scispace - formally typeset
Search or ask a question
JournalISSN: 0148-0227

Journal of Geophysical Research 

American Geophysical Union
About: Journal of Geophysical Research is an academic journal. The journal publishes majorly in the area(s): Solar wind & Magnetosphere. It has an ISSN identifier of 0148-0227. Over the lifetime, 111092 publications have been published receiving 5900202 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: HadISST1 as mentioned in this paper replaces the global sea ice and sea surface temperature (GISST) data sets and is a unique combination of monthly globally complete fields of SST and sea ice concentration on a 1° latitude-longitude grid from 1871.
Abstract: [1] We present the Met Office Hadley Centre's sea ice and sea surface temperature (SST) data set, HadISST1, and the nighttime marine air temperature (NMAT) data set, HadMAT1. HadISST1 replaces the global sea ice and sea surface temperature (GISST) data sets and is a unique combination of monthly globally complete fields of SST and sea ice concentration on a 1° latitude-longitude grid from 1871. The companion HadMAT1 runs monthly from 1856 on a 5° latitude-longitude grid and incorporates new corrections for the effect on NMAT of increasing deck (and hence measurement) heights. HadISST1 and HadMAT1 temperatures are reconstructed using a two-stage reduced-space optimal interpolation procedure, followed by superposition of quality-improved gridded observations onto the reconstructions to restore local detail. The sea ice fields are made more homogeneous by compensating satellite microwave-based sea ice concentrations for the impact of surface melt effects on retrievals in the Arctic and for algorithm deficiencies in the Antarctic and by making the historical in situ concentrations consistent with the satellite data. SSTs near sea ice are estimated using statistical relationships between SST and sea ice concentration. HadISST1 compares well with other published analyses, capturing trends in global, hemispheric, and regional SST well, containing SST fields with more uniform variance through time and better month-to-month persistence than those in GISST. HadMAT1 is more consistent with SST and with collocated land surface air temperatures than previous NMAT data sets.

8,958 citations

Journal ArticleDOI
TL;DR: A rapid and accurate radiative transfer model (RRTM) for climate applications has been developed and the results extensively evaluated as discussed by the authors, which is performed using the correlated-k method: the k distributions are attained directly from the LBLRTM line-byline model, which connects the absorption coefficients used by RRTM to high-resolution radiance validations done with observations.
Abstract: A rapid and accurate radiative transfer model (RRTM) for climate applications has been developed and the results extensively evaluated. The current version of RRTM calculates fluxes and cooling rates for the longwave spectral region (10–3000 cm−1) for an arbitrary clear atmosphere. The molecular species treated in the model are water vapor, carbon dioxide, ozone, methane, nitrous oxide, and the common halocarbons. The radiative transfer in RRTM is performed using the correlated-k method: the k distributions are attained directly from the LBLRTM line-by-line model, which connects the absorption coefficients used by RRTM to high-resolution radiance validations done with observations. Refined methods have been developed for treating bands containing gases with overlapping absorption, for the determination of values of the Planck function appropriate for use in the correlated-k approach, and for the inclusion of minor absorbing species in a band. The flux and cooling rate results of RRTM are linked to measurement through the use of LBLRTM, which has been substantially validated with observations. Validations of RRTM using LBLRTM have been performed for the midlatitude summer, tropical, midlatitude winter, subarctic winter, and four atmospheres from the Spectral Radiance Experiment campaign. On the basis of these validations the longwave accuracy of RRTM for any atmosphere is as follows: 0.6 W m−2 (relative to LBLRTM) for net flux in each band at all altitudes, with a total (10–3000 cm−1) error of less than 1.0 W m−2 at any altitude; 0.07 K d−1 for total cooling rate error in the troposphere and lower stratosphere, and 0.75 K d−1 in the upper stratosphere and above. Other comparisons have been performed on RRTM using LBLRTM to gauge its sensitivity to changes in the abundance of specific species, including the halocarbons and carbon dioxide. The radiative forcing due to doubling the concentration of carbon dioxide is attained with an accuracy of 0.24 W m−2, an error of less than 5%. The speed of execution of RRTM compares favorably with that of other rapid radiation models, indicating that the model is suitable for use in general circulation models.

6,861 citations

Journal ArticleDOI
TL;DR: In this article, a diagram has been devised that can provide a concise statistical summary of how well patterns match each other in terms of their correlation, their root-mean-square difference, and the ratio of their variances.
Abstract: A diagram has been devised that can provide a concise statistical summary of how well patterns match each other in terms of their correlation, their root-mean-square difference, and the ratio of their variances. Although the form of this diagram is general, it is especially useful in evaluating complex models, such as those used to study geophysical phenomena. Examples are given showing that the diagram can be used to summarize the relative merits of a collection of different models or to track changes in performance of a model as it is modified. Methods are suggested for indicating on these diagrams the statistical significance of apparent differences and the degree to which observational uncertainty and unforced internal variability limit the expected agreement between model-simulated and observed behaviors. The geometric relationship between the statistics plotted on the diagram also provides some guidance for devising skill scores that appropriately weight among the various measures of pattern correspondence.

5,762 citations

Journal ArticleDOI
TL;DR: In this article, a new sequential data assimilation method is proposed based on Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter.
Abstract: A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The unbounded error growth found in the extended Kalman filter, which is caused by an overly simplified closure in the error covariance equation, is completely eliminated. Open boundaries can be handled as long as the ocean model is well posed. Well-known numerical instabilities associated with the error covariance equation are avoided because storage and evolution of the error covariance matrix itself are not needed. The results are also better than what is provided by the extended Kalman filter since there is no closure problem and the quality of the forecast error statistics therefore improves. The method should be feasible also for more sophisticated primitive equation models. The computational load for reasonable accuracy is only a fraction of what is required for the extended Kalman filter and is given by the storage of, say, 100 model states for an ensemble size of 100 and thus CPU requirements of the order of the cost of 100 model integrations. The proposed method can therefore be used with realistic nonlinear ocean models on large domains on existing computers, and it is also well suited for parallel computers and clusters of workstations where each processor integrates a few members of the ensemble.

4,816 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Network Information
Related Journals (5)
Geophysical Research Letters
45.2K papers, 2.2M citations
98% related
Earth and Planetary Science Letters
18.9K papers, 1.4M citations
88% related
Atmospheric Chemistry and Physics
15.6K papers, 777.3K citations
87% related
Journal of Climate
12.2K papers, 1M citations
86% related
Journal of the Atmospheric Sciences
13K papers, 825.5K citations
85% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20213,466
20203,189
20193,305
20183,127
20173,323
20163,077