhumation was accomplished by updip and orogen-parallel extrusion accompanied by layer-parallel thinning. The orientation and shape of the folds, and a change from SE to SW flow directions, imply that the slab rotated clockwise about a western pivot during exhumation; this rotation was likely caused by the eastward increasing depth of subduction mentioned above, combined with a possible marginal basin and a weak eastern plate boundary. Exhumation of the slab produced considerable shortening in the Lower Yangtze fold-thrust belt, perhaps producing the foreland orocline.

Journal ArticleDOI
TL;DR: In this article, a simple expression for threshold friction velocity u*t for spherical particles loosely spread over a dry and bare surface is presented. But it assumes that the cohesive force is proportional to particle size.
Abstract: Threshold friction velocity u*t is the friction velocity at which wind erosion is initiated. While u*t is affected by a range of surface and soil properties, it is a function of particle size only for idealized soils. In this paper we present a simple expression for u*t for spherical particles loosely spread over a dry and bare surface. In this expression we consider the balance between the driving forces (aerodynamic drag and lift) and the retarding forces (cohesion and gravity) and assume that the cohesive force is proportional to particle size. It is found that u*t can be expressed as Y1d+Y21d, with Y1 and Y2 being empirical constants. The new expression is both simple and effective.

Journal ArticleDOI
TL;DR: In this paper, the authors examined trend uncertainties in layer-average free atmosphere temperatures arising from the use of different trend estimation methods and considered statistical issues that arise in assessing the significance of individual trends and of trend differences between data sets.
Abstract: This paper examines trend uncertainties in layer-average free atmosphere temperatures arising from the use of different trend estimation methods. It also considers statistical issues that arise in assessing the significance of individual trends and of trend differences between data sets. Possible causes of these trends are not addressed. We use data from satellite and radiosonde measurements and from two reanalysis projects. To facilitate intercomparison, we compute from reanalyses and radiosonde data temperatures equivalent to those from the satellite-based Microwave Sounding Unit (MSU). We compare linear trends based on minimization of absolute deviations (LA) and minimization of squared deviations (LS). Differences are generally less than 0.05°C/decade over 1959–1996. Over 1979–1993, they exceed 0.10°C/decade for lower tropospheric time series and 0.15°C/decade for the lower stratosphere. Trend fitting by the LA method can degrade the lower-tropospheric trend agreement of 0.03°C/decade (over 1979–1996) previously reported for the MSU and radiosonde data. In assessing trend significance we employ two methods to account for temporal autocorrelation effects. With our preferred method, virtually none of the individual 1979–1993 trends in deep-layer temperatures are significantly different from zero. To examine trend differences between data sets we compute 95% confidence intervals for individual trends and show that these overlap for almost all data sets considered. Confidence intervals for lower-tropospheric trends encompass both zero and the model-projected trends due to anthropogenic effects. We also test the significance of a trend in d(t), the time series of differences between a pair of data sets. Use of d(t) removes variability common to both time series and facilitates identification of small trend differences. This more discerning test reveals that roughly 30% of the data set comparisons have significant differences in lower-tropospheric trends, primarily related to differences in measurement system. Our study gives empirical estimates of statistical uncertainties in recent atmospheric temperature trends. These estimates and the simple significance testing framework used here facilitate the interpretation of previous temperature trend comparisons involving satellite, radiosonde, and reanalysis data sets.

Journal ArticleDOI
TL;DR: In this article, the authors show that long-wavelength structures can be produced either by a layered viscosity with a weak upper mantle or temperature-dependent viscosities even in the absence of surface plates.
Abstract: Layered viscosity, temperature-dependent viscosity, and surface plates have an important effect on the scale and morphology of structure in spherical models of mantle convection. We find that long-wavelength structures can be produced either by a layered viscosity with a weak upper mantle or temperature-dependent viscosity even in the absence of surface plates, corroborating earlier studies, However,combining the layered viscosity structure with a temperature-dependent viscosity results in structure with significantly shorter wavelengths. Our models show that the scale of convection is mainly controlled by the surface plates, supporting the previous two-dimensional studies. Our models with surface plates: layered and temperature-dependent viscosity, and internal heating explain mantle structures inferred from seismic tomography. The models show that hot upwellings initiate at the core-mantle boundary (CMB) with linear structures, and as they depart from CMB, the linear upwellings quickly change into quasi-cylindrical plumes that dynamically interact with the ambient mantle and surface plates while ascending through the mantle. A linear upwelling structure is generated again at shallow depths (<200 km) in the vicinity of diverging plate margins because of the surface plates. At shallow depths, cold downwelling sheets form at converging plate margins. The evolution of downwelling sheets depends on the mantle rheology. The temperature-dependent viscosity strengthens the downwelling sheets so that the sheet structure can be maintained throughout the mantle. The tendency for linear upwelling and downwelling structures to break into plume-like structures is stronger at higher Rayleigh numbers. Our models also show that downwellings tp first-order control surface plate motions and the locations and horizontal motion of upwellings. Upwellings tend to form at stagnation points predicted solely from the buoyancy forces of downwellings. Temperature-dependent viscosity greatly enhances tb: ascending velocity of developed upwelling plumes, and this may reduce the influence of global mantle flow on the motion of plumes. Our results can explain the anticorrelation between hotspot distribution and fast seismic wave speed anomalies in the lower mantle and may also have significant implications to the observed stationarity of hotspots.

Journal ArticleDOI
TL;DR: In this article, an ocean general circulation model is employed to investigate the dynamic and thermodynamic processes that caused the SSTAs associated with this and other similar Indian Ocean (IO) events.
Abstract: An anomalous climatic event occurred in the Indian Ocean (IO) region during 1997–1998, which coincided with a severe drought in Indonesia and floods in parts of eastern Africa. Cool sea surface temperature anomalies (SSTAs) were present in the eastern IO along and south of the equator. Beginning in July 1997, warm SSTAs appeared in the western IO, and they peaked in February 1998. An ocean general circulation model is employed to investigate the dynamic and thermodynamic processes that caused the SSTAs associated with this and other similar IO events. The eastern cooling resulted from unusually strong upwelling along the equator and Sumatra. The Sumatran upwelling was forced both locally by the stronger alongshore winds and remotely by equatorial and coastal Kelvin waves. By the end of 1997, weakening of the winds and the associated reduction in latent heat loss led to the elimination of the cold SST anomalies in the east. The western warming was initiated by weaker Southwest Monsoon winds and maintained by enhanced precipitation forcing, which resulted in a barrier layer structure. Analysis of the mixed layer temperature equation indicates that a downwelling Rossby wave contribution was crucial for sustaining the warming into February 1998. It is tempting to suppose that the 1997 event was related to the El Nino-Southern Oscillation (ENSO) event that took place in the Pacific at the same time. Indeed, weaker IO events occur quite regularly in the control run that evolve similarly to the 1997 event, and they are often but not always related to ENSO. We speculate that these events represent a natural mode of oscillation in the IO, which is externally forced by ENSO but also excited by ocean-atmosphere interactions internal to the IO.

Journal ArticleDOI
TL;DR: In this paper, the fluxes of dimethylsulfide (DMS) from the global oceans are calculated using the parameterizations of Lisps and Merlivat [1986, Wanninkhof [1992, and Erickson [1993]; the wind fields of Trenberth et al. [1989], da Silva and Young [1994, and Gibson et al., and the maps of sea surface DMS concentration of Kettle et al [1999].
Abstract: Estimates of the fluxes of dimethylsulfide (DMS) from the global oceans are calculated using the parameterizations of Lisps and Merlivat [1986], Wanninkhof [1992], and Erickson [1993]; the wind fields of Trenberth et al. [1989], da Silva and Young [1994], and Gibson et al. [1996]; and the maps of sea surface DMS concentration of Kettle et al. [1999]. The Liss and Merlivat [1986], Wanninkhof [1992], and Erickson [1993] parameterizations gave global oceanic DMS fluxes of approximately 15, 33, and 21 Tg S yr−1, respectively. The different data sets for wind speed, sea surface temperature, and DMS sea surface concentration resulted in relatively small variations in these calculated fluxes (≤25%). The large uncertainty in the flux models prevents the estimation of the global flux of DMS with an error limit of better than about 50%. Interannual variation in the wind speeds and sea surface temperatures from the 15-year European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis Project results in an interannual variation of DMS flux of approximately 10%. Possibly, there is greater interannual variation in the DMS flux due to variation in the DMS concentration fields, which was not taken into account.

Journal ArticleDOI
TL;DR: In this paper, an efficient and rigorous numerical procedure for calculating the elastodynamic response of a fault subjected to slow tectonic loading processes of long duration within which there are episodes of rapid earthquake failure is presented.
Abstract: We present an efficient and rigorous numerical procedure for calculating the elastodynamic response of a fault subjected to slow tectonic loading processes of long duration within which there are episodes of rapid earthquake failure. This is done for a general class of rate- and state-dependent friction laws with positive direct velocity effect. The algorithm allows us to treat accurately, within a single computational procedure, loading intervals of thousands of years and to calculate, for each earthquake episode, initially aseismic accelerating slip prior to dynamic rupture, the rupture propagation itself, rapid post seismic deformation which follows, and also ongoing creep slippage throughout the loading period in velocity-strengthening fault regions. The methodology is presented using the two-dimensional (2-D) antiplane spectral formulation and can be readily extended to the 2-D in-plane and 3-D spectral formulations and, with certain modifications, to the space-time boundary integral formulations as well as to their discretized development using finite difference or finite element methods. The methodology can be used to address a number of important issues, such as fault operation under low overall stress, interaction of dynamic rupture propagation with pore pressure development, patterns of rupture propagation in events nucleated naturally as a part of a sequence, the earthquake nucleation process, earthquake sequences on faults with heterogeneous frictional properties and/or normal stress, and others. The procedure is illustrated for a 2-D crustal strike-slip fault model with depth-variable properties. For lower values of the state-evolution distance of the friction law, small events appear. The nucleation phases of the small and large events are very similar, suggesting that the size of an event is determined by the conditions on the fault segments the event is propagating into rather than by the nucleation process itself. We demonstrate the importance of incorporating slow tectonic loading with elastodynamics by evaluating two simplified approaches, one with the slow tectonic loading but no wave effects and the other with all dynamic effects included but much higher loading rate.

Journal ArticleDOI
TL;DR: It is found that a CH4 mixing ratio of 10(-4) (100 ppmv) or more in Earth's early atmosphere would provide agreement with the paleosol data from 2.3-2.4 Ga, which could have triggered the Earth's first widespread glaciation.
Abstract: Earth appears to have been warm during its early history despite the faintness of the young Sun. Greenhouse warming by gaseous CO 2 and H 2 O by itself is in conflict with constraints on atmospheric CO 2 levels derived from paleosols for early Earth. Here we explore whether greenhouse warming by methane could have been important. We find that a CH 4 mixing ratio of 10 -4 (100 ppmv) or more in Earth's early atmosphere would provide agreement with the paleosol data from 2.8 Ga. Such a CH 4 concentration could have been readily maintained by methanogenic bacteria, which are thought to have been an important component of the biota at that time. Elimination of the methane component of the greenhouse by oxidation of the atmosphere at about 2.3 - 2.4 Ga could have triggered the Earth's first widespread glaciation.