Journal•ISSN: 1671-9433
Journal of Marine Science and Application
Springer Science+Business Media
About: Journal of Marine Science and Application is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Hull & Offshore geotechnical engineering. It has an ISSN identifier of 1671-9433. Over the lifetime, 1120 publications have been published receiving 6960 citations.
Topics: Hull, Offshore geotechnical engineering, Finite element method, Computational fluid dynamics, Control theory
Papers published on a yearly basis
Papers
More filters
TL;DR: Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.
Abstract: The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.
171 citations
TL;DR: In this article, properties of magnetorheological fluids, its applications in suspensions of vehicles, suspension of trains, high buildings cable-stayed bridges have been discussed, problems and some suggestions are also presented.
Abstract: Magnetorheological (MR) fluids are now well established as one of the leading materials for use in controllable structures and systems. Commercial application of MR fluids in various fields, particularly in the vibration control, has grown rapidly over the past few years. In this paper, properties of magnetorheological (MR) fluids, its applications in suspensions of vehicles, suspension of trains, high buildings cable-stayed bridges have been discussed. The scope of MR fluids in future, problems and some suggestions are also presented. Finally, effectiveness of MR fluids in vibration control of marine diesel engine through experiment is briefly discussed by the author.
122 citations
TL;DR: In this paper, a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.
Abstract: A marine propulsion system is a very complicated system composed of many mechanical components. As a result, the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft. It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis. For this reason, a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems. To monitor the gear conditions, the bispectrum analysis was first employed to detect gear faults. The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique, which could be regarded as an index actualizing forepart gear faults diagnosis. Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox. The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum, and the ANN classification method has achieved high detection accuracy. Hence, the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases, and thus have application importance.
79 citations
TL;DR: In this article, two novel numerical computation methods are introduced which have been recently developed at Research Institute for Applied Mechanics ( RIAM ), Kyushu University, for strongly nonlinear wave-body interaction problems, such as ship motions in rough seas and resulting green-water impact on deck.
Abstract: In this paper, two novel numerical computation methods are introduced which have been recently developed at Research Institute for Applied Mechanics ( RIAM ), Kyushu University, for strongly nonlinear wave-body interaction problems, such as ship motions in rough seas and resulting green-water impact on deck. The first method is the CIP-based Cartesian grid method, in which the free surface flow is treated as a multi-phase flow which is solved using a Cartesian grid. The second method is the MPS method, which is a so-called particle method and hence no grid is used. The features and calculation procedures of these numerical methods are described. One validation computation against a newly conducted experiment on a dam break problem, which is also described in this paper, is presented.
67 citations
TL;DR: Hydrodynamic tests, especially planar-motion-mechanism (PMM) tests are simulated by CFD software -FLUENT, and all of the corresponding hydrodynamic coefficients are obtained, which satisfy the need of establishing the simulation system to evaluate maneuverability of vehicles during the autonomous underwater vehicle scheme design stage.
Abstract: Applications of computational fluid dynamic (CFD) to the maritime industry continue to grow with the increasing development of computers. Numerical approaches have evolved to a level of accuracy which allows them to be applied for hydrodynamic computations in industry areas. Hydrodynamic tests, especially planar-motion-mechanism (PMM) tests are simulated by CFD software -FLUENT, and all of the corresponding hydrodynamic coefficients are obtained, which satisfy the need of establishing the simulation system to evaluate maneuverability of vehicles during the autonomous underwater vehicle scheme design stage. The established simulation system performed well in tests.
67 citations