scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Geophysical Research in 2005"


Journal ArticleDOI
TL;DR: The authors used a global climate model to compare the effectiveness of many climate forcing agents for producing climate change and found that replacing traditional instantaneous and adjusted forcings with an easily computed alternative, Fs, yields a better predictor of climate change, i.e., its efficacies are closer to unity.
Abstract: [1] We use a global climate model to compare the effectiveness of many climate forcing agents for producing climate change. We find a substantial range in the “efficacy” of different forcings, where the efficacy is the global temperature response per unit forcing relative to the response to CO2 forcing. Anthropogenic CH4 has efficacy ∼110%, which increases to ∼145% when its indirect effects on stratospheric H2O and tropospheric O3 are included, yielding an effective climate forcing of ∼0.8 W/m2 for the period 1750–2000 and making CH4 the largest anthropogenic climate forcing other than CO2. Black carbon (BC) aerosols from biomass burning have a calculated efficacy ∼58%, while fossil fuel BC has an efficacy ∼78%. Accounting for forcing efficacies and for indirect effects via snow albedo and cloud changes, we find that fossil fuel soot, defined as BC + OC (organic carbon), has a net positive forcing while biomass burning BC + OC has a negative forcing. We show that replacement of the traditional instantaneous and adjusted forcings, Fi and Fa, with an easily computed alternative, Fs, yields a better predictor of climate change, i.e., its efficacies are closer to unity. Fs is inferred from flux and temperature changes in a fixed-ocean model run. There is remarkable congruence in the spatial distribution of climate change, normalized to the same forcing Fs, for most climate forcing agents, suggesting that the global forcing has more relevance to regional climate change than may have been anticipated. Increasing greenhouse gases intensify the Hadley circulation in our model, increasing rainfall in the Intertropical Convergence Zone (ITCZ), Eastern United States, and East Asia, while intensifying dry conditions in the subtropics including the Southwest United States, the Mediterranean region, the Middle East, and an expanding Sahel. These features survive in model simulations that use all estimated forcings for the period 1880–2000. Responses to localized forcings, such as land use change and heavy regional concentrations of BC aerosols, include more specific regional characteristics. We suggest that anthropogenic tropospheric O3 and the BC snow albedo effect contribute substantially to rapid warming and sea ice loss in the Arctic. As a complement to a priori forcings, such as Fi, Fa, and Fs, we tabulate the a posteriori effective forcing, Fe, which is the product of the forcing and its efficacy. Fe requires calculation of the climate response and introduces greater model dependence, but once it is calculated for a given amount of a forcing agent it provides a good prediction of the response to other forcing amounts.

1,376 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed hourly averaged interplanetary magnetic field (IMF) and plasma data from the Advanced Composition Explorer (ACE) and Wind spacecraft, generated from 1 to 4 min resolution data time-shifted to Earth.
Abstract: [1] Hourly averaged interplanetary magnetic field (IMF) and plasma data from the Advanced Composition Explorer (ACE) and Wind spacecraft, generated from 1 to 4 min resolution data time-shifted to Earth have been analyzed for systematic and random differences. ACE moments-based proton densities are larger than Wind/Solar Wind Experiment (SWE) fits-based densities by up to 18%, depending on solar wind speed. ACE temperatures are less than Wind/SWE temperatures by up to ∼25%. ACE densities and temperatures were normalized to equivalent Wind values in National Space Science Data Center's creation of the OMNI 2 data set that contains 1963–2004 solar wind field and plasma data and other data. For times of ACE-Wind transverse separations <60 RE, random differences between Wind values and normalized ACE values are ∼0.2 nT for ∣B∣, ∼0.45 nT for IMF Cartesian components, ∼5 km/s for flow speed, and ∼15 and ∼30% for proton densities and temperatures. These differences grow as a function of transverse separation more rapidly for IMF parameters than for plasma parameters. Autocorrelation analyses show that spatial scales become progressively shorter for the parameter sequence: flow speed, IMF magnitude, plasma density and temperature, IMF X and Y components, and IMF Z component. IMF variations have shorter scales at solar quiet times than at solar active times, while plasma variations show no equivalent solar cycle dependence.

1,062 citations


Journal ArticleDOI
TL;DR: In this paper, ocean chemistry calculations based on ocean general circulation model simulations of atmospheric CO2 emission, stabilization of atmospheric carbon content, and stabilization achieved in total or in part by injection of CO2 to the deep ocean interior are presented.
Abstract: [1] We present ocean chemistry calculations based on ocean general circulation model simulations of atmospheric CO2 emission, stabilization of atmospheric CO2 content, and stabilization of atmospheric CO2 achieved in total or in part by injection of CO2 to the deep ocean interior. Our goal is to provide first-order results from various CO2 pathways, allowing correspondence with studies of marine biological effects of added CO2. Parts of the Southern Ocean become undersaturated with respect to aragonite under the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) A1, A2, B1, and B2 emission pathways and the WRE pathways that stabilize CO2 at 650 ppm or above. Cumulative atmospheric emission of 5000 Pg C produces aragonite undersaturation in most of the surface ocean; 10,000 Pg C also produces calcite undersaturation in most of the surface ocean. Stabilization of atmospheric CO2 at 450 ppm produces both calcite and aragonite undersaturation in most of the deep ocean. The simulated SRES pathways produce global surface pH reductions of ∼0.3–0.5 units by year 2100. Approximately this same reduction is produced by WRE650 and WRE1000 stabilization scenarios and by the 1250 Pg C emission scenario by year 2300. Atmospheric emissions of 5000 Pg C and 20,000 Pg C produce global surface pH reductions of 0.8 and 1.4 units, respectively, by year 2300. Simulations of deep ocean CO2 injection as an alternative to atmospheric release show greater chemical impact on the deep ocean as the price for having less impact on the surface ocean and climate. Changes in ocean chemistry of the magnitude shown are likely to be biologically significant.

1,006 citations


Journal ArticleDOI
TL;DR: Tsyganenko et al. as discussed by the authors developed a dynamical model of the storm-time geomagnetic field in the inner magnetosphere, using space magnetometer data taken during 37 major events in 1996-2000 and concurrent observations of the solar wind and interplanetary magnetic field (IMF).
Abstract: [1] This work builds on and extends our previous effort (Tsyganenko et al, 2003) to develop a dynamical model of the storm-time geomagnetic field in the inner magnetosphere, using space magnetometer data taken during 37 major events in 1996–2000 and concurrent observations of the solar wind and interplanetary magnetic field (IMF) The essence of the approach is to derive from the data the temporal variation of all major current systems contributing to the distant geomagnetic field during the entire storm cycle, using a simple model of their growth and decay Each principal source of the external magnetic field (magnetopause, cross-tail current sheet, axisymmetric and partial ring currents, and Birkeland current systems) is driven by a separate variable, calculated as a time integral of a combination of geoeffective parameters NλVβBsγ, where N, V, and Bs are the solar wind density, speed, and the magnitude of the southward component of the IMF, respectively In this approach we assume that each source has its individual relaxation timescale and residual quiet-time strength, and its partial contribution to the total field depends on the entire history of the external driving of the magnetosphere during a storm In addition, the magnitudes of the principal field sources were assumed to saturate during extremely large storms with abnormally strong external driving All the parameters of the model field sources, including their magnitudes, geometrical characteristics, solar wind/IMF driving functions, decay timescales, and saturation thresholds, were treated as free variables, and their values were derived from the data As an independent consistency test, we calculated the expected Dst variation on the basis of the model output at Earth's surface and compared it with the actual observed Dst A good agreement (cumulative correlation coefficient R = 092) was found, in spite of the fact that ∼90% of the spacecraft data used in the fitting were taken at synchronous orbit and beyond, while only 37% of those data came from distances 25 ≤ R ≤ 4 RE The obtained results demonstrate the possibility to develop a truly dynamical model of the magnetic field, based on magnetospheric and interplanetary data and allowing one to reproduce and forecast the entire process of a geomagnetic storm, as it unfolds in time and space

970 citations


Journal ArticleDOI
TL;DR: In this paper, a comparison of eight iron experiments shows that maximum Chl a, the maximum DIC removal, and the overall DIC/Fe efficiency all scale inversely with depth of the wind mixed layer (WML) defining the light environment.
Abstract: Comparison of eight iron experiments shows that maximum Chl a, the maximum DIC removal, and the overall DIC/Fe efficiency all scale inversely with depth of the wind mixed layer (WML) defining the light environment. Moreover, lateral patch dilution, sea surface irradiance, temperature, and grazing play additional roles. The Southern Ocean experiments were most influenced by very deep WMLs. In contrast, light conditions were most favorable during SEEDS and SERIES as well as during IronEx-2. The two extreme experiments, EisenEx and SEEDS, can be linked via EisenEx bottle incubations with shallower simulated WML depth. Large diatoms always benefit the most from Fe addition, where a remarkably small group of thriving diatom species is dominated by universal response of Pseudo-nitzschia spp. Significant response of these moderate (10–30 μm), medium (30–60 μm), and large (>60 μm) diatoms is consistent with growth physiology determined for single species in natural seawater. The minimum level of “dissolved” Fe (filtrate < 0.2 μm) maintained during an experiment determines the dominant diatom size class. However, this is further complicated by continuous transfer of original truly dissolved reduced Fe(II) into the colloidal pool, which may constitute some 75% of the “dissolved” pool. Depth integration of carbon inventory changes partly compensates the adverse effects of a deep WML due to its greater integration depths, decreasing the differences in responses between the eight experiments. About half of depth-integrated overall primary productivity is reflected in a decrease of DIC. The overall C/Fe efficiency of DIC uptake is DIC/Fe ∼ 5600 for all eight experiments. The increase of particulate organic carbon is about a quarter of the primary production, suggesting food web losses for the other three quarters. Replenishment of DIC by air/sea exchange tends to be a minor few percent of primary CO2 fixation but will continue well after observations have stopped. Export of carbon into deeper waters is difficult to assess and is until now firmly proven and quite modest in only two experiments.

921 citations


Journal ArticleDOI
TL;DR: The Space Weather Modeling Framework (SWMF) as discussed by the authors provides a high-performance flexible framework for physics-based space weather simulations, as well as for various space physics applications.
Abstract: [1] The Space Weather Modeling Framework (SWMF) provides a high-performance flexible framework for physics-based space weather simulations, as well as for various space physics applications. The SWMF integrates numerical models of the Solar Corona, Eruptive Event Generator, Inner Heliosphere, Solar Energetic Particles, Global Magnetosphere, Inner Magnetosphere, Radiation Belt, Ionosphere Electrodynamics, and Upper Atmosphere into a high-performance coupled model. The components can be represented with alternative physics models, and any physically meaningful subset of the components can be used. The components are coupled to the control module via standardized interfaces, and an efficient parallel coupling toolkit is used for the pairwise coupling of the components. The execution and parallel layout of the components is controlled by the SWMF. Both sequential and concurrent execution models are supported. The SWMF enables simulations that were not possible with the individual physics models. Using reasonably high spatial and temporal resolutions in all of the coupled components, the SWMF runs significantly faster than real time on massively parallel supercomputers. This paper presents the design and implementation of the SWMF and some demonstrative tests. Future papers will describe validation (comparison of model results with measurements) and applications to challenging space weather events. The SWMF is publicly available to the scientific community for doing geophysical research. We also intend to expand the SWMF in collaboration with other model developers.

730 citations


Journal ArticleDOI
TL;DR: In this article, an extensive set of volatile organic compounds (VOCs) and particulate organic matter (POM) was measured in polluted air during the New England Air Quality Study in 2002.
Abstract: [1] An extensive set of volatile organic compounds (VOCs) and particulate organic matter (POM) was measured in polluted air during the New England Air Quality Study in 2002. Using VOC ratios, the photochemical age of the sampled air masses was estimated. This approach was validated (1) by comparing the observed rates at which VOCs were removed from the atmosphere with the rates expected from OH oxidation, (2) by comparing the VOC emission ratios inferred from the data with the average composition of urban air, and (3) by the ability to describe the increase of an alkyl nitrate with time in terms of the chemical kinetics. A large part of the variability observed for oxygenated VOCs (OVOCs) and POM could be explained by a description that includes the removal of the primary anthropogenic emissions, the formation and removal of secondary anthropogenic species, and a biogenic contribution parameterized by the emissions of isoprene. The OVOC sources determined from the data are compared with the available literature, and a satisfactory agreement is obtained. The observed sub-μm POM was highly correlated with secondary anthropogenic gas-phase species, strongly suggesting that the POM was from secondary anthropogenic sources. The results are used to describe the speciation and total mass of gas- and particle-phase organic carbon as a function of the photochemical age of an urban air mass. Shortly after emission the organic carbon mass is dominated by primary VOCs, while after two days the dominant contribution is from OVOCs and sub-μm POM. The total measured organic carbon mass decreased by about 40% over the course of two days. The increase in sub-μm POM could not be explained by the removal of aromatic precursors alone, suggesting that other species must have contributed and/or that the mechanism for POM formation is more efficient than previously assumed.

717 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the Least Square extrapolation technique to obtain estimates of wind speeds at 80 m, the hub height of modern, 77-m diameter, 1500 kW turbines.
Abstract: [1] The goal of this study is to quantify the world's wind power potential for the first time from data. Wind speeds are calculated at 80 m, the hub height of modern, 77-m diameter, 1500 kW turbines. Since relatively few observations are available at 80 m, the Least Square extrapolation technique is utilized and revised here to obtain estimates of wind speeds at 80 m given observed wind speeds at 10 m (widely available) and a network of sounding stations. Tower data from the Kennedy Space Center (Florida) were used to validate the results. Globally, ∼13% of all reporting stations experience annual mean wind speeds ≥ 6.9 m/s at 80 m (i.e., wind power class 3 or greater) and can therefore be considered suitable for low-cost wind power generation. This estimate is believed to be conservative. Of all continents, North America has the largest number of stations in class ≥ 3 (453), and Antarctica has the largest percent (60%). Areas with great potential are found in northern Europe along the North Sea, the southern tip of the South American continent, the island of Tasmania in Australia, the Great Lakes region, and the northeastern and northwestern coasts of North America. The global average 10-m wind speed over the ocean from measurements is 6.64 m/s (class 6); that over land is 3.28 m/s (class 1). The calculated 80-m values are 8.60 m/s (class 6) and 4.54 m/s (class 1) over ocean and land, respectively. Over land, daytime 80-m wind speed averages obtained from soundings (4.96 m/s) are slightly larger than nighttime ones (4.85 m/s); nighttime wind speeds increase, on average, above daytime speeds above 120 m. Assuming that statistics generated from all stations analyzed here are representative of the global distribution of winds, global wind power generated at locations with mean annual wind speeds ≥ 6.9 m/s at 80 m is found to be ∼72 TW (∼54,000 Mtoe) for the year 2000. Even if only ∼20% of this power could be captured, it could satisfy 100% of the world's energy demand for all purposes (6995–10177 Mtoe) and over seven times the world's electricity needs (1.6–1.8 TW). Several practical barriers need to be overcome to fully realize this potential.

692 citations


Journal ArticleDOI
TL;DR: In this article, a forecast model was developed to reproduce the distribution of main shocks, aftershocks and surrounding seismicity observed during 1986-2003 in a 300 × 310 km area centered on the 1992 M = 7.3 Landers earthquake.
Abstract: [1] We develop a forecast model to reproduce the distribution of main shocks, aftershocks and surrounding seismicity observed during 1986–2003 in a 300 × 310 km area centered on the 1992 M = 7.3 Landers earthquake. To parse the catalog into frames with equal numbers of aftershocks, we animate seismicity in log time increments that lengthen after each main shock; this reveals aftershock zone migration, expansion, and densification. We implement a rate/state algorithm that incorporates the static stress transferred by each M ≥ 6 shock and then evolves. Coulomb stress changes amplify the background seismicity, so small stress changes produce large changes in seismicity rate in areas of high background seismicity. Similarly, seismicity rate declines in the stress shadows are evident only in areas with previously high seismicity rates. Thus a key constituent of the model is the background seismicity rate, which we smooth from 1981 to 1986 seismicity. The mean correlation coefficient between observed and predicted M ≥ 1.4 shocks (the minimum magnitude of completeness) is 0.52 for 1986–2003 and 0.63 for 1992–2003; a control standard aftershock model yields 0.54 and 0.52 for the same periods. Four M ≥ 6.0 shocks struck during the test period; three are located at sites where the expected seismicity rate falls above the 92 percentile, and one is located above the 75 percentile. The model thus reproduces much, but certainly not all, of the observed spatial and temporal seismicity, from which we infer that the decaying effect of stress transferred by successive main shocks influences seismicity for decades. Finally, we offer a M ≥ 5 earthquake forecast for 2005–2015, assigning probabilities to 324 10 × 10 km cells.

677 citations


Journal ArticleDOI
TL;DR: In this article, the effects of elevated pCO2 on the net production and calcification of an assemblage of corals maintained under near-natural conditions of temperature, light, nutrient, and flow were investigated.
Abstract: [1] An investigation was conducted to determine the effects of elevated pCO2 on the net production and calcification of an assemblage of corals maintained under near-natural conditions of temperature, light, nutrient, and flow. Experiments were performed in summer and winter to explore possible interactions between seasonal change in temperature and irradiance and the effect of elevated pCO2. Particular attention was paid to interactions between net production and calcification because these two processes are thought to compete for the same internal supply of dissolved inorganic carbon (DIC). A nutrient enrichment experiment was performed because it has been shown to induce a competitive interaction between photosynthesis and calcification that may serve as an analog to the effect of elevated pCO2. Net carbon production, NPC, increased with increased pCO2 at the rate of 3 ± 2% (μmol CO2aq kg−1)−1. Seasonal change of the slope NPC-[CO2aq] relationship was not significant. Calcification (G) was strongly related to the aragonite saturation state Ωa. Seasonal change of the G-Ωa relationship was not significant. The first-order saturation state model gave a good fit to the pooled summer and winter data: G = (8 ± 1 mmol CaCO3 m−2 h−1)(Ωa − 1), r2 = 0.87, P = 0.0001. Both nutrient and CO2 enrichment resulted in an increase in NPC and a decrease in G, giving support to the hypothesis that the cellular mechanism underlying the decrease in calcification in response to increased pCO2 could be competition between photosynthesis and calcification for a limited supply of DIC.

646 citations


Journal ArticleDOI
TL;DR: In this article, the authors reveal the atmospheric water vapor transports associated with typical anomalous summer rainfall patterns in China and show that the origins of water vapor supply related to anomalous rainfall patterns are different from those related to the normal monsoon rainfall.
Abstract: [1] This paper attempts to reveal the atmospheric water vapor transports associated with typical anomalous summer rainfall patterns in China. The results show that origins of water vapor supply related to anomalous rainfall patterns are different from those related to the normal monsoon rainfall. Anomalous pattern 1, with a heavier rainbelt along the middle and lower reaches of the Yangtze River valley, follows from a convergence of the tropical southwest water vapor transport with the midlatitude northeast water vapor transport; the tropical water vapor transport comes directly from the Bay of Bengal and the South China Sea but originally from the Philippine Sea. The anomalous water vapor transport is associated with a southwestward extension of the western Pacific subtropical high and a southward shift of the upper East Asian jet stream. Anomalous pattern 2, with a main rainbelt along the Huaihe River valley, is supported by the convergence of the subtropical southwest water vapor with the midlatitude water vapor transport. The subtropical branch comes directly from the South China Sea but originally from the East China Sea and the adjacent subtropical Pacific to the further east along 20–25N. The background large-scale circulation change includes a northwestward extension of the western Pacific subtropical high and an eastward shift of the upper jet stream. Although the cross-equator flows including the Somali jet supply abundant water vapor for the normal condition of June, July, and August rainfall over China, the tropical water vapor transports related to typical anomalous rainfall anomalies originate from the tropical western Pacific Ocean. The northward transport of anomalous warm water vapor occurs mainly in the lower troposphere, while the transport of midlatitude cold water vapor occurs briefly in the upper troposphere.

Journal ArticleDOI
TL;DR: In this paper, the authors present CRRES data on the spatial distribution of chorus emissions during active conditions and calculate the pitch angle and energy diffusion rates in three magnetic local time (MLT) sectors and obtain a timescale for acceleration.
Abstract: [1] Electron acceleration inside the Earth's magnetosphere is required to explain increases in the ∼MeV radiation belt electron flux during magnetically disturbed periods. Recent studies show that electron acceleration by whistler mode chorus waves becomes most efficient just outside the plasmapause, near L = 4.5, where peaks in the electron phase space density are observed. We present CRRES data on the spatial distribution of chorus emissions during active conditions. The wave data are used to calculate the pitch angle and energy diffusion rates in three magnetic local time (MLT) sectors and to obtain a timescale for acceleration. We show that chorus emissions in the prenoon sector accelerate electrons most efficiently at latitudes above 15° for equatorial pitch angles between 20° and 60°. As electrons drift around the Earth, they are scattered to large pitch angles and further accelerated by chorus on the nightside in the equatorial region. The timescale to accelerate electrons by whistler mode chorus and increase the flux at 1 MeV by an order of magnitude is approximately 1 day, in agreement with satellite observations during the recovery phase of storms. During wave acceleration the electrons undergo many drift orbits and the resulting pitch angle distributions are energy-dependent. Chorus scattering should produce pitch angle distributions that are either flat-topped or butterfly-shaped. The results provide strong support for the wave acceleration theory.

Journal ArticleDOI
TL;DR: In this article, the authors present an emission inventory for international shipping for the past five decades to be used in global modeling studies with detailed tropospheric chemistry and carbon monoxide emissions.
Abstract: [1] Seagoing ships emit exhaust gases and particles into the marine boundary layer and significantly contribute to the total budget of anthropogenic emissions. We present an emission inventory for international shipping for the past five decades to be used in global modeling studies with detailed tropospheric chemistry. The inventory is a bottom-up analysis using fuel consumption and fleet numbers for the total civilian and military fleet including auxiliary engines at the end of 2001. Trend estimates for fuel mass, CO 2 , NO x , and other emissions for the time between 1950 and 2001 have been calculated using ship number statistics and average engine statistics. Our estimate for total fuel consumption and global emissions for the year 2001 is similar to previous activity-based studies. However, compared to earlier studies, a detailed speciation of nonmethane hydrocarbons (NMHCs) and particulate matter is given, and carbon monoxide emissions are calculated explicitly. Our results suggest a fuel consumption of approximately 280 million metric tons (Mt) for the year 2001 and 64.5 Mt in 1950. This corresponds to 187 (5.4) Tg CO 2 (NO x ) in 1950, and 813 (21.4) Tg CO 2 (NO x ) in 2001. From 1970 to 2001 the world-merchant fleet increased rapidly in terms of ship numbers, with a corresponding increase in total fuel consumption. The fuel consumption estimates are compared against historical marine bunker fuel statistics, and our emission estimates are related to emission budgets of other transport modes. Global ship emissions are distributed geographically according to global vessel traffic densities of the AMVER (Automated Mutual-assistance Vessel Rescue system) data set for the year 2000. This work also sets the basis to develop future emission scenarios based on average-fleet emission indices in part 2 of this study.

Journal ArticleDOI
TL;DR: In this paper, the authors present results from a sensitivity analysis and from experimental fires conducted to investigate the relationship between fire radiative energy (FRE) and fuel mass combusted, and they conclude that FRE assessment offers a powerful tool for supplementing existing burned-area based fuel consumption measures.
Abstract: Estimates of wildfire aerosol and trace gas emissions are most commonly derived from assessments of biomass combusted. The radiative component of the energy liberated by burning fuel can be measured by remote sensing, and spaceborne fire radiative energy (FRE) measures can potentially provide detailed information on the amount and rate of biomass consumption over large areas. To implement the approach, spaceborne sensors must be able to derive fire radiative power (FRP) estimates from subpixel fires using observations in just one or two spectral channels, and calibration relationships between radiated energy and fuel consumption must be developed and validated. This paper presents results from a sensitivity analysis and from experimental fires conducted to investigate these issues. Within their methodological limits, the experimental work shows that FRP assessments made via independent hyperspectral and MIR radiance approaches in fact show good agreement, and fires are calculated to radiate 14 ± 3% [mean ± 1S.D.] of their theoretically available heat yield in a form capable of direct assessment by a nadir-viewing MIR imager. The relationship between FRE and fuel mass combusted is linear and highly significant (r2 = 0.98, n = 29, p < 0.0001), and FRP is well related to combustion rate (r2 = 0.90, n = 178, p < 0.0001), though radiation from the still-hot fuel bed can sometimes contribute significant FRP from areas where combustion has ceased. We conclude that FRE assessment offers a powerful tool for supplementing existing burned-area based fuel consumption measures, and thus shows significant promise for enhancing pyrogenic trace gas and aerosol emissions estimates

Journal ArticleDOI
TL;DR: In this article, the authors derived a detailed horizontal velocity field for the southeast borderland of the Tibetan Plateau using GPS data collected from the Crustal Motion Observation Network of China between 1998 and 2004.
Abstract: [1] We derive a detailed horizontal velocity field for the southeast borderland of the Tibetan Plateau using GPS data collected from the Crustal Motion Observation Network of China between 1998 and 2004. Our results reveal a complex deformation field that indicates that the crust is fragmented into tectonic blocks of various sizes, separated by strike-slip and transtensional faults. Most notably, the regional deformation includes 10–11 mm/yr left slip across the Xianshuihe fault, � 7 mm/yr left slip across the Anninghe-Zemuhe-Xiaojiang fault zone, � 2 mm/yr right slip across a shear zone trending northwest near the southern segment of the Lancang River fault, and � 3 mm/yr left slip across the Lijiang fault. Deformation along the southern segment of the Red River fault appears not significant at present time. The region south and west of the XianshuiheXiaojiang fault system, whose eastward motion is resisted by the stable south China block to the east, turns from eastward to southward motion with respect to south China, resulting in clockwise rotation of its internal subblocks. Active deformation is detected across two previously unknown deformation zones: one is located � 150 km northwest of and in parallel with the Longmenshan fault with 4–6 mm/yr right-slip and another is continued south-southwestward from the Xiaojiang fault abutting the Red River fault with � 7 mm/yr left slip. While both of these zones are seismically active, the exact locations of faults responsible for such deformation are yet to be mapped by field geology. Comparing our GPS results with predictions of various models proposed for Tibetan Plateau deformation, we find that the relatively small sizes of the inferred microblocks and their rotation pattern lend support to a model with a mechanically weak lower crust experiencing distributed deformation underlying a stronger, highly fragmented upper crust.

Journal ArticleDOI
TL;DR: In this article, the authors used a hybrid technique to construct the high-latitude electric potentials and magnetic field aligned currents (FAC) as a function of the solar wind parameters.
Abstract: Improved techniques have been developed for empirical modeling of the high-latitude electric potentials and magnetic field aligned currents (FAC) as a function of the solar wind parameters. The FAC model is constructed using scalar magnetic Euler potentials, and functions as a twin to the electric potential model. The improved models have more accurate field values as well as more accurate boundary locations. Non-linear saturation effects in the solar wind-magnetosphere coupling are also better reproduced. The models are constructed using a hybrid technique, which has spherical harmonic functions only within a small area at the pole. At lower latitudes the potentials are constructed from multiple Fourier series functions of longitude, at discrete latitudinal steps. It is shown that the two models can be used together in order to calculate the total Poynting flux and Joule heating in the ionosphere. An additional model of the ionospheric conductivity is not required in order to obtain the ionospheric currents and Joule heating, as the conductivity variations as a function of the solar inclination are implicitly contained within the FAC model's data. The models outputs are shown for various input conditions, as well as compared with satellite measurements. The calculations of the total Joule heating are compared with results obtained by the inversion of ground-based magnetometer measurements. Like their predecessors, these empirical models should continue to be a useful research and forecast tools.

Journal ArticleDOI
TL;DR: In this article, the authors used MODIS data to distinguish dust from smoke and maritime aerosols and to evaluate the African dust column concentration, transport, and deposition, and found that 240 ± 80 Tg of dust are transported annually from Africa to the Atlantic Ocean, 140 ± 40 Tg are deposited in the Atlantic ocean, 50 Tg fertilize the Amazon Basin (four times as previous estimates, thus explaining a paradox regarding the source of nutrition to the Amazon forest), and 20 Tg return to Africa and Europe.
Abstract: [1] Meteorological observations, in situ data, and satellite images of dust episodes were used already in the 1970s to estimate that 100 Tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and are deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but it deteriorates air quality, as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport, and deposition. The Terra spacecraft, launched at the dawn of the last millennium, provides the first systematic well-calibrated multispectral measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and to evaluate the African dust column concentration, transport, and deposition. We found that 240 ± 80 Tg of dust are transported annually from Africa to the Atlantic Ocean, 140 ± 40 Tg are deposited in the Atlantic Ocean, 50 Tg fertilize the Amazon Basin (four times as previous estimates, thus explaining a paradox regarding the source of nutrition to the Amazon forest), 50 Tg reach the Caribbean, and 20 Tg return to Africa and Europe. The results are compared favorably with dust transport models for maximum particle diameter between 6 and 12 μm. This study is a first example of quantitative use of MODIS aerosol for a geophysical research.

Journal ArticleDOI
TL;DR: In this paper, a global aerosol transport-radiation model coupled with a general circulation model was used to simulate changes in the meteorological parameters of clouds, precipitation, and temperature caused by the direct and indirect effects of aerosols.
Abstract: [1] With a global aerosol transport-radiation model coupled to a general circulation model, changes in the meteorological parameters of clouds, precipitation, and temperature caused by the direct and indirect effects of aerosols are simulated, and its radiative forcing are calculated. A microphysical parameterization diagnosing the cloud droplet number concentration based on the Kohler theory is introduced into the model, which depends not only on the aerosol particle number concentration but also on the updraft velocity, size distributions, and chemical properties of each aerosol species and saturation condition of the water vapor. The simulated cloud droplet effective radius, cloud radiative forcing, and precipitation rate, which relate to the aerosol indirect effect, are in reasonable agreement with satellite observations. The model results indicate that a decrease in the cloud droplet effective radius by anthropogenic aerosols occurs globally, while changes in the cloud water and precipitation are strongly affected by a variation of the dynamical hydrological cycle with a temperature change by the aerosol direct and first indirect effects rather than the second indirect effect itself. However, the cloud water can increase and the precipitation can simultaneously decrease in regions where a large amount of anthropogenic aerosols and cloud water exist, which is a strong signal of the second indirect effect. The global mean radiative forcings of the direct and indirect effects at the tropopause by anthropogenic aerosols are calculated to be −0.1 and −0.9 W m−2, respectively. It is suggested that aerosol particles approximately reduce 40% of the increase in the surface air temperature by anthropogenic greenhouse gases on the global mean.

Journal ArticleDOI
TL;DR: In this paper, a model of the ocean and seafloor carbon cycle is subjected to injection of new CO2 pulses of varying sizes to estimate the resident atmospheric fraction over the coming 100 kyr.
Abstract: [1] A model of the ocean and seafloor carbon cycle is subjected to injection of new CO2 pulses of varying sizes to estimate the resident atmospheric fraction over the coming 100 kyr. The model is used to separate the processes of air-sea equilibrium, an ocean temperature feedback, CaCO3 compensation, and silicate weathering on the residual anthropogenic pCO2 in the atmosphere at 1, 10, and 100 kyr. The mean lifetime of anthropogenic CO2 is dominated by the long tail, resulting in a range of 30–35 kyr. The long lifetime of fossil fuel carbon release implies that the anthropogenic climate perturbation may have time to interact with ice sheets, methane clathrate deposits, and glacial/interglacial climate dynamics.

Journal ArticleDOI
TL;DR: A regional climate change workshop was held in Guatemala with the goal of analyzing how climate extremes had changed in the region as discussed by the authors, where scientists from Central America and northern South America brought long-term daily temperature and precipitation time series from meteorological stations in their countries to the workshop.
Abstract: [1] In November 2004, a regional climate change workshop was held in Guatemala with the goal of analyzing how climate extremes had changed in the region. Scientists from Central America and northern South America brought long-term daily temperature and precipitation time series from meteorological stations in their countries to the workshop. After undergoing careful quality control procedures and a homogeneity assessment, the data were used to calculate a suite of climate change indices over the 1961–2003 period. Analysis of these indices reveals a general warming trend in the region. The occurrence of extreme warm maximum and minimum temperatures has increased while extremely cold temperature events have decreased. Precipitation indices, despite the large and expected spatial variability, indicate that although no significant increases in the total amount are found, rainfall events are intensifying and the contribution of wet and very wet days are enlarging. Temperature and precipitation indices were correlated with northern and equatorial Atlantic and Pacific Ocean sea surface temperatures. However, those indices having the largest significant trends (percentage of warm days, precipitation intensity, and contribution from very wet days) have low correlations to El Nino–Southern Oscillation. Additionally, precipitation indices show a higher correlation with tropical Atlantic sea surface temperatures.

Journal Article
TL;DR: In this paper, a forecast model was developed to reproduce the distribution of main shocks, aftershocks and surrounding seismicity observed during 1986-2003 in a 300 x 310 km area centered on the 1992 M = 7.3 Landers earthquake.
Abstract: [1] We develop a forecast model to reproduce the distribution of main shocks, aftershocks and surrounding seismicity observed during 1986-2003 in a 300 x 310 km area centered on the 1992 M = 7.3 Landers earthquake. To parse the catalog into frames with equal numbers of aftershocks, we animate seismicity in log time increments that lengthen after each main shock; this reveals aftershock zone migration, expansion, and densification. We implement a rate/state algorithm that incorporates the static stress transferred by each M > 6 shock and then evolves. Coulomb stress changes amplify the background seismicity, so small stress changes produce large changes in seismicity rate in areas of high background seismicity. Similarly, seismicity rate declines in the stress shadows are evident only in areas with previously high seismicity rates. Thus a key constituent of the model is the background seismicity rate, which we smooth from 1981 to 1986 seismicity. The mean correlation coefficient between observed and predicted M > 1.4 shocks (the minimum magnitude of completeness) is 0.52 for 1986-2003 and 0.63 for 1992-2003; a control standard aftershock model yields 0.54 and 0.52 for the same periods. Four M > 6.0 shocks struck during the test period; three are located at sites where the expected seismicity rate falls above the 92 percentile, and one is located above the 75 percentile. The model thus reproduces much, but certainly not all, of the observed spatial and temporal seismicity, from which we infer that the decaying effect of stress transferred by successive main shocks influences seismicity for decades. Finally, we offer a M > 5 earthquake forecast for 2005-2015, assigning probabilities to 324 10 x 10 km cells.

Journal ArticleDOI
TL;DR: In this paper, the performance of the Multiangle Imaging Spectroradiometer (MISR) early post-launch aerosol optical thickness (AOT) retrieval algorithm is assessed quantitatively over land and ocean by comparison with a 2-year measurement record of globally distributed AERONET Sun photometers.
Abstract: Performance of the Multiangle Imaging Spectroradiometer (MISR) early postlaunch aerosol optical thickness (AOT) retrieval algorithm is assessed quantitatively over land and ocean by comparison with a 2-year measurement record of globally distributed AERONET Sun photometers. There are sufficient coincident observations to stratify the data set by season and expected aerosol type. In addition to reporting uncertainty envelopes, we identify trends and outliers, and investigate their likely causes, with the aim of refining algorithm performance. Overall, about 2/3 of the MISR-retrieved AOT values fall within [0.05 or 20% x AOT] of Aerosol Robotic Network (AERONET). More than a third are within [0.03 or 10% x AOT]. Correlation coefficients are highest for maritime stations (approx.0.9), and lowest for dusty sites (more than approx.0.7). Retrieved spectral slopes closely match Sun photometer values for Biomass burning and continental aerosol types. Detailed comparisons suggest that adding to the algorithm climatology more absorbing spherical particles, more realistic dust analogs, and a richer selection of multimodal aerosol mixtures would reduce the remaining discrepancies for MISR retrievals over land; in addition, refining instrument low-light-level calibration could reduce or eliminate a small but systematic offset in maritime AOT values. On the basis of cases for which current particle models are representative, a second-generation MISR aerosol retrieval algorithm incorporating these improvements could provide AOT accuracy unprecedented for a spaceborne technique.

Journal ArticleDOI
TL;DR: The Solar EUV Experiment (SEE) is one of four scientific instruments on the NASA Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) spacecraft, which has been simultaneously observing the Sun and Earth's upper atmosphere since January 2002 as discussed by the authors.
Abstract: [1] The Solar EUV Experiment (SEE) is one of four scientific instruments on the NASA Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) spacecraft, which has been simultaneously observing the Sun and Earth's upper atmosphere since January 2002. The SEE instrument measures the irradiance of the highly variable, solar extreme ultraviolet (EUV) radiation, one of the major energy sources for the upper atmosphere. The primary SEE data product is the solar spectral irradiances from 0.1 to 194 nm in 1 nm intervals that are fundamental for the TIMED mission's investigation of the energetics in the tenuous, but highly variable, layers of the Earth's atmosphere above 60 km. The TIMED mission began normal operations on 22 January 2002, a time when the Sun displayed maximum levels of activity for solar cycle 23, and has provided daily measurements as solar activity has declined to moderate levels. Solar irradiance variability observed by SEE during the 2 years of the TIMED prime mission includes a variety of moderate and large flares over periods of seconds to hours and dozens of solar rotational cycles over a typical period of 27 days. The SEE flare measurements provide important, new results because of the simultaneous spectral coverage from 0.1 to 194 nm, albeit limited temporal coverage due to its 3% duty cycle. In addition, the SEE measurements reveal important, new results concerning phase shifts of 2–7 days in the intermediate-term variations between different UV wavelengths that appear to be related to their different center-to-limb variations. The new solar EUV irradiance time series from SEE are also important in filling the “EUV Hole,” which is the gap in irradiance measurements in the EUV spectrum since the 1980s. The solar irradiances measured by SEE (Version 7, released July 2004) are compared with other measurements and predictions from models of the solar EUV irradiance. While the measurement comparisons show reasonable agreement, there are significant differences between SEE and some of the models in the EUV range. The data processing algorithms and calibrations are also discussed.

Journal ArticleDOI
TL;DR: A recent climate change workshop for the Middle East brought together scientists and data for the region to produce the first area-wide analysis of climate extremes as mentioned in this paper, which showed that there have been statistically significant, spatially coherent trends in temperature indices that are related to temperature increases in the region.
Abstract: [1] A climate change workshop for the Middle East brought together scientists and data for the region to produce the first area-wide analysis of climate extremes for the region. This paper reports trends in extreme precipitation and temperature indices that were computed during the workshop and additional indices data that became available after the workshop. Trends in these indices were examined for 1950–2003 at 52 stations covering 15 countries, including Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, and Turkey. Results indicate that there have been statistically significant, spatially coherent trends in temperature indices that are related to temperature increases in the region. Significant, increasing trends have been found in the annual maximum of daily maximum and minimum temperature, the annual minimum of daily maximum and minimum temperature, the number of summer nights, and the number of days where daily temperature has exceeded its 90th percentile. Significant negative trends have been found in the number of days when daily temperature is below its 10th percentile and daily temperature range. Trends in precipitation indices, including the number of days with precipitation, the average precipitation intensity, and maximum daily precipitation events, are weak in general and do not show spatial coherence. The workshop attendees have generously made the indices data available for the international research community.

Journal ArticleDOI
TL;DR: In this article, the authors obtained quasi-static, two-dimensional solutions for earthquake nucleation on faults obeying Dieterich's "aging" version of the rate and state friction equations.
Abstract: We obtain quasi-static, two-dimensional solutions for earthquake nucleation on faults obeying Dieterich's “aging” version of the rate and state friction equations. Two distinct nucleation regimes are found, separated by roughly a/b ∼ 0.5, where a and b are the constitutive parameters relating changes in slip rate V and state θ to frictional strength. When fault healing is unimportant (Vθ/D_c ≫ 1, where D_c is the characteristic slip distance for the evolution of θ), the nucleation zone spontaneously evolves toward a state of accelerating slip on a patch of fixed half length L_ν ≈ 1.3774(μ′D_c /bσ), where μ′ is the intrinsic stiffness of the medium and σ is the normal stress. This is the fixed length solution for which the stress intensity factor K = 0. Although this solution does not depend upon a/b explicitly, only for a/b < 0.3781 does healing remain unimportant as instability is approached. For a/b ≳ 0.5 and a wide range of slow loading conditions, Vθ/D_c ultimately approaches a quasi-constant value near 1, and the nucleation zone takes on the appearance of an expanding slip-weakening crack. A fracture energy balance indicates that in this regime the nucleation length asymptotically approaches π−1[b/(b − a)]2(μ′D_c /bσ), a result that is consistent with the numerical simulations despite considerable complexity asa approaches b. This suggests that nucleation lengths can sometimes be much larger than those found by Dieterich (e.g., by a factor of 100 for a/b = 0.95). For surfaces this close to velocity neutral, nucleation might produce signals detectable by surface seismometers for values of D_c at the upper end of the lab range (100 μm). However, the attributes of the aging law that give rise to such large nucleation lengths may be nonphysical; additional laboratory experiments are needed to address this issue.

Journal ArticleDOI
TL;DR: In this article, the authors present a new computer code (PADIE) that calculates fully relativistic quasi-linear pitch angle and energy diffusion coefficients for resonant waveparticle interactions in a magnetized plasma.
Abstract: [1] We present a new computer code (PADIE) that calculates fully relativistic quasi-linear pitch angle and energy diffusion coefficients for resonant wave-particle interactions in a magnetized plasma. Unlike previous codes, the full electromagnetic dispersion relation is used so that interactions involving any linear electromagnetic wave mode in a predominantly cold plasma can be addressed for any ratio of the plasma-frequency to the cyclotron frequency ωpe/∣Ωe∣. The code can be applied to problems in astrophysical, magnetospheric, and laboratory plasmas. The code is applied here to the Earth's radiation belts to calculate electron diffusion by whistler mode chorus, electromagnetic ion cyclotron (EMIC), and Z mode waves. The high-density approximation is remarkably good for electron diffusion by whistler mode chorus for energies E ≥ 100 keV, even for ωpe/∣Ωe∣ ≈ 2 but underestimates diffusion by orders of magnitude at low energies (∼10 keV). When a realistic angular spread of propagating waves is introduced for EMIC waves, electron diffusion at ∼0.5 MeV is only slightly reduced compared with the assumption of field-aligned propagation, but at ∼5 MeV, electron diffusion at pitch angles near 90° is reduced by a factor of 5 and increased by several orders of magnitude at pitch angles 30°–80°. Scattering by EMIC waves should contribute to flattening of the distribution function. The first results for electron diffusion by Z mode waves are presented. They show that unlike the whistler and EMIC waves, energy diffusion exceeds pitch angle diffusion over a broad range of pitch angles less than 45°. The results suggest that Z mode waves could provide a significant contribution to electron acceleration in the radiation belts during storm times.

Journal ArticleDOI
TL;DR: In this article, the authors estimate slip rates on major active faults in southern California using a block model constrained by Global Positioning System measurements of interseismic deformation, including the effects of block rotation and elastic strain accumulation consistent with a simple model of the earthquake cycle.
Abstract: [1] We estimate slip rates on major active faults in southern California using a block model constrained by Global Positioning System measurements of interseismic deformation. The block model includes the effects of block rotation and elastic strain accumulation consistent with a simple model of the earthquake cycle. Our estimates of the right-lateral strike-slip rate on the San Andreas fault vary by at least a factor of 5, from a high of 35.9 ± 0.5 mm/yr in the Carrizo Plain to a low of 5.1 ± 1.5 mm/yr through the San Bernadino segment. Shortening across the Puente Hills Thrust and left-lateral slip on the Raymond Hill fault are consistent with both thickening and escape tectonics in the Los Angeles Basin. Discrepancies between geodetic and geologic slip rate estimates along the San Andreas and San Jacinto faults, as well as in the Eastern California Shear Zone, may be explained by a temporal change in fault system behavior. We find no substantial evidence for long-term postseismic relaxation and infer that the viscosity of the lower crust/upper mantle may be relatively high (η > 1019 Pa s).

Journal Article
TL;DR: In this paper, the effects of CO 2 on aquatic organisms are investigated in terms of depressed metabolic rates and reduced ion exchange and protein synthesis rates, which result in shifts in metabolic equilibria and slowed growth.
Abstract: Currently rising CO 2 levels in atmosphere and marine surface waters as well as projected scenarios of CO 2 disposal in the ocean emphasize that CO 2 sensitivities need to be investigated in aquatic organisms, especially in animals which may well be the most sensitive. Moreover, to understand causes and effects, we need to identify the physiological processes that are sensitive to CO 2 beyond the current emphasis on calcification. Few animals may be acutely sensitive to moderate CO 2 increases, but subtle changes due to long-term exposure may already have started to be felt in a wide range of species. CO 2 effects identified in invertebrate fauna from habitats characterized by oscillating CO 2 levels include depressed metabolic rates and reduced ion exchange and protein synthesis rates. These result in shifts in metabolic equilibria and slowed growth. Long-term moderate hypercapnia has been observed to produce enhanced mortality with as yet unidentified cause and effect relationships. During future climate change, simultaneous shifts in temperature, CO 2 , and hypoxia levels will enhance sensitivity to environmental extremes relative to a change in just one of these variables. Some interactions between these variables result from joint effects on the same physiological mechanisms. Such interactions need to be considered in terms of future increases in atmospheric CO 2 and its uptake by the ocean as well as in terms of currently proposed mitigation scenarios. These include purposeful injection of CO 2 in the deep ocean or Fe fertilization of the surface ocean, which reduces subsurface O 2 levels. The resulting ecosystem shifts could develop progressively, rather than beyond specific thresholds, such that effects parallel CO 2 oscillations. It is unsure to what extent and how quickly species may adapt to permanently elevated CO 2 levels by microevolutionary compensatory processes.

Journal ArticleDOI
TL;DR: In this article, numerical simulations of the Hudson River estuary using a terrain-following, three-dimensional model (Regional Ocean Modeling System (ROMS)) are compared with an extensive set of time series and spatially resolved measurements over a 43 day period with large variations in tidal forcing and river discharge.
Abstract: [i] Numerical simulations of the Hudson River estuary using a terrain-following, three-dimensional model (Regional Ocean Modeling System (ROMS)) are compared with an extensive set of time series and spatially resolved measurements over a 43 day period with large variations in tidal forcing and river discharge. The model is particularly effective at reproducing the observed temporal variations in both the salinity and current structure, including tidal, spring neap, and river discharge-induced variability. Large observed variations in stratification between neap and spring tides are captured qualitatively and quantitatively by the model. The observed structure and variations of the longitudinal salinity gradient are also well reproduced. The most notable discrepancy between the model and the data is in the vertical salinity structure. While the surface-to-bottom salinity difference is well reproduced, the stratification in the model tends to extend all the way to the water surface, whereas the observations indicate a distinct pycnocline and a surface mixed layer. Because the southern boundary condition is located near the mouth the estuary, the salinity within the domain is particularly sensitive to the specification of salinity at the boundary. A boundary condition for the horizontal salinity gradient, based on the local value of salinity, is developed to incorporate physical processes beyond the open boundary not resolved by the model. Model results are sensitive to the specification of the bottom roughness length and vertical stability functions, insofar as they influence the intensity of vertical mixing. The results only varied slightly between different turbulence closure methods of k-e, k-ω, and k-kl.

Journal ArticleDOI
TL;DR: In this article, the effects of atmospheric CO2 levels on aquatic organisms were investigated in the context of aquatic organisms, especially the most sensitive, animals, and the physiological processes sensitive to CO2 in animals.
Abstract: Currently rising CO2 levels in atmosphere and marine surface waters as well as projected scenarios of CO2 disposal in the ocean emphasize that CO2 sensitivities need to be investigated in aquatic organisms, especially the most sensitive, animals. Moreover, to understand causes and effects, we need to identify the physiological processes sensitive to CO2 in animals. While the number of animals acutely sensitive to moderate CO2 increments may be small, long-term effects may have already begun in a wide range of species and these could drive shifts in ecological equilibria. Such effects not only include a disturbance in calcification. Recent studies of invertebrate fauna pre-adapted to oscillating CO2 levels in their habitat revealed a depression of metabolic rate associated with a reduction in ion exchange and protein synthesis rates as well as a shift in metabolic equilibria, resulting in a slowing of growth. Enhanced mortality has also been observed under long-term moderate hypercapnia with as yet unidentified cause and effect relationships. In a climate change scenario, simultaneous changes in temperature, CO2, and hypoxia levels would enhance sensitivity to environmental extremes relative to a change in only one of these variables. Some of these interactions are elicited through effects on the same physiological mechanisms, and need to be considered in estimating effects of atmospheric CO2 entry into the ocean. They also need to be considered in currently discussed mitigation scenarios such as direct injection of CO2 in the deep ocean or fertilizing the surface ocean with Fe, which reduces subsurface O2 contents. With changing CO2 levels, ecosystem shifts may develop progressively rather than beyond specific thresholds such that effects parallel CO2 oscillations. It is presently unclear, to what extent and how quickly species may adapt to permanently elevated CO2 levels by micro-evolutionary compensatory processes.